首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Over the past centuries, the agricultural use of wetlands in Central Europe has required interference with the natural wetland water balance. Often this has consisted of drainage measures alone. In low‐precipitation areas, it has also involved the operation of combined drainage and sub‐irrigation systems. Model studies conducted as part of planning processes, or with a view to finding out the impact of changing climate conditions on the water balance of wetlands, must take these facts into account. For this reason, a water balance model has been devised for wetlands whose water balance is governed by water resources management systems. It is based on the WBalMo model system. Special modules were integrated into WBalMo to calculate the water balance of wetland areas (WABI module) and to regulate inflow partitioning within the wetland (REGINF module). When calculating the water balance, the WABI module takes into account precipitation and potential evapotranspiration, groundwater levels below surface, soil types, land‐use classes, inflows via the running water system, and data for target water levels. It provides actual evapotranspiration, discharge into the running water system, and groundwater levels in the area. The example of the Spreewald, a major wetland area in north‐eastern Germany, was used to design and test the WBalMo Spreewald model. The comparison of measured and calculated water balance parameters of the wetland area confirms the suitability of the model for water balance studies in wetlands with complex water resources management systems. The results reveal the strong influence of water management on the water balance of such areas. The model system has proved to be excellently suited for planning and carrying out water management measures aimed at the sustainable development of wetlands. Furthermore, scenario analyses can be used to assess the impact of global change on the water balance of wetlands. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
In the northern glaciated plain of North America, the duration of surface water in seasonal wetlands is strongly influenced by the rate of infiltration and evaporation. Infiltration also plays important roles in nutrient exchange at the sediment–water interface and groundwater recharge under wetlands. A whole‐wetland bromide tracer experiment was conducted in Saskatchewan, Canada to evaluate infiltration and solute transport processes. Bromide concentrations of surface water, groundwater, sediment pore water and plant tissues were monitored as the pond water‐level gradually dropped until there was no surface water. Hydraulic head gradients showed strong lateral flow from under the wetland to the treed riparian zone during the growing season. The bromide mass balance analysis showed that in early spring, almost 50% of water loss from the wetland was by infiltration, and it increased to about 70% in summer as plants in and around the wetland started to transpire more actively. The infiltration contributed to recharging the shallow, local groundwater under the wetland, but much of it was taken up by trees without recharging the deeper groundwater system. Emergent plants growing in the wetlands incorporated some bromide, but overall uptake of bromide by vegetation was less than 10% of the amount initially released. After one summer, most of the subsurface bromide was found within 40–80 cm of the soil surface. However, some bromide penetrated as deep as 2–3 m, presumably owing to preferential flow pathways provided by root holes or fractures. Copyright © 2004 Crown in the Right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

3.
Variations in floodplain channel water levels and valley floor groundwater levels (measured in piezometers and boreholes) are examined at selected points along the course of the River Lambourn, a chalk river in southern England. A local alluvial gravel aquifer in the valley bottom is associated with numerous small wetlands that extend over much of the river's perennial profile. Variations in hydraulic gradient between local borehole levels and/or floodplain channel water levels are described for three sites in the seasonal section of the channel at Bockhampton, East Garston and West Shefford. The results indicate that observed groundwater levels are closely associated with flows from discrete springs at the margins of the channel and floodplain. However, as the floodplain widens and the alluvial gravel aquifer increases in size, the gravel aquifer accounts for a substantial down-valley component of groundwater flow with a diffuse vertical water flux. In the lower catchment, the exchange of flows between the gravel aquifer and the river enables some attenuation of floodplain water-table variability, providing a stable hydrological regime for valley-bottom wetlands. Catchment controls upon the local, valley-bottom, wetland regime are demonstrated with the application of a simple groundwater model developed using MODFLOW. The model is used to simulate groundwater discharge to the river in the upper and lower catchment, in addition to the water level regime at selected points in the valley bottom in the lower catchment. The results demonstrate the importance of taking catchment-scale water flow into account when managing isolated wetlands in a permeable catchment.  相似文献   

4.
