首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An acoustic wave scattering model is formulated and solved for three homogeneous layers consisting of a thin solid sediment layer sandwiched by semi-infinite water and solid basalt media. The model is applied to two cases to analyze both the physical parameters affecting reflection loss and the effects of interface roughness scattering. It is shown that effects of attenuation in the sediment layer, especially of S-waves, combine with conversion and scattering processes of the basalt interface to constitute the dominant mechanism of reflection loss, especially in the small grazing angle directions. The scattering process is found not only to produce the well-known acoustic energy loss from specular to nonspecular directions, but also to alter the conversion efficiency between P and S waves with a resulting loss or gain  相似文献   

2.
This paper proposes a method, based on the Biot model, for estimating the physical and acoustic properties of surficial ocean sediments from normal incidence reflection data acquired by a chirp sonar. The inversion method estimates sediment porosity from reflection coefficient measurements and, using the estimated porosity and the measured change in fast wave attenuation with frequency, estimates the permeability of the top sediment layer. The spectral ratio of echoes from the interface at the base of the upper sediment layer and from the sediment-water interface provides a measure of the change in attenuation with frequency. Given the porosity and permeability estimates, the Kozeny-Carman equation provides the mean grain size and the inversion method yields the acoustic properties of top sediment layer. The inversion technique is tested using chirp sonar data collected at the 1999 Sediment Acoustics Experiment (SAX-99) site. Remote estimates of porosity, grain size, and permeability agree with direct measurements of those properties.  相似文献   

3.
A perturbative inversion method for estimating sediment compressional-wave-speed profiles from modal travel-time data is extended to include range-dependent environments. The procedure entails dividing a region into range-independent sections and obtaining estimates of the sediment properties for each region. Inversion results obtained using synthetic data show that range-dependent properties can be obtained if an experiment is designed to include multiple source/receiver combinations. This approach is applied to field data collected during the 2006 Shallow Water Experiment (SW06). The sediment compressional-wave-speed profiles resulting from analysis of the field data are evaluated by comparing acoustic fields predicted based on the inversion to acoustic fields measured during a different experiment conducted in the same region. The model is also compared to seismic reflection survey data collected during SW06. Resolution and variance estimated for the inversion results are also presented.   相似文献   

4.
Low-frequency ambient-noise measurements in the South Fiji basin   总被引:1,自引:0,他引:1  
The effect of wind speed on ambient noise has been measured in an experiment carried out in the South Fiji basin. The noise data in the band 15-250 Hz are well correlated with the variations in the local wind speed. The relationship between noise level N and wind speed ν is expressed by N=B+20n log ν. The constants B and n have been estimated by fitting the data using this model. The analysis indicates that there are two types of behavior: for ν>15 kn, a value of n=1.5 is obtained for the entire band, whereas for ν<15 kn, there is no correlation with wind speed observed in the data. The results suggest that there is a delay of 40-120 min for the effect of wind on the hydrophone noise level  相似文献   

5.
Matched-field inversion is used to, estimate geoacoustic properties from data obtained in an experiment with a vertical line array (VLA). The experiment was carried out using broad-band sources (shots) in water depths of about 200 m on the continental shelf off Vancouver Island. The data were processed to obtain spectral components of the field for frequencies near the bubble frequency for the shot. The ocean bottom in this region consists of a layer of mainly sandy sediments (about 100 m thick) overlying older consolidated material. Consequently, the inversion was designed to estimate the parameters of a two-layer elastic sediment model. In the inversion, an adaptive global search algorithm was used to investigate the multidimensional space of geoacoustic models in order to determine the set of values corresponding to the best replica field. Convergence is driven by adaptively guiding the search to regions of the parameter space associated with above-average values of the matched field correlation between the measured and replica fields. The geoacoustic profile estimated by the inversion consisted of a 125-m layer with compressional speed ~1700 m/s and shear speed ~400 m/s, overlying a layer with compressional speed ~1900 m/s. This model is consistent with the results from conventional seismic experiments carried out in the same region  相似文献   

