首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
A multivariate statistical downscaling method is developed to produce regional, high-resolution, coastal surface wind fields based on the IPCC global model predictions for the U.S. east coastal ocean, the Gulf of Mexico(GOM), and the Caribbean Sea. The statistical relationship is built upon linear regressions between the empirical orthogonal function(EOF) spaces of a cross- calibrated, multi-platform, multi-instrument ocean surface wind velocity dataset(predictand) and the global NCEP wind reanalysis(predictor) over a 10 year period from 2000 to 2009. The statistical relationship is validated before applications and its effectiveness is confirmed by the good agreement between downscaled wind fields based on the NCEP reanalysis and in-situ surface wind measured at 16 National Data Buoy Center(NDBC) buoys in the U.S. east coastal ocean and the GOM during 1992–1999. The predictand-predictor relationship is applied to IPCC GFDL model output(2.0?×2.5?) of downscaled coastal wind at 0.25?×0.25? resolution. The temporal and spatial variability of future predicted wind speeds and wind energy potential over the study region are further quantified. It is shown that wind speed and power would significantly be reduced in the high CO_2 climate scenario offshore of the mid-Atlantic and northeast U.S., with the speed falling to one quarter of its original value.  相似文献   

2.
In this study, the effects of ‘initial’ soil moisture (SM) in arid and semi-arid Northwestern China on subsequent climate were investigated with a regional climate model. Besides the control simulations (denoted as CTL), a series of sensitivity experiments were conducted, including the DRY and WET experiments, in which the simulated ‘initial’ SM over the region 30–50°N, 75–105°E was only 5% and 50%, and up to 150% and 200% of the simulated value in the CTL, respectively. The results show that SM change can modify the subsequent climate in not only the SM-change region proper but also the far downstream regions in Eastern and even Northeastern China. The SM-change effects are generally more prominent in the WET than in the DRY experiments. After the SM is initially increased, the SM in the SM-change region is always higher than that in the CTL, the latent (sensible) heat flux there increases (decreases), and the surface air temperature decreases. Spatially, the most prominent changes in the WET experiments are surface air temperature decrease, geopotential height decrease and corresponding abnormal changes of cyclonic wind vectors at the mid-upper troposphere levels. Generally opposite effects exist in the DRY experiments but with much weaker intensity. In addition, the differences between the results obtained from the two sets of sensitivity experiments and those of the CTL are not always consistent with the variation of the initial SM. Being different from the variation of temperature, the rainfall modifications caused by initial SM change are not so distinct and in fact they show some common features in the WET and DRY experiments. This might imply that SM is only one of the factors that impact the subsequent climate, and its effect is involved in complex processes within the atmosphere, which needs further investigation.  相似文献   

3.
In this paper, the International Comprehensive Ocean and Atmosphere Data Set(ICOADS) is utilized to investigate the horizontal distribution of sea fog occurrence frequency over the Northern Atlantic as well as the meteorological and oceanic conditions for sea fog formation. Sea fog over the Northern Atlantic mainly occurs over middle and high latitudes. Sea fog occurrence frequency over the western region of the Northern Atlantic is higher than that over the eastern region. The season for sea fog occurrence over the Northern Atlantic is generally from April to August. When sea fogs occur, the prevailing wind direction in the study area is from southerly to southwesterly and the favorable wind speed is around 8 m s-1. It is most favorable for the formation of sea fogs when sea surface temperature(SST) is 5℃ to 15℃. When SST is higher than 25℃, it is difficult for the air to get saturated, and there is almost no report of sea fog. When sea fogs form, the difference between sea surface temperature and air temperature is mainly-1 to 3℃, and the difference of 0℃ to 2℃ is the most favorable conditions for fog formation. There are two types of sea fogs prevailing in this region: advection cooling fog and advection evaporating fog.  相似文献   

