首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
根据河道形态和沉积物特征的河流新分类   总被引:26,自引:5,他引:21  
王随继  任明达 《沉积学报》1999,17(2):240-246
目前河流分类方案较多,各有所长和不足,不同学科间的河型表述也有一定的差异,不便于相互沟通。在讨论了分别以侵蚀阶段、沉积物搬运方向、河道和河间地的相对沉积速率以及河道平面形态等为标准的代表性河流分类方案的不足之处后,提出一个新的河型分类,把冲积河流分为辫状河、曲流河、分汊河、网状河和直流河五类,以便于沉积学界、地貌学界和水利学界等能够在统一的河型分类的格架中相互借鉴各自的研究成果。  相似文献   

2.
中国现代网状河流沉积特征和沉积模式   总被引:5,自引:0,他引:5  
中国境内的许多河流发育有网状河段,从长江、黑龙江、珠江等这样的大型河流到嫩江、赣江等中小型河流都有。依据这些网状河的地理和构造背景的不同,可以把它们划分为:平原网状河流、山谷网状河流、入湖三角洲平原网状河流和入海三角洲平原网状河流四大类型。作者通过实地挖掘探槽、密集采样,对嫩江齐齐哈尔平原网状河段、赣江入湖三角洲平原网状河段、珠江入海三角洲平原网状河段沉积特征进行了详细描述和研究,并建立了网状河的沉积模式,探讨了网状河的成因。认为网状河流体系的发育不受气候和地理位置的限制,低坡降是形成网状河的必要条件,相对稳定的网状河道不同于曲流河和辫状河,湿地环境是网状河流体系中最发育的地貌单元,堤岸植被繁茂、粘结性高是河道稳定的重要因素,与曲流河和辫状河相比,网状河出现的几率较低。  相似文献   

3.
辫状河现代沉积研究与相模式──中国永定河剖析   总被引:29,自引:5,他引:24  
永定河是一条多河型河流,自上而下,包括了辩状河→曲流河→分流网状河的河型空间转换。其间辫状河段可明显区分为两类亚型:即冲积扇区的高坡降辫状河和冲积平原区低坡降辫状河。二者在河流形态、沉积物特征等方面显示不同。而沉积作用机制和砂体沉积模式是近似的,二者均进行垂向加积作用,均发生五个级次的沉积再作用面,均发育三个级次类型的薄夹层:滞留层、落淤层、颗粒降纹层与颗粒流纹层。其中落淤层最具指相意义。在河道经常摆动迁移过程中,最终形成砂体广泛展布的“叠覆泛砂体”。这种辫状河沉积模式──“叠覆泛砂体”为油气储集提供了良好的储集空间和场所。  相似文献   

4.
网状河流和分汊河流的河型归属讨论   总被引:11,自引:0,他引:11  
河流的河道平面形态分类有多种方案 ,其中Rust的分类因为分出了网状河流而得到沉积学家的更多关注。中国地貌学界和水利学界则更关注钱宁的分类 ,其中包括分汊河流。目前 ,许多研究人员把网状河流和分汊河流当作同一类型的河流。文中从河型的定义、河道平面形态、地下沉积物特征、水动力、新河道形成机理和发育的地貌部位等方面对分汊河流和网状河流进行对比 ,根据对比结果认为它们是不同的河型。为了便于沉积学家、水利学家以及地貌学家之间相互交流各自有关河流的研究成果 ,需要提出一个更符合实际的冲积河流分类方案。  相似文献   