6.
In this paper, modeling results are presented demonstrating that, using an ensemble of forward-scattering measurements from a rippled sand/water interface, it is possible to accurately estimate the plane wave, flat surface reflection coefficient. The modeling effort was carried out in preparation for a sediment acoustics experiment in 2004 (SAX04). Guided by the modeling results, forward-scattering measurements were made during SAX04. The measurement instrumentation and procedure are presented. The plane wave reflection coefficients derived from these measurements are given and compared to reflection coefficients calculated using a fluid model and an approximation to the Biot porous medium model for the sand known as the effective density fluid model (EDFM). The model reflection coefficients were calculated using acoustic parameters determined from environmental measurements carried out by other researchers involved in SAX04. The reflection coefficient data/model comparison indicates that the sand at the SAX04 site is most accurately viewed as a porous medium for acoustic modeling purposes.   相似文献   

7.
Abstract

Keeping in view the paucity of information as to the nature of the marine sediments from the continental shelf adjoining the Indian subcontinent, a number of shallow seismic surveys were carried out, nearshore and offshore Bombay between 18°45'N and 21°00'N. Representative core samples preserving their natural state were also retrieved from the region in the water depths ranging from 5 to 70 m for the determination of physical properties in the laboratory. Data on the physical, acoustic, and elastic properties of the sediment cores are reported for the first time. Useful individual least‐squares relations are presented for acoustic impedance, reflection coefficient, and bulk modulus against density; for the dependence of rigidity and bulk moduli on the constrained modulus; for the association between impedance and field sediment velocity against P‐velocity; and for rigidity against Poisson's ratio. Results indicate that the bulk modulus and Young's modulus are higher for silty clay and clayey silt samples than for the clay samples. Similarly, the acoustic impedance, reflection coefficient, and constrained modulus of silty clay and clayey silt are also higher than clay. The results are found to be comparable to the North Atlantic and Bay of Bengal sediments.  相似文献   

8.
The authors study the scattering of monochromatic plane acoustic waves incident at 90° angles relative to the axis of symmetry (i.e. broadside or beam aspect) on solid elastic spheroids. In this analysis, the aspect ratios of the spheroids vary in the range 2⩽L/ D⩽5 in steps of one. The nondimensional frequency kL /2 is kept within the band 2⩽kL/2⩽24. A numerical solution based on a modification of the T-matrix method is generated. The authors generate predictions for the backscattered echoes and graphically display their frequency dependence in order to study the resonance features present within them. In this three-dimensional study, the authors identify the (leaky) Rayleigh-type resonances consistent with those present in infinite cylinders  相似文献   

9.
This paper examines the impact that a thin layer of varying density would have on high-frequency reflection, forward loss, and backscattering of acoustic plane waves from the seafloor. A functional form for density stratification was found by examination of several high-resolution density profiles obtained from X-ray computed tomography (CT) scans of seafloor cores. A solution based on these general profiles was used to estimate the reflection coefficient. The influence of the density profile on reflection loss and backscatter was then calculated using the estimated reflection coefficient. Parameter values used in simulations were obtained from the literature or from the CT scans of cores. It was found that inclusion of a density profile adds a strong frequency dependence to estimates of the reflection coefficient and forward loss. The largest effect on total scattering strength is near normal incidence where returns are dominated by interface scattering. The effect of the density profile on the strength of acoustic returns suggests that care should be taken when using high-frequency systems for measuring sediment properties, especially near normal incidence  相似文献   

