首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates various multiseam mining related parameters using mine site specific data and numerical simulations. Two important mining effects—subsidence and stress—are analysed for different possible mining layouts. A geological mine dataset has been used to generate a numerical model. The predicted surface subsidence magnitude and surface profile have been compared under different scenarios to assess potential options in multiseam mining strategies. The effects that seam separation distances, mining offset, panel layout and panel orientation each have on surface subsidence and chain pillar stress magnitude have been investigated. The numerical simulation shows that ascending or descending mining directions have little impact on controlling the surface subsidence in multiseam mining and predicted an almost identical maximum stress development at the chain pillars. Numerical simulations infer that the orientation of the top panels control the subsidence profile.  相似文献   

2.
Pillar design is of paramount importance to any underground mine design. Oversized pillars may lead to loss of coal while undersized pillars may lead to instability. While underground pillars are mostly square and rectangular, highwall mining pillars are long and narrow, as they are formed after driving parallel entries in the seam from the highwall. These pillars are termed as web pillars. The overall stability of highwall depends upon these pillars as no other supports are provided in the entries. Web pillar differs from usual coal pillars in respect of w/h ratio being <3.0, with an exceptionally longer length compared to its width, to the tune of 50–500 m. Several empirical coal pillar strength equations developed for rectangular pillars are still being used with some modifications to adapt to web pillars. Review and analysis of these empirical approaches for determining web pillar strength along with a numerical approach for web pillar design are discussed in this paper. Their application to some Indian case studies is also discussed.  相似文献   

3.
Driving roadway along a goaf is commonly adopted for mining face of thick seam in a deep mine. Determining a reasonable width of coal pillar is a key scientific problem for driving roadway along a goaf in a deep mine. The paper took a roadway driven along a goaf at Zhaolou coal mine which is a typical kilometer-deep mine in China as engineering background. Field monitoring, model test, and numerical experiment are conducted. Stress and displacement evolution mechanism are analyzed with different pillar widths. The test results show that with the increase of coal pillar width, the peak stress value at the coal pillar working slope and integrated coal beside the roadway increases firstly and then tends to be stable, its position is transferred to the side of the roadway, and the deformation of coal pillar decreases gradually during roadway excavation. The coal pillar deformation and roadway vertical displacement increased as the coal pillar width increases under high abutment pressure. In order to reduce the waste of non-renewable resources and meet the requirements of bearing capacity and stability of coal pillars, a method is proposed for setting a reasonable width of coal pillars and the specific width of coal pillars is designed and applied in engineering practices based on the above research. All the tests are significant in the study of driving roadway along a goaf in a deep mine.  相似文献   

4.
In underground coal mining any increase in coal recovery rate is dependent on a decrease in pillar size. Backfilling is one way of reducing the required size of pillars and hence the volume of coal left underground. Therefore any comparisons made between a self-supported mine layout and backfill supported mine layout are based directly on pillar design. The most effective way to examine the effect of backfill on pillar support, and subsequently the rate of recovery, would be to incorporate the mechanisms of backfill support directly into the current design procedure for coal pillars. This paper presents a review of the mechanics of backfill support, a method of estimating the magnitude of that support based on earth pressure theory, and an example that incorporates backfill support into current coal pillar design.  相似文献   

5.
Summary Significant increases in extraction ratio on the order of 6 to 8%, equivalent to as much as 142 t/m of panel advance, have occurred at the Big Island Mine during the last five years with the help of a practical rock mechanics program. This increase in resource recovery has also contributed to improvements in productivity. Both conventional and continuous machine mining have been used to mine two flat-laying trona beds at depths of 250 and 260 m in the Green River Formation in southwestern Wyoming.Conventional room and pillar mining originally was conducted in panels with extraction ratios of 58 to 60%. The use of yield pillars has allowed the panel extraction to increase to 66%. Continuous machine mining was introduced recently, with a 64% extraction ratio using long, narrow pillars and wide rooms. Further improvements in resource recovery seem feasible in the light of present mining experience.The rock mechanics program consisted of field instrumentation to determine the pillar and roof response to mining, and computer modelling to evaluate and help determine the stability of various layouts, which were then adopted for mining.  相似文献   

