首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从大量的地震参数分析可知,在由同一主震引发的所有的余震发生的位置都不同。在发生地震之前,地震的震中位置都是一些相互独立、互不连续且发生了弹性应变的单元个体,笔者称这些独立不连续的弹性应变单元称为应变量子。综合前人研究成果,笔者建立了一个地震模型。运用该模型对2008年5月12日发生在中国汶川地震作了解释:由于在龙门山断裂带周围形成了许多的应变量子,这些应变量子的形成阻碍了龙门山断裂的运动,产生滑移亏损,从而造成在地震前测量到的龙门山断裂带速度场变化很不显著。2008年5月12日14时28分时,在龙门山断裂周围已形成应变量子中的其中一应变量子最先达到它的最大储能,释放它所储存的应变能,引发了汶川Ms8.0地震。此次地震产生的地震波引发了龙门山断裂周围地壳应力的重分布,使得其他应变量子提前达到最大储能,释放出能量,于是触发成千上万次余震。此外,我们或许可以通过观测断裂滑移速率的变化情况来预测断裂周围应变量子的形成,从而来预测该断裂是否存在潜在地震的可能。  相似文献   

2.
We propose that the brittle-ductile transition(BDT) controls the seismic cycle.In particular,the movements detected by space geodesy record the steady state deformation in the ductile lower crust,whereas the stick-slip behavior of the brittle upper crust is constrained by its larger friction.GPS data allow analyzing the strain rate along active plate boundaries.In all tectonic settings,we propose that earthquakes primarily occur along active fault segments characterized by relative minima of strain rate,segments which are locked or slowly creeping.We discuss regional examples where large earthquakes happened in areas of relative low strain rate.Regardless the tectonic style,the interseismic stress and strain pattern inverts during the coseismic stage.Where a dilated band formed during the interseismic stage,this will be shortened at the coseismic stage,and vice-versa what was previously shortened,it will be dilated.The interseismic energy accumulation and the coseismic expenditure rather depend on the tectonic setting(extensional,contractional,or strike-slip).The gravitational potential energy dominates along normal faults,whereas the elastic energy prevails for thrust earthquakes and performs work against the gravity force.The energy budget in strike-slip tectonic setting is also primarily due elastic energy.Therefore,precursors may be different as a function of the tectonic setting.In this model,with a given displacement,the magnitude of an earthquake results from the coseismic slip of the deformed volume above the BDT rather than only on the fault length,and it also depends on the fault kinematics.  相似文献   

3.
本文提出了一个新的地震机理模型:高温高压高导低速流变体震源腔(简称震源腔)与闭锁断层组合模型。高温高压下的软流圈物质在复杂相变空间中,受到温度场中的异重流作用和受迫振动作用而形成深源震源腔。随着软流圈物质上涌, 幔汁在温度差和压力差驱使下,涌入地壳中的物理空间,形成浅源地震震源腔。由于温度升高使得腔体内岩石部分熔融或全部熔融,释放出大量气液流体,拓展腔体空间范围,同时提升腔体内压。当腔体内部有效压力(即内压与上覆地壳压力之差)达到腔体边缘或者上方与脆性活动断层交会部位的岩石破坏强度时,震源腔便进入临界状态。当软流圈物质上涌继续向腔体内供能,或者由于星体连线在震源区造成触发作用,便引起震源腔的隐蔽爆炸,即隐爆,释放腔体内部积累的能量,同时释放区域构造应力场作用于闭锁断层积累的应变能。 腔体隐爆释放能量与腔体规模正相关。闭锁断层释放应变能与闭锁断层规模、闭锁区大小以及区域构造应力场强度相关。震源腔与脆性活动断层交会部位,是潜在震源位置。多年观测资料表明,震源腔从进入临界状态到隐爆,一般经历1~13天,平均7天。长期观测表明,潜在震中区在震前经常出现干旱、气温升高、海温升高、大量水汽释放等异常现象。通过超低频地震仪监测、重力波作用于水汽形成的地震云的观测、次声波的监测、卫星重力异常反映的高程面垂向震荡监测、以及地基卫星导航系统地面升降监测等,都显示出震源腔进入临界状态后的胀缩震荡引起震中及其外围地面的垂向振动。文中还给出了震源腔体隐爆遗迹的直接证据。  相似文献   