4.
Wetland stores substantial amount of carbon and may contribute greatly to global climate change debate. However, few researches have focused on the effects of global climate change on carbon mineralization in Zoigê al-pine wetland, Qinghai-Tibet Plateau, which is one of the most important peatlands in China. Through incubation ex-periment, this paper studied the effects of temperature, soil moisture, soil type (marsh soil and peat soil) and their in-teractions on CO2 and CH4 emission rates in Zoigê alpine wetland. Results show that when the temperature rises from 5℃ to 35℃, CO2 emission rates increase by 3.3-3.7 times and 2.4-2.6 times under non-inundation treatment, and by 2.2-2.3 times and 4.1-4.3 times under inundation treatment in marsh soil and peat soil, respectively. Compared with non-inundation treatment, CO2 emission rates decrease by 6%-44%, 20%-60% in marsh soil and peat soil, respec-tively, under inundation treatment. CO2 emission rate is significantly affected by the combined effects of the tempera-ture and soil type (p < 0.001), and soil moisture and soil type (p < 0.001), and CH4 emission rate was significantly af-fected by the interaction of the temperature and soil moisture (p < 0.001). Q10 values for CO2 emission rate are higher at the range of 5℃-25℃ than 25℃-35℃, indicating that carbon mineralization is more sensitive at low temperature in Zoigê alpine wetland.  相似文献   

5.
Using the monthly wind and sea surface temperature (SST) data, southern meridional atmospheric circulation cells associated with the Indian Ocean Dipole Mode (IOD) events in the Indian Ocean are for the first time described and examineS. The divergent wind and pressure vertical velocity are employed for the identification of atmospheric circulation cells. During the four different phases of the positive IOD events, the anomalous meridional Hadley circulation over the western Indian Ocean shows that the air rises in the tropics, flows poleward in the upper troposphere, sinks in the subtropics, and returns back to the tropics in the lower troposphere. The anomalous Hadley circulation over the eastern Indian Ocean is opposite to that over the western Indian Ocean. During positive IOD events, the meridional Hadley circulation over the eastern Indian Ocean is weakened while it is strengthened over the western Indian Ocean. Correlation analysis between the IOD index and the indices of the Hadley cells also proves that, the atmospheric circulation patterns are evident in every IOD event over the period of record.  相似文献   

6.
Based on the Germany Koldwey Station's 1994-2003 conventional observation hourly data, this paper conducts a statistical analysis on the short-term climate characteristics for an arctic tundra region (Ny-(A)lesund island) where our first arctic expedition station (Huanghe Station) was located. Affected by the North Atlantic warming current, this area has a humid temperate climate, and the air temperature at Ny-(A)lesund rose above 0 ℃ even during deep winter season during our research period. The wind speed in this area was low and appeared most at southeast direction. We find that the temperature at Ny-(A)lesund rose in the faster rate (0.68 ℃/10 a) than those at the whole Arctic area. Compared with the floating ices where our expedition conducted in the Arctic, Ny-(A)lesund was warmer and more humid and had lower wind speed. Comparison of the near surface air temperature derived by NCEP/NCAR reanalysis to the conventional measurements conducted at the Koldwey site in Ny-(A)lesund area shows a good agreement for winter season and a significant difference for summer season.  相似文献   