5.
The Spiti River drains the rain shadow zone of western Himalaya. In the present study, the fluvial sedimentary record of Spiti valley was studied to understand its responses to tectonics and climate. Geomorphic changes along the river enable to divide the river into two segments: (i) upper valley with a broad, braided channel where relict sedimentary sequences rise 15–50 m high from the riverbed and (ii) lower valley with a narrow, meandering channel that incises into bedrock, and here, the fluvio-lacustrine sediments reside on a bedrock bench located above the riverbed. The transition between these geomorphic segments lies along the river between Seko-Nasung and Lingti villages (within Tethyan Himalaya). Lithofacies analyses of the sedimentary sequences show six different lithofacies. These can be grouped into three facies associations, viz. (A) a glacial outwash; (B) sedimentation in a channel and in an accreting bar under braided conditions; and (C) formation of lake due to channel blockage by landslide activities. Seventeen optically stimulated luminescence ages derived from ten sections bracketed the phases of river valley aggradation between 14–8 and 50–30 ka. These aggradation phases witnessed mass wasting, channel damming and lake formation events. Our record, when compared with SW monsoon archives, suggests that the aggradation occurred during intensified monsoon phase of MIS 3/4 and that proceeded the Last Glacial Maxima. Thus, the study reports monsoon modulated valley aggradation in the NW arid Himalaya.  相似文献   

6.
Alluvial fans develop their semi‐conical shape by quasi‐cyclic avulsions of their geomorphologically active sector from a fixed fan apex. On debris‐flow fans, these quasi‐cyclic avulsions are poorly understood, partly because physical scale experiments on the formation of fans have been limited largely to turbidite and fluvial fans and deltas. In this study, debris‐flow fans were experimentally created under constant extrinsic forcing, and autogenic sequences of backfilling, avulsion and channelization were observed. Backfilling, avulsion and channelization were gradual processes that required multiple successive debris‐flow events. Debris flows avulsed along preferential flow paths given by the balance between steepest descent and flow inertia. In the channelization phase, debris flows became progressively longer and narrower because momentum increasingly focused on the flow front as flow narrowed, resulting in longer run‐out and deeper channels. Backfilling commenced when debris flows reached their maximum possible length and channel depth, as defined by channel slope and debris‐flow volume and composition, after which they progressively shortened and widened until the entire channel was filled and avulsion was initiated. The terminus of deposition moved upstream because the frontal lobe deposits of previous debris flows created a low‐gradient zone forcing deposition. Consequently, the next debris flow was shorter which led to more in‐channel sedimentation, causing more overbank flow in the next debris flow and resulting in reduced momentum to the flow front and shorter runout. This topographic feedback is similar to the interaction between flow and mouth bars forcing backfilling and transitions from channelized to sheet flow in turbidite and fluvial fans and deltas. Debris‐flow avulsion cycles are governed by the same large‐scale topographic compensation that drives avulsion cycles on fluvial and turbidite fans, although the detailed processes are unique to debris‐flow fans. This novel result provides a basis for modelling of debris‐flow fans with applications in hazards and stratigraphy.  相似文献   

7.
Abstract

The Xihu sag, which is the largest petroliferous sub-basin of the East China Sea Shelf Basin, formed in a continental back-arc setting. The Oligocene Huagang Formation consisting of a fluvial–lacustrine succession deposited during the compressional stage is the prime hydrocarbon-bearing interval in the Xihu sag. A third-order sequence-stratigraphic framework has been built, and component sand-body characteristics were investigated based on seismic attribute analysis and well-log correlation. Two overall upward-fining sequences, and an internal low-accommodation systems tract (LAST) (fluvial successions characterised by amalgamated fluvial channel sand bodies interlayered with rare overbank deposits) and high-accommodation systems tract (HAST) (intervals dominated by overbank or lacustrine deposits) have been identified. The thick, multi-storied channel-fill sandstone bodies deposited along the central depression belt, capped by extensive overbank or lacustrine mud deposits, characterise each sequence and form favourable reservoir–seal associations. Proximal-to-distal changes in lithofacies associations were also analysed. The sequence-stratigraphic and lithofacies analysis suggest the existence of an axial, large-scale river channel system in the Oligocene Xihu sag. On the basis of the restoration of basin geomorphology and seismic facies analysis, the depositional architectures of the axial paleodrainage system have been reconstructed. Overall, the Huagang sequences represent the sedimentary evolution of a large-scale fluvial system sourced from axial and lateral supply areas, to form river deltas into an interior-draining basin-centre lake. Two major fluvio-lacustrine transgression–regression cycles have been recorded. During the transgression cycle, the fluvial morphology was dominated by braided fluvial style; whereas during the regression cycle, the fluvial morphology was characterised by a combination of multiple fluvial channel styles in the LAST, from upstream to downstream low-sinuosity braided, high-sinuosity braided and anastomosing fluvial channel patterns were distributed and then replaced by large-scale lake flooding in the HAST. The braided channel centre, paleobathymetric lows of channel networks and delta-front bodies are sand-prone units. The fluvial sedimentation was governed by multiple parameters: tectonics, paleogeomorphology and climate fluctuations. This integrated study on fluvial sedimentation and evolution of the Oligocene drainage system enable us to propose a conceptual model depicting fluvial channel styles and component sand-body architecture in lacustrine rift basins with axial plus transverse sediment supplies. This model can serve as a reference to illustrate channel-sand-body and associated reservoir architecture in similar types of drainage systems in terrestrial basins.  相似文献   