4.
以山东郯城1668年大地震为例,以前人地表地质调查结果为约束,利用弹性位错理论初步获取了该地震的同震破裂模型;在此基础上,基于粘弹性分层模型分析了该地震的同震和震后形变,同时以主震断层为接收断层计算了库仑应力分布,进一步讨论了地幔不同粘滞性系数对地表形变和库仑应力变化的影响。计算结果显示,该地震是一个右旋走滑为主兼有一定逆冲性质的地震,其同震位移巨大,能量释放较彻底;同震破裂造成震中郯城县西北、东北和南部部分断层库仑应力增加,而震后形变使得这些断层库仑应力进一步增加,在单县、宿迁和日照等地,地震后350 a库仑应力变化量达到+1bar-+1MPa量级;地幔粘滞性系数不同,形变量和库仑应力变化达到稳定的时间不同,但最终趋于稳定的数值基本一致。  相似文献   

5.
Activation of major faults in Bulgaria and northern Greece presents significant seismic hazard because of their proximity to populated centers. The long recurrence intervals, of the order of several hundred years as suggested by previous investigations, imply that the twentieth century activation along the southern boundary of the sub-Balkan graben system, is probably associated with stress transfer among neighbouring faults or fault segments. Fault interaction is investigated through elastic stress transfer among strong main shocks (M ≥ 6.0), and in three cases their foreshocks, which ruptured distinct or adjacent normal fault segments. We compute stress perturbations caused by earthquake dislocations in a homogeneous half-space. The stress change calculations were performed for faults of strike, dip, and rake appropriate to the strong events. We explore the interaction between normal faults in the study area by resolving changes of Coulomb failure function (ΔCFF) since 1904 and hence the evolution of the stress field in the area during the last 100 years. Coulomb stress changes were calculated assuming that earthquakes can be modeled as static dislocations in an elastic half-space, and taking into account both the coseismic slip in strong earthquakes and the slow tectonic stress buildup associated with major fault segments. We evaluate if these stress changes brought a given strong earthquake closer to, or sent it farther from, failure. Our modeling results show that the generation of each strong event enhanced the Coulomb stress on along-strike neighbors and reduced the stress on parallel normal faults. We extend the stress calculations up to present and provide an assessment for future seismic hazard by identifying possible sites of impending strong earthquakes.  相似文献   

6.
A blind thrust fault with a unique strike, which is orthogonal to the strike of most tectonic structures in Taiwan, triggered the Jiashian earthquake on March 4, 2010 (M = 6.4; 22.96°N, 120.70°E). This study utilizes 100 global positioning system stations to examine changes of surface displacements during the Jiashian earthquake. We mitigate effects of short-term noise and long-term plate movements from surface displacement data using a frequency dependent filter via the Hilbert–Huang transform and compute the horizontal azimuth (i.e. GPS-azimuth) using residual data at the NS component relative to residual data at the EW component. Analytical results show that orientations of horizontal azimuths were aligned and orthogonal to the strike of the blind thrust fault. Meanwhile, inverse orientations are observed before and after the earthquake that agrees well with the seismic rebound theory. As stress disturbed on strata a few days before the earthquake, an impeded region can be clearly identified by disordered orientations of horizontal azimuths for anticipating the mainshock. These results provide an additional view to explore stress disturbance associated with earthquakes and offer more information to examine diverse models of tectonic evolution in this region.  相似文献   

7.
利用2011年1—6月云南地区的连续波形资料,采用背景噪声和波形互相关方法分别反演该地区的速度结构以及2011年3月24日缅甸7.2级地震前后60d的速度变化图像。同时,根据云南地区中小地震计算缅甸地震前后应变能释放响应比空间分布,并利用缅甸地震的震源参数,计算了缅甸地震对云南地区主要断裂产生的库仑破裂应力影响。结果显示:(1)禄劝至华坪一带、永定至泸水区域和通海至建水地区震后波速增加,同时该地区地震活动增强,相应断裂上库仑破裂应力增加,说明缅甸地震对这些区域具有加速构造活动的正影响;(2)小江断裂带以东马龙至宣威地区和南汀河断裂带以南临沧至景洪地区震后波速降低,地震活动减弱,断裂上库仑破裂应力降低,说明缅甸地震对该区域具有减缓构造活动的负影响。  相似文献   