10.
It is extremely difficult to determine shallow ocean bottom properties (such as sediment layer thicknesses, densities, and sound speeds). However, when acoustic propagation is affected by such environmental parameters, it becomes possible to use acoustic energy as a probe to estimate them. Matched-field processing (MFP) which relies on both field amplitude and phase can be used as a basis for the inversion of experimental data to estimate bottom properties. Recent inversion efforts applied to a data set collected in October 1993 in the Mediterranean Sea north of Elba produce major improvements in MFP power, i.e., in matching the measured field by means of a model using environmental parameters as inputs, even using the high-resolution minimum variance (MV) processor that is notoriously sensitive and usually results in very low values. The inversion method applied to this data set estimates water depth, sediment thickness, density, and a linear sound-speed profile for the first layer, density and a linear sound-speed profile for a second layer, constant sound speed for the underlying half space, array depth, and source range and depth. When the inversion technique allows for the array deformations in range as additional parameters (to be estimated within fractions of a wavelength, e.g., 0.1 m), the MFP MV peak value for the Med data at 100 Hz can increase from 0.48 (using improved estimates of environmental parameters and assuming a vertical line array) to 0.68 (using improved estimates of environmental parameters PLUS improved phone coordinates). The ideal maximum value would be 1.00 (which is achieved for the less sensitive Linear processor). However, many questions remain concerning the reliability of these inversion results and of inversion methods in general  相似文献   

11.
《Ocean Modelling》2011,40(3-4):370-385
The increasing number of oceanic observations calls for the use of synthetic methods to provide consistent analyses of the oceanic variability that will support a better understanding of the underlying mechanisms. In this study, a 1/3° eddy-permitting model of the North Atlantic (from 20°S to 70°N) is combined with a 4D-variational method to estimate the oceanic state from altimeter observations. This resolution allows a better extraction of the physical content of altimeter data since the model spatial scales are more consistent with the data than coarser assimilation exercises because of a lower error in model representativity. Several strategies for the assimilation window are tested through twin experiments carried out under the following conditions: different window lengths and either a quasi-static (also known as progressive) variational assimilation with progressive extension of the window, or a simpler direct method without prior assimilation. From our set of experiments, the most efficient strategy is the use of both a simple direct assimilation method and a 90-day window. The assimilation of synthetic altimeter data constrains the model-temperature, -salinity and -velocity fields mainly over the first 1300 m where the error is the largest. Improvements occur not only in quiescent regions, but also in more energetic meso-scale regimes. Despite the existence of model- and surface forcing-errors as well as large errors in the first guess, the assimilation of real altimeter data proves to be consistent with our twin experiments. Indeed, the analyses show a better detachment of the Gulf Stream, weaker regional biases and more accurate positions for meso-scale structures. Independent hydrographic data (Argo floats and CTD cruises) and transports estimates along the OVIDE 2002 cruise show an improvement of the analysed oceanic state with respect to the assimilation-free case though water mass properties are still incorrectly represented. After assimilation, the North Atlantic heat transport in the model is in good agreement with independent estimates based on hydrographic data.  相似文献   

12.
Satyavani  N.  Shankar  Uma  Thakur  N.K.  Reddi  S.I. 《Marine Geophysical Researches》2002,23(5-6):423-430
Multi-channel seismic reflection data from the western continental margin of India (WCMI) have been analyzed to construct a plausible model for gas hydrate formation. A reflector at 2950 ms two way travel time (TWT) on one of the sections is interpreted to represent the base of the layer of the methane hydrate, identified by a bottom simulating reflector (BSR) that lies almost 500 ms beneath the sea floor. BSRs of similar origin are common world wide, where they are usually interpreted to mark the base of gas hydrate bearing clastic sediment, with or without underlying free gas. In this study we present a model with the contrasting physical properties that produce synthetic wavelets that match with the observed BSR amplitude and waveforms for varying source-receiver offsets of multi-channel seismic reflection data. The preliminary results presented here put important constraints on models that predict the distribution and formation of hydrate. Offset-dependent amplitude recovery also gives an appropriate response for hydrate characterization.  相似文献   

13.
基于改进型的二阶Boussinesq方程,在交错网络下建立数值模型.利用模型模拟波浪在常水深情况下的传播,波浪反射系数均低于2%.利用该模型模拟波浪在平斜坡前的反射,并将数值结果与解析解进行对比.结果表明,对于相对水深较大情况,坡度较陡时模拟结果明显偏大;对 于相对水深较小情况,坡度超过1:1时,数值结果仍与解析解有....  相似文献   