Inadequate knowledge exists on the distribution of soil moisture and shallow groundwater in intensively cultivated inland valley wetlands in tropical environments, which are required for determining the hydrological regime. This study investigated the spatial and temporal variability of soil moisture along 4 hydrological positions segmented as riparian zone, valley bottom, fringe, and valley slope in an agriculturally used inland valley wetland in Central Uganda. The determined hydrological regimes of the defined hydrological positions are based on soil moisture deficit calculated from the depth to the groundwater table. For that, the accuracy and reliability of satellite‐derived surface models, SRTM‐30m and TanDEM‐X‐12m, for mapping microscale topography and hydrological regimes are evaluated against a 5‐m digital elevation model (DEM) derived from field measurements. Soil moisture and depth to groundwater table were measured using frequency domain reflectometry sensors and piezometers installed along the hydrological positions, respectively. Results showed that spatial and temporal variability in soil moisture increased significantly (p < .05) towards the riparian zone; however, no significant difference was observed between the valley bottom and riparian zone. The distribution of soil hydrological regimes, saturated, near‐saturated, and nonsaturated regimes does not correlate with the hydrological positions. This is due to high spatial and temporal variability in depth to groundwater and soil moisture content across the valley. Precipitation strongly controlled the temporal variability, whereas microscale topography, soil properties, distance from the stream, anthropogenic factors, and land use controlled the spatial variability in the inland valley. TanDEM‐X DEM reasonably mapped the microscale topography and thus soil hydrological regimes relative to the Shuttle Radar Topography Mission DEM. The findings of the study contribute to improved understanding of the distribution of hydrological regimes in an inland valley wetland, which is required for a better agricultural water management planning.  相似文献   

5.
Mountainous headwaters consist of different landscape units including forests, meadows and wetlands. In these headwaters it is unclear which landscape units contribute what percentage to baseflow. In this study, we analysed spatiotemporal differences in baseflow isotope and hydrochemistry to identify catchment‐scale runoff contribution. Three baseflow snapshot sampling campaigns were performed in the Swiss pre‐alpine headwater catchment of the Zwäckentobel (4.25 km2) and six of its adjacent subcatchments. The spatial and temporal variability of δ2H, Ca, DOC, AT, pH, SO4, Mg and H4SiO4 of streamflow, groundwater and spring water samples was analysed and related to catchment area and wetland percentage using bivariate and multivariate methods. Our study found that in the six subcatchments, with variable arrangements of landscape units, the inter‐ and intra catchment variability of isotopic and hydrochemical compositions was small and generally not significant. Stream samples were distinctly different from shallow groundwater. An upper spring zone located near the water divide above 1,400 m and a larger wetland were identified by their distinct spatial isotopic and hydrochemical composition. The upstream wetland percentage was not correlated to the hydrochemical streamflow composition, suggesting that wetlands were less connected and act as passive features with a negligible contribution to baseflow runoff. The isotopic and hydrochemical composition of baseflow changed slightly from the upper spring zone towards the subcatchment outlets and corresponded to the signature of deep groundwater. Our results confirm the need and benefits of spatially distributed snapshot sampling to derive process understanding of heterogeneous headwaters during baseflow. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Interactions of surface water and groundwater (SW–GW) play an important role in the physical, chemical, and ecological processes of riparian zones. The main objective of this study was to describe the two‐dimensional characteristics of riverbank SW–GW interactions and to quantify their influence factors. The SW–GW exchange fluxes for six sections (S1 to S6) of the Qinhuai River, China, were estimated using a heat tracing method, and field hydrogeological and thermodynamic parameters were obtained via inverse modelling. Global sensitivity analysis was performed to compare the effects of layered heterogeneity of hydraulic conductivity and river stage variation on SW–GW exchange. Under the condition of varied river stage, only the lateral exchange fluxes at S1 apparently decreased during the monitoring period, probably resulting from its relatively higher hydraulic conductivity. Meanwhile, the SW–GW exchanges for the other five sections were quite stable over time. The lateral exchange fluxes were higher than the vertical ones. The riverbank groundwater flow showed different spatial variation characteristics for the six sections, but most of the higher exchange fluxes occurred in the lower area of a section. The section with larger hydraulic conductivity has an apparent dynamic response to surface water and groundwater level differences, whereas lower permeabilities severely reduced the response of groundwater flow. The influence of boundary conditions on SW–GW interactions was restricted to a limited extent, and the impact extent will expand with the increase of peak water level and hydraulic conductivity. The SW–GW head difference was the main influence factors in SW–GW interactions, and the influence of both SW–GW head difference and hydraulic conductivity decreased with an increase of the distance from the surface water boundary. For each layer of riverbank sediment, its hydraulic conductivity had greater influence on its groundwater flow than the other layers, whereas it had negligible effects on its overlying/underlying layers. Consequently, the variations in river stage and hydraulic conductivity were the main factors influencing the spatial and temporal characteristics of riverbank groundwater flow, respectively.  相似文献   

7.