8.
Theoretical evaluations and experimental data testify that the tidal-strain amplitudes in the fault zone can exceed their normal values on the earth by hundreds of percent.The strain magnitude near the fault depends on the integral elastic parameters of the fault. These parameters can change with the change of tectonic stresses.It is supposed that before earthquakes the changes of tidal amplitudes occur in the fault zone near the source. This supposition is checked by the analysis of tidal waves in the zone of the Kondarinsky fault (Tadjik SSR), recorded by extensometers before and after the earthquake of 3. X. 1967, withM = 4.5 and epicentral distance 20 km.  相似文献   

9.
This study presents the future seismic hazard map of Coimbatore city, India, by considering rupture phenomenon. Seismotectonic map for Coimbatore has been generated using past earthquakes and seismic sources within 300 km radius around the city. The region experienced a largest earthquake of moment magnitude 6.3 in 1900. Available earthquakes are divided into two categories: one includes events having moment magnitude of 5.0 and above, i.e., damaging earthquakes in the region and the other includes the remaining, i.e., minor earthquakes. Subsurface rupture character of the region has been established by considering the damaging earthquakes and total length of seismic source. Magnitudes of each source are estimated by assuming the subsurface rupture length in terms of percentage of total length of sources and matched with reported earthquake. Estimated magnitudes match well with the reported earthquakes for a RLD of 5.2% of the total length of source. Zone of influence circles is also marked in the seismotectonic map by considering subsurface rupture length of fault associated with these earthquakes. As earthquakes relive strain energy that builds up on faults, it is assumed that all the earthquakes close to damaging earthquake have released the entire strain energy and it would take some time for the rebuilding of strain energy to cause a similar earthquake in the same location/fault. Area free from influence circles has potential for future earthquake, if there is seismogenic source and minor earthquake in the last 20 years. Based on this rupture phenomenon, eight probable locations have been identified and these locations might have the potential for the future earthquakes. Characteristic earthquake moment magnitude (M w ) of 6.4 is estimated for the seismic study area considering seismic sources close to probable zones and 15% increased regional rupture character. The city is divided into several grid points at spacing of 0.01° and the peak ground acceleration (PGA) due to each probable earthquake is calculated at every grid point in city by using the regional attenuation model. The maximum of all these eight PGAs is taken for each grid point and the final PGA map is arrived. This map is compared to the PGA map developed based on the conventional deterministic seismic hazard analysis (DSHA) approach. The probable future rupture earthquakes gave less PGA than that of DSHA approach. The occurrence of any earthquake may be expected in near future in these eight zones, as these eight places have been experiencing minor earthquakes and are located in well-defined seismogenic sources.  相似文献   

10.
Abstract

This study presents the relationship between local seismicity and springs discharge, in which the microseismicity modifies the state of stress of the aquifer matrix and these modifications of the local stress control the aquifer behaviour from an example of a basaltic reservoir crossed by a seismic fault.

Along the right-lateral Garni seismic wrench fault, the distribution in space and time of more than 500 micro-earthquakes has been studied providing a pattern of stress distribution. Together with this tectonic survey, the hydrographs of springs issuing from an aquifer located in basaltic lava flows and crossed by the fault have been gauged for 4 years. According to its tectonic, geologic and hydrodynamic properties, the reservoir has been divided in to several parts. The hydrological behaviour of the reservoir and of each of its parts has been modelled, based on the rainfall and hydrodynamic properties of the basaltic reservoir and of nearby reservoirs.

The model allows us to define the ‘normal behaviour’ of the springs, when their discharge is not affected by an earthquake. Anomalies to the normal hydrometric curves are defined, and correlated to small (M < 3.5) earthquakes along the Garni fault. We propose that the circulation of underground water in the area around the fault depends largely on the fracture pattern of the basalts and the aquifer basement, as pointed out from field observations. Changes in spring discharges are explained by variations in the state of stress around the Garni fault, induced by the alternation of elastic strain and stick-slip movement on the fault, and by creep far from the fault. A model of stress distribution is proposed which explains changes in fracture charateristics before and after earthquakes. © Elsevier, Paris  相似文献   