8.
The purpose of this research is to analyze the seismostratigraphic and paleoenvironmental features of an ancient fluvial deposit characterized by the presence of paleochannels and sedimentary structures in Bahía Blanca estuary, Argentina. To this end, high-resolution seismic methods were used. Paleochannels exhibiting v-shaped cuts were found at different topographic positions at the base of this deposit. It was observed that channel silting is indicative of the relative change of river base level and the consequent migration of fluvial tributaries. This alluvial deposit is composed of low compacted fine sand and its middle–upper facies is characterized by the presence of horizontal and discontinuous wavy reflectors. The upper boundary of this deposit is an erosive discontinuity resulting from Holocene sea-level rise during which the mouth of old fluvial courses underwent changes. The deposit was subsequently buried by sandy and clayey silt sediments. The paleodrainage at subbottom indicates that this deposit is associated with an ancient river mouth. Based on the seismostratigraphic and lithological characteristics and the paleochannel structures found in the study area, it can be concluded that the deposit analyzed is an alluvial sequence formed in the period from the Middle-Late Pleistocene to Holocene marine transgression.  相似文献   

9.
从端点走向连续:河流沉积模式研究进展述评   总被引:10,自引:7,他引:3  
从河道类型的划分、河床演变与河型转换、河道沉积与河流砂体的建筑结构要素、河漫滩沉积、季节性河流与分支河流体系、河流沉积相模式、河流沉积学研究技术与方法等方面对国内外河流沉积模式的研究进展进行了综述,认为近十年来河流沉积学的理论和方法都发生了重要的变化。地貌学家、沉积学家和工程师认识到河道形态是连续可变的,而不是只有4~40多个端点类型。河床的演变受河床比降、流量变幅、河岸沉积物粒度构成、气候、植被以及构造沉降速率等多方面的影响。垂向剖面分析法难以对古河流类型做出正确的判断,运用建筑结构要素分析法重建河道内大型底形的地貌形态是河型判别和河流相模式重建的正确方法。河漫滩是河流沉积事件记录最为齐全的部位,对河漫滩、天然堤和泛滥平原沉积层序的研究能够揭示更多古河流沉积过程以及古环境、古气候和古生物方面的信息。对季节性河流、受季风强烈影响地区的河流、以及不同气候带河流所发育的独特沉积构造和建筑结构要素的研究不断增加。分支河流体系的概念得到越来越多的应用,但也得到不少质疑。我国学者应当注重对现代河流地貌形态和沉积过程的观察,把河床演变学的定量方法与沉积学的观点、理论和资料相结合,利用露头、三维地震资料和探地雷达技术建立河流砂体内部建筑结构信息数据库,加强对古河流河漫滩和泛滥平原的沉积过程、特征及其控制因素的研究,加强对不同构造和气候条件下河流沉积的差异性研究,不断发展河流沉积学研究技术,加强河流沉积学实验室建设和研究队伍建设,加强国际交流与合作,使我国河流沉积学为国家经济社会发展提供更加有力和有效的支撑,为推动国际河流沉积学发展做出中国人自己的贡献。  相似文献   