The spatial and temporal distribution of sulphate (SO4) concentrations in peat pore water and the outlet streams of two forested swamps was related to variations in the magnitude of upland runoff, wetland water levels and flow path. The swamps were located in headwater catchments with contrasting till depths typical of the southern Canadian Shield. Inputs of SO4 from shallow hillslope tills and streams showed little seasonal variation in either source or concentration in both swamps. Sulphate dynamics at the outlet stream reflected hydrological and biogeochemical processes within the valley wetlands, which in turn were partly controlled by catchment hydrogeology. During high runoff, maximum water table elevations and peak surface flow in the swamps resulted in upland inputs largely bypassing anoxic peat. Consequently, SO4 concentrations of 8–10 mg/l at the swamp outlets were similar to stream and groundwater inputs. During periods of low flow, concentrations of SO4 at the swamp outlets declined to less than 3 mg/l. At this time lower water table elevations resulted in increased interaction of input water with anoxic peats, and therefore, SO4 reduction. Contrasts in till depth and the nature of groundwater flow between catchments resulted in differences in SO4 dynamics between years and swamps. In dry summers the absence of groundwater inputs to the swamp in the catchment with thin till resulted in a large water table drawdown and re-oxidation of accumulated S, which contributed to maximum SO4 concentrations (up to 35 mg/l) during storm runoff. Continuous groundwater input to the swamp in the catchment with deeper till was critical to maintaining saturated surfaces and efficient SO4 retention during both dry and wet summers. A conceptual model of wetland SO4 retention and export, based on catchment hydrogeology, is developed to generalize the SO4 dynamics of valley bottom wetlands at the landscape scale. © 1997 by John Wiley & Sons, Ltd.  相似文献   

8.
Wetlands in the coastal catchments adjacent to the Great Barrier Reef lagoon play an important role in local hydrological processes and provide important ecological habitats for terrestrial and aquatic species. Although many wetlands have been removed or degraded by agricultural expansion, there is now great interest in their protection and restoration as important aquatic ecosystems and potential filters of pollutant runoff. However, the filtering capacity of tropical wetlands is largely unknown, so the current study was established to quantify the water, sediment and nutrient balance of a natural riverine wetland in tropical north Queensland. Surface and groundwater fluxes of water, sediment and nutrients into and out of the wetland were monitored for a 3‐year period. This paper focuses on the water balance of this natural wetland and a companion paper presents its sediment and nutrient balance and estimates of water quality filtering. Wetland inflows and outflows were dominated by surface flows which varied by 3–4 orders of magnitude through the course of the year, with 90% of the annual flow occurring during the period January to March. Although groundwater inputs to the wetland were only 5% of the annual water balance, they are very important to sustaining the wetland during the dry season, when they can be the largest input of water (up to 90%). Water retention times in this type of wetland are very short, particularly when most of the flow and any associated materials are passing through it (i.e. 1–2 h), so there is little time to filter most of the annual flux of water through this wetland. Longer retention times occur at the end of the dry season (up to 8·5 days); but this is when the lowest fluxes of water pass through the wetland. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
J.J. Dick  D. Tetzlaff  C. Soulsby 《水文研究》2015,29(14):3098-3111
We monitored temperatures in stream water, groundwater and riparian wetland surface water over 18 months in a 3.2‐km2 moorland catchment in the Scottish Highlands. The stream occupies a glaciated valley, aligned east–west. It has three main headwater tributaries with a large north facing catchment, a south facing catchment and the smallest east facing headwater. The lower catchment sampling locations begin after the convalescence of all three headwaters. Much of the stream network is fringed by riparian peatlands. Stream temperatures are mainly regulated by energy exchanges at the air–water interface. However, they are also influenced by inflows from the saturated riparian zone, where surface water source areas are strongly connected with the stream network. Consequently, the spatial distribution of stream temperatures exhibits limited variability. Nevertheless, there are significant summer differences between the headwaters, despite their close proximity to each other. This is consistent with aspect (and incident radiation), given the south and east facing headwaters having higher temperatures. The largest, north‐facing sub‐catchment shows lower summer diurnal temperature variability, suggesting that lower radiation inputs dampen temperature extremes. Whilst stream water temperature regimes in the lower catchment exhibit little change along a 1‐km reach, they are similar to those in the largest headwater; probably reflecting size and comparable catchment aspect and hydrological flow paths. Our results suggest that different parts of the channel network and its connected wetlands have contrasting sensitivity to higher summer temperatures. This may be important in land management strategies designed to mitigate the impacts of projected climatic warming. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