11.
2008年5月12日在青藏高原东缘龙门山断裂带中段发生汶川8.0级特大地震。大震发生时释放应力并对震源区及外围构造应力场产生影响,受汶川地震断层破裂方式和强度空间差异性的影响,震后龙门山断裂带地壳应力场也应表现差异特征,至今鲜有针对该科学问题深入的分析和讨论。经过系统收集、梳理汶川地震后沿龙门山断裂带水压致裂地应力测量数据与2008年汶川地震中强余震序列震源机制解资料,对汶川地震后龙门山断裂带中上地壳构造应力场进行厘定,通过与震前构造应力场对比,深入探讨了汶川8.0级地震对龙门山断裂带地壳应力场的影响,进而对汶川震后应力调整过程及青藏高原东缘龙门山地区深部构造变形模式进行研究,研究结果表明:受汶川8.0级地震的影响,震后龙门山断裂带地壳构造应力场空间分布具有差异性,近地表至上地壳15 km深度范围,映秀—青川段最大主应力方向为北西西向、地应力状态为逆走滑型,青川东北部最大主应力方向偏转至北东东向、应力状态转变为走滑型;15~25km深度范围,龙门山断裂带最大主应力方向仍为北西—北西西向、应力状态以逆冲型为主。汶川8.0级地震后,龙门山断裂带中地壳北西西向逆冲挤压的构造应力特征进一步支持了青藏高原东缘龙门山地区东西两侧刚性块体碰撞挤压、逆冲推覆的动力学模式。  相似文献   

12.
开合构造是一种全球构造假说,该假说基础为地球上的一切物质和地质体都存在开合表现;可以用开合构造观解释一些板块构造理论登陆后不能合理解释的地质现象。文章在结合前人基础地质资料基础上,分析藏南地区基本的构造单元划分;强调动态构造单元划分,提出了被重力拆离断层改造叠加的逆断层区以及被拆离断层改造的正断层区。在主流观点提出碰撞挤压造山形成青藏高原时,野外科学考察发现了绒布寺伸展正断层的存在。文章认为绒布寺伸展正断层与主中央逆冲断层形成时间比藏南拆离系要早,两者构成了藏南挤出构造的两个边界;而藏南拆离系是晚期形成的,局部叠加在主中央逆冲断层之上,并且珠峰北追踪了早期绒布寺正断层呈相对高角度产出。3条断裂构造系统是不同时期、不同构造背景下的产物。藏南由前人所划分的飞来峰、构造窗等逆冲推覆构造系统中的构造单元,往往挤压逆冲特征表现不明显,却表现出由新的地层覆盖在老地层之上而显示地层柱缺失的特征。文章认为这些是滑覆构造的表现,是藏南地区晚期重力滑覆作用的产物。用开合构造理论将该地区新生代构造演化划分为由开转换为合;然后由合转换为开,构成一个完整开合演化历史,在这多阶段构造演化过程中,地球深部的热能、地球内部的重力势能以及构造引起的附加应力能起到关键作用。  相似文献   

13.
目前产生地震的机制仍以弹性回跳说为主:地震是因为断层错断使岩层的弹性能释放而引发。但越来越多的学者开始质疑,仅断层错断后的弹性能,是否真能达到实际地震所释放的巨大能量。因此,有必要探讨地震初动后破坏性强震的性质及其真正的能量来源。文章根据沉积地层中的储集层及其压力的特点分析得出,储集层内含有大量的高压流体,其压力在一定条件下可以释放出来,产生流体物理爆炸,有可能是强震能量的重要组成部分。通过计算得出,当断层破裂并刺穿面积较大的储集层时,其压力释放所产生的弹性能可以达到震级8.0以上地震所释放的能量;人为的工程活动也可引发小规模的流体压力的释放现象,如钻井时的井喷、水力压裂会诱发有感地震等。同时,文章根据对距离震中较近的地震台的波形及传播射线路径分析认为,强震波动可能不是横波S波,而是涨缩波P波,据此不能排除强震是由爆炸所致。综合汶川地震多个台站记录到的地震波的时间域和频率域特征、地面观测到的爆炸现象、地震后科学钻探获得的岩心等大量直接或间接证据,说明了这种流体爆炸能量释放的可能性。最后,文章提出了地震活动可分为三个阶段:微破裂阶段Ⅰ,该阶段有流体活动,并可产生动电效应,但未触发地震初动;地震初动后的断裂破裂阶段Ⅱ;由流体压力释放产生地震强震阶段Ⅲ。   相似文献   