6.
特厚煤层小煤柱沿空掘巷数值分析及应用   总被引:1,自引:0,他引:1  
彭林军  张东峰  郭志飚  段庆伟 《岩土力学》2013,34(12):3609-3616
沿空掘巷开采技术成功的关键主要取决于采场覆岩稳定的时间和沿空掘巷的位置。采场采动岩体运动导致围岩应力重新分布,动态采场应力作用于围岩并使其状态发生灾变是发生矿山灾害的根本原因。特厚煤层分层综采巷道布置(包括内错、外错和垂直),合理确定煤柱尺寸、巷道支护方式和参数选择能够最大可能发挥围岩的自承能力,是提高巷道稳定的重要保证。在稳定的内应力场范围内布置小煤柱护巷,能够明显提高巷道围岩稳定状态,减少巷道维护费用。通过理论分析、数值模拟和现场实测等方法,对特厚煤层下分层沿空掘巷小煤柱不同巷道布置设计,通过煤柱的应力、应变和位移进行对比分析,确定特厚煤层下分层沿空掘巷合理的巷道位置和煤柱尺寸及上覆岩层防控技术,并得到工程验证是正确可靠的,从而为特厚煤层小煤柱开采技术提供了重要的科学依据。  相似文献   

7.
细长窄煤柱破坏机理的数值分析   总被引:5,自引:0,他引:5  
程国明  黄侃  王思敬  宁柯 《岩土力学》2004,25(2):266-269
对特厚煤层条件下采用螺旋钻机开采细长窄煤柱的破坏过程进行了数值模拟。模拟结果再现了开采过程中煤柱破坏发生、发展直至塑性区贯通破坏的全过程,并从应力场演化分析了煤柱破坏过程的应力分布特征及破坏机理。  相似文献   

8.
Most coal mines in China use the longwall mining system. High stresses are frequently encountered around development entries at deep mines. This paper presents an alternate longwall mining layout for thick coal seams to minimize ground control problems. In a conventional longwall panel layout, development entries on both ends of the panel are located along the floor, and a coal pillar (chain pillar) is left between adjacent panels to ensure stability. Gateroads on either end of a longwall panel using the layout proposed in this paper are located at different vertical levels within a thick coal seam or in a geologically split coal seam for improved stability. The headgate entry/ies are driven along the floor while the tailgate entry/ies are driven along the roof. Therefore, a longwall face has a gradually elevated or curved section on one end of the panel. For the adjacent panel, the development entry may be located directly below the development entry of the previous panel or may be offset horizontally with respect to it. Based on physical and numerical modeling approaches, it is demonstrated that the stress environment for development entries employing the longwall layout is significantly improved; ground control problems are therefore minimized.  相似文献   

9.
Summary The demand for increased productivity and the problems associated with mining at greater depths have increased the interest in using the yield pillar concept in the United States. This paper summarizes chain pillar behaviour in a mine that historically experienced coal bumps in both room-and-pillar and longwall sections. Results indicate that, generally, the chain pillars yield as designed, but that yielding occurred either after development or with approach of the longwall face. The Bureau of Mines investigated several yield pillar design approaches to possibly explain observed differences in pillar behaviour. These approaches suggest that very localized conditions, such as coal and rock properties, cover depth, and extraction height, may influence the behaviour of any one pillar. At this mine, yielding chain pillars result in de-stressing of the longwall entries and the transfer of potentially dangerous stress concentrations to adjacent panels. Pre-longwall-mining behaviour indicates the existence of a pressure arch, the width of which increases with depth. Results indicate that use of yield pillars improves stress control, reduces bump potential, and increases resource recovery.  相似文献   