To evaluate the influence of hydrological processes on dissolved organic carbon (DOC) dynamics in a forested headwater catchment, DOC concentration was observed along the flow path from rainfall to stream water via throughfall, soil water, groundwater, and spring water for 4 years, and DOC flux through the catchment was calculated. The spatial and temporal variations in DOC concentration and flux were compared with physical hydrological observations and the mean residence time of water. In the upslope soil layer, DOC concentrations were not significantly correlated with water fluxes, suggesting that DOC concentrations were not strictly controlled by water fluxes. In the upslope perennial groundwater, DOC concentration was affected by the change in the amount of microbial degradation of DOC produced by changes in the mean residence time of water. In stream water, the temporal variation in DOC concentration was usually affected by changes in DOC concentration of the inflow component via vertical infiltration from above the perennial groundwater. During dry periods, however, the component from inflow via vertical infiltration was negligible and DOC in the upslope perennial groundwater became the major component of stream water DOC. The temporal variation in stream water DOC concentration during baseflow was affected by rainfall patterns over several preceding months. Therefore, records of rainfall over several preceding months are one of the most important factors for predicting changes in DOC concentration on a catchment scale. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The Demnitzer Millcreek catchment (DMC), is a 66 km2 long-term experimental catchment located 50 km SE of Berlin. Monitoring over the past 30 years has focused on hydrological and biogeochemical changes associated with de-intensification of farming and riparian restoration in the low-lying landscape dominated by rain-fed farming and forestry. However, the hydrological function of the catchment, which is closely linked to nutrient fluxes and highly sensitive to climatic variability, is still poorly understood. In the last 3 years, a prolonged drought period with below-average rainfall and above-average temperatures has resulted in marked hydrological change. This caused low soil moisture storage in the growing season, agricultural yield losses, reduced groundwater recharge, and intermittent streamflows in parts of an increasingly disconnected channel network. This paper focuses on a two-year long isotope study that sought to understand how different parts of the catchment affect ecohydrological partitioning, hydrological connectivity and streamflow generation during drought conditions. The work has shown the critical importance of groundwater storage in sustaining flows, basic in-stream ecosystem services and the dominant influence of vegetation on groundwater recharge. Recharge was much lower and occurred during a shorter window of time in winter under forests compared to grasslands. Conversely, groundwater recharge was locally enhanced by the restoration of riparian wetlands and storage-dependent water losses from the stream to the subsurface. The isotopic variability displayed complex emerging spatio-temporal patterns of stream connectivity and flow duration during droughts that may have implications for in-stream solute transport and future ecohydrological interactions between landscapes and riverscapes. Given climate projections for drier and warmer summers, reduced and increasingly intermittent streamflows are very likely not just in the study region, but in similar lowland areas across Europe. An integrated land and water management strategy will be essential to sustaining catchment ecosystem services in such catchment systems in future.  相似文献   

12.
Numerical groundwater flow models necessarily are limited to subsurface flow evaluation. It is of interest, however, to examine the possibility that, for unconfined aquifer systems, they could be used to proportionately measure the magnitude of seepage they estimate when these aquifers intersect the landscape surface. Our goal in this study was to determine the degree to which an unconfined groundwater model can estimate run‐off or seepage at the land surface during winter time wet season conditions, as well as in the dry season, when evapotranspiration is a major part of the water balance, using a lowland basin‐fill example study area in the Pacific Northwest. The exit gradient is a metric describing the potential for vertical seepage at the landscape surface. We investigated the spatial relationship of mapped surface features, such as wetlands, streams and ponds, to the model‐predicted mapped exit gradient. We found that areas mapped as wetlands had positive exit gradients. During the wet season, modelled exit gradients predicted seepage throughout extensive areas of the groundwater shed, extending far beyond mapped wetland areas (355% increase), associated with previously observed increases in nitrate‐nitrogen in streams in wet season. During the dry season, exit gradients spatially corresponded with wetland areas. The increase in in‐stream nitrogen corresponds with shorter residence times in carbon‐rich wetland zones because of the onset of saturation overland flow. We present results that suggest that the exit gradient could be a useful concept in examining the groundwater–surface water linkage that is often under represented physically in watershed flow models. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

13.