7.
The aim of this study was to better understand the mechanisms of regional climate variation in mountain ranges with contrasting aspects as mediated by changes in global climate. It may help predict trends of vegetation variations in native ecosystems in natural reserves. As measures of climate response, temperature and precipitation data from the north, east, and south-facing mountain ranges of Shennongjia Massif in the coldest and hottest months(January and July), different seasons(spring, summer, autumn, and winter) and each year were analyzed from a long-term dataset(1960 to 2003) to tested variations characteristics, temporal and spatial quantitative relationships of climates. The results showed that the average seasonal temperatures and precipitation in the north, east, and south aspects of the mountain ranges changed at different rates. The average seasonal temperatures change rate ranges in the north, east, and south-facing mountain ranges were from –0.0210℃/yr to 0.0143℃/yr, –0.0166℃/yr to 0.0311℃/yr, and –0.0290 ℃/yr to 0.0084℃/yr, respectively, and seasonal precipitation variation magnitude were from –1.4940 mm/yr to 0.6217 mm/yr, –1.6833 mm/yr to 2.6182 mm/yr, and –0.8567 mm/yr to 1.4077 mm/yr, respectively. The climates variation trend among the three mountain ranges were different in magnitude and direction, showing a complicated change of the climates in mountain ranges and some inconsistency with general trends in global climate change. The climate variations were significantly different and positively correlated cross mountain ranges, revealing that aspects significantly affected on climate variations and these variations resulted from a larger air circulation system, which were sensitive to global climate change. We conclude that location and terrain of aspect are the main factors affecting differences in climate variation among the mountain ranges with contrasting aspects.  相似文献   

8.
This paper examines the capability of three regional climate models(RCMs),i.e.,RegCM3(the International Centre for Theoretical Physics Regional Climate Model),PRECIS(Providing Regional Climates for Impacts Studies)and CMM5(the fifth-generation Pennsylvania State University-the National Center for Atmospheric Research of USA,NCAR Mesoscale Model)to simulate the near-surface-layer winds(10 m above surface)all over China in the late 20th century.Results suggest that like global climate models(GCMs),these RCMs have the certain capability of imitating the distribution of mean wind speed and fail to simulate the greatly weakening wind trends for the past 50 years in the country.However,RCMs especially RegCM3 have the better capability than that of GCMs to simulate the distribution and change feature of mean wind speed.In view of their merits,these RCMs were used to project the variability of near-surface-layer winds over China for the 21st century.The results show that 1)summer mean wind speed for 2020-2029 will be lower compared to those in 1990-1999 in most area of China; 2)annual and winter mean wind speed for 2081-2100 will be lower than those of 1971-1990 in the whole China; and 3)the changes of summer mean wind speed for 2081-2100 are uncertain.As a result,although climate models are absolutely necessary for projecting climate change to come,there are great uncertainties in projections,especially for wind speed,and these issues need to be further explored.  相似文献   

9.
There is limited information available on CO2 concentration and flux over marsh. The objective of this work was to characterize CO2 concentration and flux within and above marsh plant (Carex lasiocarpa Ehrh. and C. pseudocuraica F. Schm) canopy at heights 0.5, 1.0 and 1.5 m. CO2 concentration was measured sequentially every 3 hours by using an infrared gas analyzer. Soil and air temperature, wind speed, net radiation and soil heat flux were also measured simultaneously. Extremely daily minimum and maximum CO2 concentration ranged from 250 to 754 μmd/mol for the 4-year work. The typical minimum and maximum values ranged from 314 to 464 μmol/mol at the height of marsh plant (about 0.5 m) during the fruiting period and mature date. The seasonal changes in CO2 concentration show that the minimum CO2 concentration occurred in the fruiting period and mature date, and both of their minimum values were 314 μmol/mol. This illustrates that CO2 consumed by photosynthesis was stable during the period. The flux of CO2 can be thought as a turbulent diffusion phenomenon. By micrometeorological methods, the diurnal CO2 fluxes were measured in the flowering period, fruiting period, early mature date, late mature date and yellow-ripe stage. Their values were −0.18, 38.15,24.13,10.9 and 4.91 μmol/mol respectively.  相似文献   

10.
1 Introduction As a result of persistent increase in carbon dioxide in the atmosphere since the 1950s, global and regional climate features, such as temperature and precipitation, have ob- viously changed (Yu et al., 2002). The General Circulation Models (GCMs) provide potential climate scenarios by studying the effects of carbon dioxide on the temperature. Tickell (1993) predicted that the mean temperature will increase by 1℃ till the year 2050 and by 3℃ at the end of the 22th century. S…  相似文献   