10.
王科  赵俊峰  薛锐  闫占冬  李旋  李一凡 《沉积学报》2022,40(5):1367-1377
河流沉积是陆相沉积环境和地层记录的重要组成部分,也是陆相盆地重要的油气储层。侏罗系延安组是鄂尔多斯盆地重要的含煤和储油层系。延安组早期河流沉积发育,延安一带出露典型沉积剖面,是剖析河流构型特征的难得窗口。采用沉积学理论和构型要素分析方法,在野外露头精细解剖的基础上,分析了延安组下部辫状河、曲流河的沉积构型特征,探讨了古河道规模和河流类型转化的控制因素。研究表明,延安组延10沉积期辫状河发育,主要由河道、顺流加积体和沙质坝等单元组成,多期河道沉积叠置,呈厚层板状分布,泥质隔夹层不发育;延9早期演变为曲流河,发育河道、侧向加积体、废弃河道、泛滥平原及决口扇等构型单元,泥质隔夹层较发育,砂体连续性变差。采用经验公式估算,延10辫状河河道宽度为19.34~373.22 m,延9曲流河河道宽度16.81~99.21 m。延安组早期继承了富县组沉积期的古构造—古地理格局,随着填平补齐的发展和盆地沉积范围的扩大,古地形变缓,物源供给减弱,导致河流类型由辫状河演变为曲流河。研究结果对于深入理解同物源体系供给条件下河流沉积构型特征及类型转换,油气储层预测等具有理论和现实意义。  相似文献   

11.
Precambrian fluvial deposits have been traditionally described as architecturally simple, forming shallow and wide braidplains with sheet‐like geometry. The varied architecture and morphodynamics of the 1·6 Ga Ellice Formation of Elu Basin, Nunavut, Canada, are examined from detailed studies of section and planform exposures along coastal platforms and stepped cliffs. The Ellice Formation overlies older Proterozoic sandstones and Archean crystalline rocks, recording sedimentation in fluvial, aeolian, coastal and nearshore‐marine environments. The fluvial deposits display palaeoflow towards the west/north‐west, while overlying shallow‐marine deposits record transgression towards the east/south‐east. The Ellice Formation displays dispersed palaeoflow at its base, and also at higher stratigraphic levels, where fluvial and aeolian deposits are associated. Elsewhere, mainly unimodal palaeoflow points to extensive low‐sinuosity fluvial deposition. Within the terrestrial deposits, fluvial, fluvial–aeolian and coastal architectural elements are recognized. Fluvial elements comprise cross‐bedded sandstone and minor conglomerate, exhibiting an overall fining‐upward trend with associated decrease in preservation, dimension and amalgamation of channel bodies. These motifs are interpreted to portray a shift in depositional environment from proximal trunk rivers to distal alluvial plains. Low‐sinuosity fluvial elements are the most common, and include major channel bodies, elongate side bars and mid‐channel bars with well‐developed scroll topography. High‐sinuosity channel‐bar complexes exhibit upbar‐flow rotation and yield evidence of bar expansion coupled with rotation and translation. Fluvial–aeolian elements are composed of aeolian dunes juxtaposed with isolated channel bodies and bank‐attached bars. Minor mixed fluvial–aeolian sheets record local deposition in unconfined settings (possibly floodbasins) or inter‐distributary highlands. Finally, coastal elements comprise small deltaic complexes composed of sand‐rich distributary‐channel bodies feeding heterolithic mouth bars. Overall, the sedimentary record of the Ellice Formation demonstrates an example from the Precambrian where alluvium was locally characterized by a higher geomorphic variability than previously recognized.  相似文献   