Characterizing the spatio-temporal distribution of groundwater–surface water (GW–SW) exchange fluxes is of paramount importance in understanding catchment behavior. A wide range of field-based techniques are available for such characterization. The objective of this study is to quantify the spatio-temporal distribution of the exchange fluxes along the Çakıt stream (Niğde, Turkey) through coupling a set of geophysical techniques and in-stream measurements in a hierarchical manner. First, geological and water quality information were combined at the catchment scale to determine key areas for reach-scale focus. Second, electromagnetic induction (EMI) surveys were conducted along the reach to pinpoint potential groundwater upwelling locations. EMI anomalies guided our focus to a 665 m-long reach of the stream. Along this selected reach, a fibre-optic distributed temperature sensing (FO-DTS) system was utilized to investigate streambed temperature profiles at fine spatial and temporal scales. Furthermore, vertical hydraulic gradients and exchange fluxes were investigated using nested piezometers and vertical temperature profiles, respectively, at two potential upwelling locations and a potential downwelling location identified by previous surveys. The results of the study reveal heterogeneity of vertical water-flow components with seasonal variability. The EMI survey was successful in identifying a localized groundwater upwelling location. FO-DTS measurements revealed a warm temperature anomaly during cold air temperature and low streamflow conditions at the same upwelling site. Our point-based methods, namely vertical temperature profiles and vertical hydraulic gradient estimates, however, did not always provide consistent results with each other and with EMI and FO-DTS measurements. This study, therefore, highlights the opportunities and challenges in incorporating multi-scale observations in a hierarchical manner in characterization of the GW–SW exchange processes that are known to be highly heterogeneous in time and space. Overall, a combination of different methods helps to overcome the limitations of each single method and increases confidence in the obtained results.  相似文献   

14.
Quantifying snowmelt‐derived fluxes at the watershed scale within hillslope environments is critical for investigating local meadow scale groundwater dynamics in high elevation riparian ecosystems. In this article, we investigate the impact of snowmelt‐derived groundwater flux from the surrounding hillslopes on water table dynamics in Tuolumne Meadows, which is located in the Sierra Nevada Mountains of California, USA. Results show water levels within the meadow are controlled by a combination of fluxes at the hillslope boundaries, snowmelt within the meadow and changes in the stream stage. Observed water level fluctuations at the boundaries of the meadow show the hydrologic connection and subsequent disconnection between the hillslope and meadow aquifers. Timing of groundwater flux entering the meadow as a result of spring snowmelt can vary over 20 days based on the location, aspect, and local geology of the contributing area within the larger watershed. Identifying this temporal and spatial variability in flux entering the meadow is critical for simulating changes in water levels within the meadow. Model results can vary significantly based on the temporal and spatial scales at which watershed processes are linked to local processes within the meadow causing errors when boundary fluxes are lumped in time or space. Without a clear understanding of the surrounding hillslope hydrology, it is difficult to simulate groundwater dynamics within high elevation riparian ecosystems with the accuracy necessary for understanding ecosystem response. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Small‐order streams have highly variable flows that can result in large temporal and spatial variation of the hyporheic zone. Dam construction along these intermittent headwater streams alters downstream flow and influences the hydrologic balance between stream water and the adjacent riparian zone. A 3‐year site study was conducted along an impounded second‐order stream to determine the water balance between stream, unsaturated zone, groundwater and riparian vegetation. The presence of the upstream impoundment provided near‐perennial water flow in the stream channel. The observed woody plant transpiration accounted for 71% of average annual water loss in the site. The overall contribution of stream water via the hyporheic zone to site water balance was 73 cm, or 44% of total inputs. This exceeded both rainfall and upland subsurface contribution to the site. A highly dynamic hyporheic zone was indicated by high water use from woody plants that fluctuated seasonally with stream water levels. We found leaf area development in the canopy layer to be closely coupled with stream and groundwater fluctuations, indicating its usefulness as a potential indicator of site water balance for small dam systems. The net result of upstream impoundment increased riparian vegetation productivity by influencing movement of stream water to storage in the groundwater system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Using a mass balance algorithm, this study develops an extension module that can be embedded in the commonly used Soil and Water Assessment Tool (SWAT). This module makes it possible to assess effects of riparian wetlands on runoff and sediment yields at a watershed scale, which is very important for aquatic ecosystem management but rarely documented in the literature. In addition to delineating boundaries of a watershed and its subwatersheds, the module groups riparian wetlands within a subwatershed into an equivalent wetland for modelling purposes. Further, the module has functions to compute upland drainage area and other parameters (e.g. maximum volume) for the equivalent wetland based on digital elevation model, stream network, land use, soil and wetland distribution GIS datasets. SWAT is used to estimate and route runoff and sediment generated from upland drainage area. The lateral exchange processes between riparian wetlands and their hydraulically connected streams are simulated by the extension module. The developed module is empirically applied to the 53 km2 Upper Canagagigue Creek watershed located in Southern Ontario of Canada. The simulation results indicate that the module can make SWAT more reasonably predict flow and sediment loads at the outlet of the watershed and better represent the hydrologic processes within it. The simulation is sensitive to errors of wetland parameters and channel geometry. The approach of embedding the module into SWAT enables simulation of hydrologic processes in riparian wetlands, evaluation of wetland effects on regulating stream flow and sediment loading and assessment of various wetland restoration scenarios. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
鄱阳湖典型洲滩湿地水分补排关系   总被引:3,自引:1,他引:2  
林欢  许秀丽  张奇 《湖泊科学》2017,29(1):160-175
湿地水分在地下水含水层-土壤-植物-大气界面的运移和转换是维持能量和营养物平衡的重要环节,水分运移是湿地生态水文过程研究的关键.数值模型模拟已成为水分运移研究的重要手段,然而限于复杂的湿地自然条件及有限的监测手段,部分界面水分通量连续动态变化数据的获取及定量化工作较为困难,目前应用数值模拟法于湿地水分运移研究的案例仍不多见.本文以鄱阳湖典型湿地为研究区,构建垂向一维数值模型,阐释了湖泊水位显著季节性变化条件下,湿地水分在不同界面的传输过程,量化了湿地水分的补排关系.结果表明:(1)界面水分通量季节性差异大,降雨入渗地面和根系层水分渗漏均对降雨变化响应敏感,主要集中在4—6月,分别占年总量(1450和1053 mm)的65%和73%.土面蒸发和植物蒸腾年总量为176和926 mm,土面蒸发主要受气候条件影响,植物蒸腾还与植物生长特征有关,均集中在7—8月,分别占年总量的30%和47%.深层土壤向浅层根系层的水分补给集中发生在地下水浅埋时段6—8月,占年总量(609 mm)的76%;(2)湿地植物根系层水分补排受鄱阳湖水位季节性波动影响显著.除丰水期(7—9月)主要补给为深层土壤水外,退、枯、涨水期的主要补给均为降水入渗.涨水期(4—6月)和枯水期(12—3月)的主要排泄为根系层水分渗漏,丰水期以植物蒸腾排泄为主,退水期(10—11月),土面蒸发与植物蒸腾为主要排泄,且比重相当.本文定量了鄱阳湖典型湿地不同界面水分连续交换关系,区分了土面蒸发和植物蒸腾,辨析了各界面水分的主要影响因子,研究结果有助于深入理解水分在湿地生态系统地下水含水层-土壤-植物-大气界面的相互作用机制,认识湖泊洲滩湿地水量平衡,为揭示湖泊水情变化对湿地生态的可能影响提供依据,为湿地生态水文过程研究提供重要方法和理论参考.  相似文献   

18.