14.
2017年8月8日四川省九寨沟县发生Ms7.0级地震,构造部位处于青藏高原东缘的巴颜喀拉地块东北角,震中位置是岷江断裂、塔藏断裂、虎牙断裂和雪山梁子断裂围闭的空震区。哪条断裂发震,如何界定其与周边活动断裂的关系,与青藏高原东缘近年来发生的大地震是否有成因联系等问题对于理解该区域现今构造活动模式、预判地震发展趋势和部署地震地质灾害防控等工作具有重要意义。利用地震前后两期Sentinel-1合成孔径雷达数据对地表同震形变场进行了InSAR测量,获取了极震区约2000 km2范围内的雷达视线向变形(-13~28 cm)和运动方向,呈现为主动盘单侧走滑兼逆冲的变形模式,结合震源机制、断裂展布、构造背景和近年地震迁移的分析,揭示了控震构造是巴颜喀拉地块北缘边界断裂弧形旋转体系的尾端构造,发震断层是该断裂系中塔藏断裂的南段,并有与虎牙断裂贯通的趋势,因此,应重视本次地震与虎牙断裂之间的空震区未来的强震危险性问题;从区域上看,此次九寨沟地震可能与汶川地震具有一定的时空成因联系,因在巴颜喀拉地块南北边界断裂破裂基本贯通的条件下,2008年汶川地震诱发的东缘中部锁固破裂导致块体加速向东挤出,2013年鲁甸地震又释放了东缘南段挤压构造应力,从而进一步加剧了东北角的应力集中,促使九寨沟地震的发生。  相似文献   

15.
Observations indicate that earthquake faults occur in topologically complex, multi-scale networks driven by plate tectonic forces. We present realistic numerical simulations, involving data-mining, pattern recognition, theoretical analyses and ensemble forecasting techniques, to understand how the observable space–time earthquake patterns are related to the fundamentally inaccessible and unobservable dynamics. Numerical simulations can also help us to understand how the different scales involved in earthquake physics interact and influence the resulting dynamics. Our simulations indicate that elastic interactions (stress transfer) combined with the nonlinearity in the frictional failure threshold law lead to the self-organization of the statistical dynamics, producing 1) statistical distributions for magnitudes and frequencies of earthquakes that have characteristics similar to those possessed by the Gutenberg–Richter magnitude–frequency distributions observed in nature; and 2) clear examples of stress transfer among fault activity described by stress shadows, in which an earthquake on one group of faults reduces the Coulomb failure stress on other faults, thereby delaying activity on those faults. In this paper, we describe the current state of modeling and simulation efforts for Virtual California, a model for all the major active strike slip faults in California. Noting that the Working Group on California Earthquake Probabilities (WGCEP) uses statistical distributions to produce earthquake forecast probabilities, we demonstrate that Virtual California provides a powerful tool for testing the applicability and reliability of the WGCEP statistical methods. Furthermore, we show how the simulations can be used to develop statistical earthquake forecasting techniques that are complementary to the methods used by the WGCEP, but improve upon those methods in a number of important ways. In doing so, we distinguish between the “official” forecasts of the WGCEP, and the “research-quality” forecasts that we discuss here. Finally, we provide a brief discussion of future problems and issues related to the development of ensemble earthquake hazard estimation and forecasting techniques.  相似文献   

16.
Crustal tectonic activities are essentially the consequences of the accumulation and release of in situ stress. Therefore, studying the stress state near active faults is important for understanding crustal dynamics and earthquake occurrences. In this paper, using in situ stress measurement results obtained by hydraulic fracturing in the vicinity of the Longmenshan fault zone before and after the Wenchuan Ms 8.0 earthquake and finite element modeling, the variation of stress state before and after the Wenchuan Ms 8.0 earthquake is investigated. The results show that the shear stress, which is proportional to the difference between principal stresses, increases with depth and distance from the active fault in the calm period or after the earthquakes, and tends to approach to the regional stress level outside the zone influenced by the fault. This distribution appears to gradually reverse with time and the change of fault properties such as frictional strength. With an increase in friction coefficient, low stress areas are reduced and areas with increased stress accumulation are more obvious near the fault. In sections of the fault with high frictional strengths, in situ stress clearly increases in the fault. Stress accumulates more rapidly in the fault zone relative to the surrounding areas, eventually leading to a stress field that peaks at the fault zone. Such a reversal in the stress field between the fault zone and surrounding areas in the magnitude of the stress field is a potential indicator for the occurrence of strong earthquakes.  相似文献   