11.
The studies on prediction of climate in Xinjiang almost show that the precipitation would increase in the coming 50 years, although there were surely some uncertainties in precipitation predictions. On the basis of the structure of glacier system and nature of equilibrium line altitude at steady state (ELAo), a functional model of the glacier system responding to climate changes was established, and it simultaneously involved the rising of summer mean temperature and increasing of mean precipitation. The results from the functional model under the climatic scenarios with temperature increasing rates of 0.01, 0.03 and 0.05 K/year indicated that the precipitation increasing would play an evident role in glacier system responding to climate change: if temperature become 1 ℃ higher, the precipitation would be increased by 10%, which can slow down the glaciers retreating rate in the area by 4 %, accelerate runoff increasing rate by 8 % and depress the ELAo rising gradient by 24 m in northern Xinjiang glacier system where semi-continental glaciers dominate, while it has corresponding values of only 1%, 5 % and 18m respectively in southern Xinjiang glacier system, where extremely continental glaciers dominate.  相似文献   

12.
The objective of this study was to provide reliable basis for decision making for national food security and layout and structure adjustment of grain production in the northeastern China. The data of mean daily air temperature of 1961-2009 from 106 meteorological stations in the northeastern China were chosen in this study. Using statistical methods and isoline method, the spatio-temporal changes of various decadal ≥ 10℃ accumulated temperature and the climatic means of ≥ 10℃ accumulated temperature were studied in this paper. The results showed that 1) The geo-graphical distribution of ≥ 10℃ accumulated temperature in the northeastern China could be influenced directly by the latitude, longitude and altitude. If latitude moved one degree northward, the average decrease amplitude of the climatic means was 101.9℃ in the study area. 2) The means of decadal ≥ 10℃ accumulated temperature rose since the 1980s, and their increase amplitudes became larger in the 1990s and the 2010s obviously. Compared with those of the 1980s, ≥ 10℃ accumulated temperature increased by about 100℃ in the mountainous and plain areas in the 1990s; compared with those of the 1990s, ≥ 10℃ accumulated temperature increased by about 200℃ in the Hulun Buir High Plain and the Songnen Plain, and 100℃ in the Sanjiang Plain and the Liaohe Plain in the 2010s. 3) The means of the decadal ≥ 10℃ accumulated temperature for 106 meteorological stations in the northeastern China increased with the rate of 145.57℃/10yr in 1961-2009. 4) The climatic means of ≥ 10℃ accumulated temperature increased from 1961-1990 to 1971-2000 and 1981-2009. Compared with the climatic mean of 1971-2000, that of 1981-2009 had increased by above 50℃ in most of the study area, even up to 156℃. Compared with the climatic mean of 1961-1990, that of 1981-2009 increased by above 100℃ in most parts of the study area, even up to 200℃. 5) The maximum northward shift, eastward and westward extension amplitudes of 3100℃, 3300℃ and 3500℃ isolines were larger among all isoli-nes for the climatic means of the three phases. Compared with the positions of the isolines of 1961-1990, those ampli-tudes of 3100℃ isoline of 1981-2009 were 145 km, 109 km and 64 km, respectively; those of 3300℃ isoline were 154 km, 54 km and 64 km, respectively; and the maximum northward shift of 3500℃ isoline was about 100 km.  相似文献   

13.
选取广东省86个气象观测站的观测资料,采用气候趋势分析和通径分析方法,对广东省1961~2003年小型蒸发皿蒸发量及其相关气象影响因子进行了分析。结果表明:虽然汛期广东省整体平均蒸发量呈下降趋势,前汛期、后汛期线性倾向率分别为-15.86 mm/10a和-13.79 mm/10a;但变化趋势在广东省内空间分布并不均匀,前汛期、后汛期粤东、中部部分地区分别有16、12个站呈上升趋势;前汛期6种气象因子单独对蒸发的决定程度按大小依次为:日照时数>气温>风速>降水>饱和差>气温日较差,后汛期6种气象因子单独对蒸发的决定程度按大小依次为:日照时数>降水>饱和差>风速>气温>气温日较差,整个汛期日照时数与其它各要素的协同作用对蒸发皿蒸发量的决定作用都很大。日照时数和风速总体上的下降是导致广东省汛期蒸发皿蒸发量逐年减少的重要原因。  相似文献   