The present study makes use of a detailed water balance to investigate the hydrological status of a peatland with a basal clay‐rich layer overlying an aquifer exploited for drinking water. The aim is to determine the influence of climate and groundwater extraction on the water balance and water levels in the peatland. During the two‐year period of monitoring, the hydrological functioning of the wetland showed a hydric deficit, associated with a permanent unsaturated layer and a deep water table. At the same time, a stream was observed serving as a recharge inflow instead of draining the peatland, as usually described in natural systems. Such conditions are not favourable for peat accumulation. Field investigations show that the clay layer has a high hydraulic conductivity (from 1·10?7 to 3·10?9 m.s?1) and does not form a hydraulic barrier. Moreover, the vertical hydraulic gradients are downward between the peat and the sand aquifer, leading to high flows of groundwater through the clay layer (20–48% of the precipitation). The observed hydric deficit of the peatland results from a combination of dry climatic conditions during the study period and groundwater extraction. The climatic effect is mainly expressed through drying out of the peatland, while the anthropogenic effect leads to an enhancement of the climatic effect on a global scale, and a modification of fluxes at a local scale. The drying out of the peatland can lead to its mineralisation, which thus gives rise to environmental impacts. The protection of such wetlands in the context of climate change should take account of anthropogenic pressures by considering the wetland‐aquifer interaction. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Evapotranspiration (ET) from riparian vegetation can be difficult to estimate due to relatively abundant water supply, spatial vegetation heterogeneity, and interactions with anthropogenic influences such as shallower groundwater tables, increased salinity, and nonpoint source pollution induced by irrigation. In semiarid south-eastern Colorado, reliable ET estimates are scarce for the riparian corridor that borders the Arkansas River. This work investigates relationships between the riparian ecosystem along the Arkansas River and an underlying alluvial aquifer using ET estimates from remotely sensed data and modelled water table depths. Results from a calibrated, finite-difference groundwater model are used to estimate weekly water table fluctuations in the riparian ecosystem from 1999 to 2009, and estimates of ET are calculated using the Operational Simplified Surface Energy Balance (SSEBop) model with over 200 Landsat scenes covering over 30 km2 of riparian ecosystem along a 70-km stretch of the river. Comparison of calculated monthly SSEBop ET to estimated alfalfa reference ET from local micrometeorological station data indicated statistically significant high linear correspondence (R2 = .87). Daily calculated SSEBop ET showed statistically significant moderate linear correspondence with data from a local weighing lysimeter (R2 = .59). Simulated monthly SSEBop ET values were larger in drier years compared with wetter years, and ET variability was also larger in drier years. Peak ET most commonly occurred during the month of June for all 11 years of analysis. Relationships between ET and water table depth showed that peak monthly ET was highest when groundwater depths were less than about 3 m, and ET values were significantly lower for groundwater depths greater than 3 m. Negative sample Spearman correlation highlighted riparian corridor locations where ET increased as a result of decreased groundwater depths across years with different hydroclimatic conditions. This study shows how a combination of remotely sensed riparian ET estimates and a regional groundwater model can improve our understanding of linkages between riparian consumptive use and near-river groundwater conditions influenced by irrigation return flow and different climatic drivers.  相似文献   

20.
In humid upland catchments wetlands are often a prominent feature in the vicinity of streams and have potential implications for runoff generation and nutrient export. Wetland surfaces are often characterized by distinct micro-topography (hollows and hummocks). The effects of such micro-topography on surface–subsurface exchange and runoff generation for a 10 by 20 m synthetic section of a riparian wetland were investigated in a virtual modeling experiment. A reference model with a planar surface was run for comparison. The geostatistically simulated structure of the micro-topography replicates the topography of a peat-forming riparian wetland in a small mountainous catchment in South-East Germany (Lehstenbach). Flow was modeled with the fully-integrated surface–subsurface code HydroGeoSphere. Simulation results showed that the specific structure of the wetland surface resulted in distinct shifts between surface and subsurface flow dominance. Surface depressions filled and started to drain via connected channel networks in a threshold controlled process, when groundwater levels intersected the land surface. These networks expanded and shrunk in a spill and fill mechanism when the shallow water table fluctuated around the mean surface elevation under variable rainfall inputs. The micro-topography efficiently buffered rainfall inputs and produced a hydrograph that was characterized by subsurface flow during most of the year and only temporarily shifted to surface flow dominance (> 80% of total discharge) during intense rainstorms. In contrast the hydrograph in the planar reference model was much “flashier” and more controlled by surface runoff. A non-linear, hysteretic relationship between groundwater level and discharge observed at the study site was reproduced with the micro-topography model. Hysteresis was also observed in the relationship between surface water storage and discharge, but over a relatively narrow range of surface water storage values. Therefore it was concluded that surface water storage was a better predictor for the occurrence of surface runoff than groundwater levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号