14.
In synthetic aperture sonar (SAS), the platform position must be known sufficiently accurately for signals to be added coherently along the synthetic aperture. Often, the onboard navigation system is insufficiently accurate by itself, so corrections are needed. A well-known method is the displaced phase center antenna (DPCA) procedure for correcting platform position using seabed echoes. DPCA methods have the advantage of insensitivity to changing interference patterns, moving specular reflection, and changing occlusion, with aspect. However, when seabed echoes are unusable, either because they are too weak, or because they are corrupted by multipath, the seabed DCPA method may fail. Therefore, we present an alternative DPCA method using sonar echoes from a suitable navigation fix, based on an object detected after standard beamforming. In our proposed system, look angle is obtained by tracking the centroid of the rectified image of the fix object. When the standard DPCA correction equations are modified for a fixed reflector, it turns out that they provide incremental range and look-angle errors, precisely the values required when the target itself is used as the navigation fix. Moreover, the values obtained are then self-compensating for errors in estimating seabed depth or forward motion of the platform. The navigation fix is selected by bracketing in range, and beamforming overlapping subsets of the receiver array. In this paper, we present experimental results at transmitter frequencies of 25 and 100 kHz where our method enabled well-focused SAS images to be generated with little recourse to other navigation information. Hence, SAS can be carried out, even when a sophisticated inertial navigation system (INS) is not available.   相似文献   

15.
During the sediment acoustics experiment in 1999 (SAX99), several researchers measured sound speed and attenuation. Together, the measurements span the frequency range of about 125 Hz-400 kHz. The data are unique both for the frequency range spanned at a common location, and for the extensive environmental characterization that was carried out as part of SAX99. Environmental measurements were sufficient to determine or bound the values of almost all the sediment and pore water physical property input parameters of the Biot poroelastic model for sediment. However, the measurement uncertainties for some of the parameters result in significant uncertainties for Biot-model predictions. Here, measured sound-speed and attenuation results are compared to the frequency dependence predicted by Biot theory and a simpler "effective density" fluid model derived from Biot theory. Model/data comparisons are shown where the uncertainty in Biot predictions due to the measurement uncertainties for values of each input parameter are quantified. A final set of parameter values, for use in other modeling applications e.g., in modeling backscattering (Williams et al., 2002) are given, that optimize the fit of the Biot and effective density fluid models to the sound-speed dispersion and attenuation measured during SAX99. The results indicate that the variation of sound speed with frequency is fairly well modeled by Biot theory but the variation of attenuation with frequency deviates from Biot theory predictions for homogeneous sediment as frequency increases. This deviation may be due to scattering from volume heterogeneity. Another possibility for this deviation is shearing at grain contacts hypothesized by Buckingham; comparisons are also made with this model.  相似文献   

16.
基于H J-1号小卫星CCD数据,开展近海水体悬浮物含量监测研究.采用邻近清洁水体和同日MODIS气溶胶产品的方法对CCD辐亮度数据进行较精准的大气校正;利用得到的水体遥感反射率,结合地面准同步实测悬浮物含量数据建立悬浮物反演模型,获得研究区悬浮物的空间分布.模型的相关系数R2为0.849,平均误差为33.0%,反演结果较为理想.结果表明,HJ-1号小卫星作为中国首个灾害监测小卫星星座,能够实现定量反演近海水体的悬浮物含量,对中国近海水体水质的监测和治理具有重要意义.  相似文献   