10.
Numerous sudden surface collapses induced by shallow partial mining in the Datong Jurassic coal seam have caused fatalities, significant property losses and brought about harmful results to the environment. By introducing efficient pillar widths and using the Voronoi diagram, irregular pillar stability can be estimated rationally. Theoretical analysis and numerical simulation demonstrate that the failure of a single pillar increases the load on surrounding pillars. If the magnitude of the transferred load is sufficiently high, the adjoining pillars will also fail in a chain reaction. This can be interpreted by the merger of inner stress arches combined with the external stress arch. In this paper, the evolution mode of sudden surface collapse caused by shallow partial mining is proposed and has been verified by ‘similar material simulation.’ Finally, the potential of sudden surface collapse is determined and an example of collapse prediction and prevention of surface building damage with relocation is given.  相似文献   

11.
In this paper a geometric computational model (GCM) has been developed for calculating the effect of longwall face on the extension of excavation-damaged zone (EDZ) above the gate roadways (main and tail gates), considering the advance longwall mining method. In this model, the stability of gate roadways are investigated based on loading effects due to EDZ and caving zone (CZ) above the longwall face, which can extend the EDZ size. The structure of GCM depends on four important factors: (1) geomechanical properties of hanging wall, (2) dip and thickness of coal seam, (3) CZ characteristics, and (4) pillar width. The investigations demonstrated that the extension of EDZ is a function of pillar width. Considering the effect of pillar width, new mathematical relationships were presented to calculate the face influence coefficient and characteristics of extended EDZ. Furthermore, taking GCM into account, a computational algorithm for stability analysis of gate roadways was suggested. Validation was carried out through instrumentation and monitoring results of a longwall face at Parvade-2 coal mine in Tabas, Iran, demonstrating good agreement between the new model and measured results. Finally, a sensitivity analysis was carried out on the effect of pillar width, bearing capacity of support system and coal seam dip.  相似文献   

12.
The study of rock pillar failure mechanisms is an issue that is faced routinely in mining and civil industries. In mining operation, the establishment of several mining levels is often necessary to ensure adequate production. This result in the formation of pillars that must be recovered under often high stress conditions at later stages of excavation. It is, therefore, beneficial to develop guidelines that can be used in the design of rock pillars. The aim of this paper is to delve into the mechanisms involved in pillar failure as well as to investigate the non-linear behavior of rock pillars. An extensive numerical analysis was carried out to study the pillar deformation and failure process under natural loading conditions. Effects of pillar geometry and pillar strength parameters on pillar behavior were investigated for hard rock material typical of Canadian mining conditions. Numerical data were compared against field data recorded in Canadian mines. A fairly good match was achieved between numerical and field data and the conducted analysis can be used as a qualitative guideline in the design of rock pillars in underground structures.  相似文献   

13.
Solid backfill mining for coal pillar recovery in industrial squares has to ensure that the mine infrastructure, such as the shafts and substations, is not degraded or has its utility impaired by that mining. At the same time, it is important to recover as much coal as possible. As a result, it is necessary to predict mining subsidence during solid backfilling mining of coal pillars in industrial squares and to optimize the design of the working faces. At the Baishan coal mine in Anhiu province, China, there are thick layers of unconsolidated overburden above the coal seam so it is not appropriate to use the surface subsidence prediction method of equivalent mining height to predict subsidence during the mining of the coal pillars there. In order to find a reasonable coal pillar recovery scheme for the Baishan mine, a numerical simulation method is used to determine the relationships between the compression ratio of the backfilling material and the surface subsidence prediction parameters. Research was done to determine the appropriate parameters, and based on the final prediction parameters and taking the mandated protection standards for buildings and structures into account, surface subsidence is predicted and a backfill mining scheme for pillar recovery is proposed. The results show that of the six mining schemes considered, scheme 5 is the best scheme for coal pillar recovery in the industrial square at the Baishan mine. The research results are significant for similar mines with thick unconsolidated overburden anywhere in the world.  相似文献   