14.
In this study,the effects of ‘initial’ soil moisture(SM) in arid and semi-arid Northwestern China on subsequent climate were investigated with a regional climate model. Besides the control simulations(denoted as CTL),a series of sensitivity experiments were conducted,including the DRY and WET experiments,in which the simulated ‘initial’ SM over the region 30 –50°N,75 –105°E was only 5% and 50%,and up to 150% and 200% of the simulated value in the CTL,respectively. The results show that SM change can modify ...  相似文献   

15.
The distribution of borehole temperature at four high-altitude alpine glaciers was investigated. The result shows that the temperature ranges from -13.4℃ to -1.84℃, indicating the glaciers are cold throughout the boreholes. The negative gradient (i.e., the temperature decreasing with the increasing of depth) due to the advection of ice and climate warming, and the negative gradient moving downwards relates to climate warming, are probably responsible for the observed minimum temperature moving to lower depth in boreholes of the Gyabrag glacier and Miaoergou glacier compared to the previously investigated continental ice core borehole temperature in West China. The borehole temperature at 10m depth ranges from -8.0℃ in the Gyabrag glacier in the central Himalayas to -12.9℃ in the Tsabagarav glacier in the Altai range. The borehole temperature at 10 m depth is 3-4 degrees higher than the calculated mean annual air temperature on the surface of the glaciers and the higher 10 m depth temperature is mainly caused by the production of latent heat due to melt-water percolation and refreezing. The basal temperature is far below the melting point, indicating that the glaciers are frozen to bedrock. The very low temperature gradients near the bedrock suggest that the influence of geothermal flux and ice flow on basal temperature is very weak. The low temperature and small velocity of ice flow of glaciers are beneficial for preservation of the chemical and isotopic information in ice cores.  相似文献   

16.
The thermohaline structure at 4°S, 156°E was analyzed based on CTD data acquired during the TOGA COARE Intensive Observing Period (IOP) from November, 1992 to February, 1993. The ocean responses during two Madden-Julian Oscillation (MJO) events were preliminarily studied based on meteorological field observation. The main water masses at the observation point were Tropical Surface Water, Southern Subtropical Lower Water and Southern Intermediate Water from surface downward. There was good correlation of sea surface temperature with the wind field, and of the surface salinity with wind speed and rainfalls. Both of the two surface variables were also modulated by upwelling caused by westerly winds at the observation point. The isohaline layer was not always shallower than the isothemal layer in this observation and could be considered as the lower limit of the diurnal variation of the isothernal layers in most cases. The existence of large variations of the maximum salinity core is suggested to be related to the meridional motion in that depth. Contribution No. 2264 from the Institute of Oceanology, Chinese Academy of Sciences. This project was supported by NSFC (No. 49176255).  相似文献   