17.
Marine clay deposits are encountered in the coastal regions of the world. They are soft in consistency with low shear strength and are highly compressible. The properties of these deposits are complex and diverse, and they mainly depend on the minerals present and microstructural arrangement of constituent particles. In the present investigation, the physico-chemical properties of the sediment samples obtained from marine deposits of east and west metropolitan coastal cities of India are discussed, and the test results obtained are compared with the synthetic samples such as bentonite and kaolinite. Mineralogical and fabric studies were carried out using scanning electron microscopy and x-ray diffraction techniques. Several consolidation and strength tests were carried out to study the engineering behaviour of these deposits. The strength and compressibility (Cc) values of these deposits varies from 27 to 45 kN/m2 and 0.37 to 0.81 respectively. XRD studies confirm the presence of highly compressible clay minerals such as smectite, vermiculite, chlorite and traces of the low swelling mineral, kaolinite. The fabric studies indicate that the constituent particles were arranged in an open network, or flocculated structure resulting in a high void ratio.  相似文献   

18.
This paper presents a transfer function method (TFM) which can separate a regular wave field into incident and reflected waves based on the linear wave theory. The TFM uses specific transfer functions and corresponding convolution integrals to separate time series data measured in a combined partial standing wave system into incident and reflected waves. After this separation, estimation of the reflection coefficient becomes very easy. All manipulations have been performed in time domain. Furthermore, this method does not involve the calculation of wave heights and/or phase differences. The present method is demonstrated through numerical sample and physical model experiments carried out in a wave flume. Compared with other methods, the TFM gives much better estimates of the incident wave heights for physical model experiments in this study.  相似文献   

19.
The interdependence between the seismo-acoustic properties of a marine sediment and its geotechnical/physical parameters has been known for many years, and it has been postulated that this should allow the extraction of geotechnical information from seismic data. Though in the literature many correlations have been published for the surficial layer, there is a lack of information for greater sediment depths. In this article, a desktop study on a synthetic seafloor model illustrates how the application of published near-surface prediction equations to subsurface sediments (up to several tens of meters burial depth) can lead to spurious predictions. To test this further, acoustic and geotechnical properties were measured on a number of sediment core samples, some of which were subjected to loading in acoustically-equipped consolidation cells (oedometers) to simulate greater burial depth conditions. For low effective pressures (representing small burial depths extending to around 10 meters subsurface), the general applicability of established relationships was confirmed: the prediction of porosity, bulk density, and mean grain size from acoustic velocity and impedance appears generally possible for the investigated sedimentary environments. As effective pressure increases through, the observed relationships deviate more and more from the established ones for the near-surface area. For the samples tested in this study, in some instances increasing pressure even resulted in decreasing velocities. There are several possible explanations for this abnormal behavior, including the presence of gas, overconsolidation, or bimodal grain size distribution. The results indicate that an appropriate depth correction must be introduced into the published prediction equations in order to obtain reliable estimates of physical sediment properties for greater subsurface depths.  相似文献   

20.
The interdependence between the seismo-acoustic properties of a marine sediment and its geotechnical/physical parameters has been known for many years, and it has been postulated that this should allow the extraction of geotechnical information from seismic data. Though in the literature many correlations have been published for the surficial layer, there is a lack of information for greater sediment depths. In this article, a desktop study on a synthetic seafloor model illustrates how the application of published near-surface prediction equations to subsurface sediments (up to several tens of meters burial depth) can lead to spurious predictions. To test this further, acoustic and geotechnical properties were measured on a number of sediment core samples, some of which were subjected to loading in acoustically-equipped consolidation cells (oedometers) to simulate greater burial depth conditions. For low effective pressures (representing small burial depths extending to around 10 meters subsurface), the general applicability of established relationships was confirmed: the prediction of porosity, bulk density, and mean grain size from acoustic velocity and impedance appears generally possible for the investigated sedimentary environments. As effective pressure increases through, the observed relationships deviate more and more from the established ones for the near-surface area. For the samples tested in this study, in some instances increasing pressure even resulted in decreasing velocities. There are several possible explanations for this abnormal behavior, including the presence of gas, overconsolidation, or bimodal grain size distribution. The results indicate that an appropriate depth correction must be introduced into the published prediction equations in order to obtain reliable estimates of physical sediment properties for greater subsurface depths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号