14.
Intensive strata behaviors are generated when the No. 8707 working face of the 8# coal seam in a coal mine is advanced by way of the pillars left over of the upper part of 7# close distance coal seam. The theoretical analysis, numerical simulation and filed measurement were utilized to obtain the rule of the stress change when the 8707 working face of the 8# coal seam passes the pillars left over of the 7# coal seam. Meanwhile, a pressure-relief mining (PRM) technology was put forward. According to the research results, when the 8707 working face in the 8# coal seam was advanced to the position that was 20 m in front of the pillar left over, the abutment pressure reached the maximum for 26 MPa and the stress concentration factor was 3.25, which was likely to give rise to the rock burst. With the advance of the working face, the abutment pressure was reduced slowly. As the 8707 working face advanced 15 m away the pillar left over, the transfixed shear failure region of 45° was found in the bedrocks of the upper and lower coal seams, which was readily to give rise to the shear rupture, leading to the rock burst. Based on the aforementioned research, this research carried out the PRM by applying the hydraulic fracturing technology on the coal roof and pillar, which can ensure the safety and efficient mining of working faces.  相似文献   

15.
We studied an underground coal gasification technique using strip mining-face mining gasifier controlled retraction injection technology (SMFM). This green mining approach offers several advantages over conventional strip mining but the stress distribution and stability of SMFM operations remain largely untested. In particular, hyperbolic coking pillars are used in SMFM compared with rectangular pillars used in traditional strip mining, which can influence the ultimate bearing capacity and stability. We use numerical simulations to investigate the influence of different factors (arch height, pillar height and width, mechanical characteristics), under the coupling effect of high temperature, on the ultimate bearing capacity of hyperbolic pillars. Our results indicate that arch height has a strong influence on pillar stress, while changes in pillar width and height are less significant. A stability evaluation method is proposed and tested on a case study in Inner Mongolia. Our theoretical results have practical significance for the promotion and application of SMFM.  相似文献   

16.
In China’s western coal mining area, the traditional room mining technology is facing coal pillar instability, mine earthquake, large-area roof subsidence in the goaf, surface subsidence, water and soil loss, vegetation deterioration, and other environmental problems. To solve the aforementioned problems and to improve coal recovery, the roadway backfill coal mining (RBCM) method was proposed as a solution and its technical principle and key equipment were presented in this paper. In addition, the microstructure and mechanical behavior (strain-stress relation in confined compressive test) of aeolian sand and loess backfill materials were studied for a rational backfill design for underground mines. Further, coal pillar stress, plastic zone change, and surface deformation of the RBCM schemes were studied using the FLAC3D numerical simulation software, and a reasonable mining scheme of “mining 7 m and leaving 3 m” was determined. The engineering application in Changxing Coal Mine shows that the RBCM method with loess and aeolian sand as backfill materials allows a stable recovery of coal pillars with a recovery ratio of more than 70 %. The maximum accumulated surface subsidence and the maximum horizontal deformation were measured to be 15 mm and 0.8 mm/m respectively, indicating that the targeted backfilling effect can help protect the environment and also control surface subsidence.  相似文献   

17.
Estimation of pillar stress is a crucial task in underground mining. This is used to determine pillar dimensions, room width, roof conditions, and general mine layout. There are several methods for estimating induced stresses due to underground excavations, i.e., empirical methods, numerical solutions, and currently artificial intelligence (AI). AI based techniques are gradually gaining popularity especially for problems involving uncertainty. In this paper, an attempt has been made to predict stresses developed in the pillars of bord and pillar mining using artificial neural network. A comparison has also been done to compare the obtained results with the boundary element method as well as measured field values. For this purpose, a multilayer perceptron neural network model was developed. A number of architectures with different hidden layers and neurons were tried to get the best solution, and the architecture 5-20-8-1 was found to be an optimum solution. Sensitivity analysis was also carried out to understand the influence of important input parameters on pillar stress concentration.  相似文献   