17.
The typically sparse or lacking distribution of meteorological stations in mountainous areas inadequately resolves temperature elevation variability. This study presented the diurnal and seasonal variations of the elevation gradient of air temperature in the northern flank of the western Qinling Mountain range,which has not been thoroughly evaluated. The measurements were conducted at 9 different elevations between 1710 and 2500 m from August 2014 to August 2015 with HOBO Data loggers. The results showed that the annual temperature lapse rates(TLRs) for Tmean,Tmin and Tmax were 0.45?C/100 m,0.44?C/100 m and 0.40?C/100 m,respectively,which are substantially smaller than the often used value of 0.60°C/100 m to 0.65°C/100 m. The TLRs showed no obvious seasonal variations,except for the maximum temperature lapse rate,which was steeper in winter and shallower in spring. Additionally,the TLRs showed significant diurnal variations,with the steepest TLR in forenoon and the shallowest in early morning or late-afternoon,and the TLRs changed more severely during the daytime than night time. The accumulated temperature above 0°C,5°C and 10°C(AT0,AT5 and AT10) decreased at a lapse rate of 112.8?C days/100 m,104.5?C days/100 m and 137.0?C days/100 m,respectively. The monthly and annual mean diurnal range of temperatures(MDRT and ADRT) demonstrated unimodal curves along the elevation gradients,while the annual range of temperature(ART) showed no significant elevation differences. Our results strongly suggest that the extrapolated regional TLR may not be a good representative for an individual mountainside,in particular,where there are only sparse meteorological stations at high elevations.  相似文献   

18.
Using a regional atmospheric model for Arctic climate simulation, two groups of numerical experiments were carried out to study the inlfuence of changes in the underlying surface (land surface, sea sur...  相似文献   

19.
In this study, Land Surface Temperature(LST) and its lapse rate over the mountainous Kashmir Himalaya was estimated using MODIS data and correlated with the observed in-situ air temperature(Tair) data. Comparison between the MODIS LST and Tair showed a close agreement with the maximum error of the estimate ±1°C and the correlation coefficient 0.90. Analysis of the LST data from 2002-2012 showed an increasing trend at all the selected locations except at a site located in the southeastern part of Kashmir valley. Using the GTOPO30 DEM, MODIS LST data was used to estimate the actual temperature lapse rate(ATLR) along various transects across Kashmir Himalaya, which showed significant variations in space and time ranging from 0.3°C to 1.2°C per 100 m altitude change. This observation is at variance with the standard temperature lapse rate(STLR) of 0.65°C used universally in most of the hydrological and other land surface models. Snowmelt Runoff Model(SRM) was used to determine the efficacy of using the ATLR for simulating the stream flows in one of the glaciated and snow-covered watersheds in Kashmir. The use of ATLR in the SRM model improved the R2 between the observed and predicted streamflows from 0.92 to 0.97.It is hoped that the operational use of satellite-derived LST and ATLR shall improve the understanding and quantification of various processes related to climate, hydrology and ecosystem in the mountainous and data-scarce Himalaya where the use of temperature and ATLR are critical parameters for understanding various land surface and climate processes.  相似文献   

20.
Trends in temperature and precipitation extremes from 1961 to 2008 have been investigated over Circum-Bohai-Sea region,China using daily temperature and precipitation data of 63 meteorological stations.The re-sults show that at most stations,there is a significant increase in the annual frequency of warm days and warm nights,as well as a significant decrease in the annual frequency of cold days,cold nights,frost days,and annual diurnal temperature range(DTR).Their regional averaged changes are 2.06 d/10yr,3.95 d/10yr,-1.88 d/10yr,-4.27 d/10yr,-4.21 d/10yr and-0.20℃/10yr,respectively.Seasonal changes display similar patterns to the annual results,but there is a large seasonal difference.A significant warming trend is detected at both annual and seasonal scales,which is more contributed by changes of indices defined by daily minimum temperature than those defined by daily maximum tem-perature.For precipitation indices,the regional annual extreme precipitation displays a weak decrease in terms of magnitude and frequency,i.e.extreme precipitation days(RD95p),intensity(RINTEN),proportion(RPROP) and maximum consecutive wet days(CWD),but a slight increase in the maximum consecutive dry days(CDD),which are consistent with changes of annual total precipitation(PRCPTOT).Seasonally,PRCPTOT and RD95p both exhibit an increase in spring and a decrease in other seasons with the largest decrease in summer,but generally not significant.In summary,this study shows a pronounced warming tendency at the less rainy period over Circum-Bohai-Sea region,which may affect regional economic development and ecological protection to some extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号