17.
发展中的板块边界:天山-贝加尔活动构造带   总被引:5,自引:1,他引:5  
冯锐  马宗晋  方剑  吴宣 《地学前缘》2007,14(4):1-17
亚洲内陆的强地震密集地发生在天山-贝加尔一线,但该处并不存在一条连续的大断裂,学术界对这个问题的认识长期相左。文中分析了这条地震带的时空分布、分区特点、应力状态和活动周期,计算了欧亚大陆的布格重力异常场、均衡重力异常场,反演了上地幔的密度分布和剪切波速分布。发现在这个部位的70~250km的深部有一条北东向的密度、速度陡变带,它是新生代的冷地幔和热地幔的交界带,与浅部构造存在立交关系,对亚洲大陆的现今构造运动和应力场具有重要的控制作用。这个带的地震不同于传统意义上的板缘地震和板内地震,是一种因为深浅构造不同而造成的结构性地震,性质上为大陆内缘地震。文中还就深浅构造的空间立交关系、时间镜像关系进行了讨论,指出在南北地震带和伊朗东侧地震带的立交结构也与上地幔构造有关。天山-贝加尔活动构造带是正在发展中的板块边界,是大陆内部的一个典型构造,北侧为稳定的俄罗斯-西伯利亚次板块,南侧为活动的中国-东南亚次板块。  相似文献   

18.
Strong earthquake occurrence (M ≥ 6.0) onshore and offshore the Cyprus Island constitutes significant seismic hazard because they occur close to populated areas. Seismicity is weak south of the Island along the Cyprean Arc and strong events are aligned along the Paphos transform fault and Larnaka thrust fault zone that were already known and the Lemessos thrust fault zone that defined in the present study. By combining the past history of strong (M ≥ 6.0) events and the long-term tectonic loading on these major fault zones, the evolution of the stress field from 1896 until the present is derived. Although uncertainties exist in the location, magnitude and fault geometries of the early earthquakes included in our stress evolutionary model, the resulting stress field provides an explanation of later earthquake triggering. It was evidenced that the locations of all the strong events were preceded by a static stress change that encouraged failure. The current state of the evolved stress field may provide evidence for the future seismic hazard. Areas of positive static stress changes were identified in the southwestern offshore area that can be considered as possible sites of future seismic activity.  相似文献   

19.
闻久成  李军凯 《地质通报》2001,20(1):107-112
渤中拗陷是渤海—京津唐地区的近代强烈沉降中心之一,拗陷南支断裂带上更是强震频发。根据特征地震和区域构造应力场模拟计算结果对渤中拗陷南支断裂进行分段研究,并对各段的最大潜在地震进行讨论。提出渤海湾1段为最危险段,可能在21世纪中期发生7.5级左右的强震。  相似文献   

20.
Various earthquake fault types were analyzed for this study on the crust movement in the high region of the Tibetan plateau by analyzing mechanism solutions and stress fields. The results show that a lot of normal faulting type earthquakes are concentrated in the central High Tibetan plateau. Many of them are nearly perfect normal fault events. The strikes of the fault planes of normal faulting earthquakes are almost in an N-S direction based on the analyses of the Wulff stereonet diagrams of fault plane solutions. It implies that the dislocation slip vectors of the normal faulting type events have quite great components in the E-W direction. The extensions probably are an eastward extensional motion, being mainly a tectonic active regime in the plateau altitudes. The tensional stress in the E-W or NWW-SEE direction predominates earthquake occurrences in the normal event region of the central plateau. The eastward extensional motion in the high Tibetan plateau is attributable to the gravitational collapse of the high plateau and the eastward extrusion of hotter mantle materials beneath the east boundary of the plateau. Extensional motions from the relaxation of the topography and/or gravitational collapse in the high plateau hardly occurred along the N-S direction. The obstruction for the plateau to move eastward is rather weak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号