18.
我国西部神府东胜煤田主要赋存浅埋近距煤层,煤层埋藏浅,覆岩上部厚松散层大范围分布,近距煤层开采导致覆岩与地表裂缝发育严重,加剧了原本脆弱的生态环境进一步恶化。为探究浅埋近距煤层开采覆岩与地表采动裂缝发育规律,掌握其控制方法,以柠条塔煤矿1-2煤层和2-2煤层开采为背景,结合实测统计分析、物理模拟和分形理论,掌握浅埋顶部单一煤层开采和重复采动下覆岩与地表裂缝发育特征,揭示煤柱布置对裂缝发育的控制作用。研究表明,煤层开采导致的地表裂缝可分为平行于工作面的动态裂缝和工作面开采边界地表裂缝(切眼边界侧地表裂缝和区段煤柱侧地表裂缝),动态裂缝在开采后能够实现自修复,工作面开采边界的地表裂缝不能自修复。下煤层开采区段煤柱侧覆岩与地表采动裂缝发育严重,其与区段煤柱错距密切相关。1-2煤层开采后,基岩垮落角为60°,土层垮落角为65°,边界煤柱侧地表裂缝的宽度为0.26 m。下部2-2煤层开采,煤柱叠置、错距20、40 m时,区段煤柱侧覆岩采动裂缝宽度分别为0.81、0.45和0.22 m,地表裂缝宽度分别为0.65、0.30和0.12 m。通过确定合理煤柱布置方式,能够有效控制覆岩和地表采动裂缝的发育程度,据此确定柠条塔煤矿1-2煤层和2-2煤层开采的合理煤柱错距应大于40 m。   相似文献   

19.
侧向支承压力分布、资源回收率以及煤柱和巷道的稳定性是大采高综放面区段煤柱宽度留设要兼顾的因素,为了确定大采高综放面区段煤柱宽度,以某矿8103面为工程背景,首先,采用理论计算和现场应力监测等方法确定大采高综放工作面倾向支承压力分布规律,得出应力降低区宽度约为8 m,原岩应力区为巷帮侧28 m外。其次,采用工程类比方法确定大采高综放工作面巷帮外侧煤体严重破裂区宽度约为4 m。最后,采用FLAC3D数值软件分析了下区段工作面回采时窄煤柱(6、8 m)和宽煤柱(28、30 m)的应力场、位移场及塑性区特征,获得不同煤柱宽度时巷道和煤柱力学特征。研究表明:当煤柱宽度6 m和8 m时,在采动支承压力下煤柱几乎无承载能力,且巷道变形量较大;当煤柱宽度28 m和30 m时,在采动支承压力下煤柱中央仍有一定的弹性核,煤柱保持稳定且巷道变形量较小。综合考虑资源回收、巷道稳定性、次生灾害控制等因素,确定大采高综放工作面区段煤柱宽度为28 m。  相似文献   

20.
确定煤层顶板导水裂缝带高度可为顶板防治水、采掘工程布置、防水煤柱留设以及瓦斯抽采设计提供依据。采用井下仰孔注水测渗漏法,实测山西西山煤田镇城底矿8煤导水裂缝带高度为57.98 m,其中冒落带高度16.72 m,裂隙带高度41.26 m。依据实测结果并收集了8个矿综采一次采全高中硬覆岩下导水裂缝带高度数据,利用数理统计回归分析的方法,得出了适用于综采一次采全高中硬覆岩下导水裂缝带高度计算的经验公式,并与《煤矿安全规程》中相应经验公式进行对比分析,结果表明,该公式适用性好,而《煤矿安全规程》中有关公式应用于中厚煤层综采一次采全高开采条件预测,其误差较大。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号