12.
B. G. Els 《Sedimentary Geology》1998,120(1-4):205-224
Studies of the auriferous Witwatersrand placers and associated rocks have revealed that certain palaeo-environments, especially braided fluvial, are particularly well represented in this part of the rock record. However, there is a paucity of lithofacies indicating certain other palaeo-environments. Possible reasons for their scarceness or absence are suggested in this paper. It is generally assumed that pre-vegetational fluvial systems would have been characteristically braided, because of the absence of land plants necessary to stabilise river banks. A question arising is what kind of downstream changes such pre-vegetational braided streams underwent. A recent study of a braided stream placer revealed that the depositing system retained its braided character right down to the palaeo-shoreline. However, gravel did not reach the palaeo-beach. As with many modern examples, beach conglomerates are rare in the Witwatersrand rocks. The paucity of conglomeratic beach placers is ascribed to the low probability of gravel being transported across coastal plains, because of the relatively low slopes or depths of rivers here. The Witwatersrand fluvial channels are generally considered to have had high width-to-depth ratios, because of the absence of land vegetation to stabilise channel banks. However, two examples of deep, relatively narrow scour features, with predominantly fine-grained fills, occur near the base of the Central Rand Group. The low width-to-depth ratios of these scour features, which probably represent palaeo-valleys, are ascribed to severe incision during a rapid sea-level fall. The auriferous fluvial systems of the Witwatersrand are generally considered to have been entirely braided, due to the lack of bank stability. However, the fluvial B placer of the Welkom goldfield is confined to discrete channels. Their banks are thought to have been stable, due to the cohesive nature of the lutite into which the gravelly streams incised. In addition, braiding sensu stricto was probably inhibited by initial incision and a low sediment supply. No deposits of specifically deltaic sub-environments have been found in the Central Rand Group. Their absence is attributed to the following factors: (a) the paucity (absence?) of well-defined palaeo-river mouths; (b) low concentrations of suspended sediment; (c) intermittent sediment supply to the palaeo-coastline; and (d) reworking by tidal and longshore currents. Alluvial-fan deposits are also apparently absent in the Witwatersrand rocks. The absence of fan deposits is attributed to the poor potential for development and preservation of fan deposits in the compressive tectonic setting proposed for the Witwatersrand Basin. Although ventifacts have been found in the Witwatersrand rocks, no aeolianites have been reported. Their apparent absence is probably due to (a) reworking in a predominantly humid climate, and (b) transport of sand by dominant winds to areas unfavourable for the preservation of aeolianites.  相似文献   

13.
库车坳陷中生界三种类型三角洲的比较研究   总被引:34,自引:3,他引:31  
库车坳陷中生代呈北陡南缓的箕状,其内连续沉积了一套厚度巨大的冲积-湖泊碎屑沉积体。湖缘扇三角洲、辫状河三角洲及曲流河三角洲非常发育,它们的特征清楚、区别明显:(1) 扇三角洲为突发的、瞬时的灾变事件产生的重力流沉积与间灾变期正常牵引流沉积交替进行,并以重力流沉积占主导地位:其平原亚相类似于冲积扇沉积,河道砂体呈透镜状,厚度小、变化大。(2) 辫状河三角洲为正常的河流牵引流沉积,通常受到湍急洪水控制,为季节性沉积作用产物;平原亚相类似于辫状河沉积;河道沉积发育,砂体总体呈层状,内部由若干个下粗上细的河道砂岩透镜体相互叠置而成,交错层发育,尤以侧积交错层异常发育为特征,岩性以颗粒支撑的砂砾岩为主。(3) 曲流河三角洲为正常的河流牵引流沉积,沉积物输入量为相对连续的终年河流的产物,平原亚相类似于曲流河沉积:河道砂体呈层状,交错层发育,类型丰富。当然,这三种类型三角洲之间亦存在着密不可分的内在联系,不仅同一时期内可以并存,而且随着地质历史的演化可相互转化。  相似文献   

14.
主要通过岩心观察、粒度分析、参数计算、录测井分析等手段,充分吸收国内外河流研究成果,结合研究区区域地质背景,揭示垦东凸起北坡馆上段沉积相模式。得到以下认识:研究区馆上段地层为河流相沉积,从沉积物特征和平面形态角度可以将研究区馆上段河流沉积理解为介于辫状河及曲流河之间的过渡河型。其平均河道弯曲度大于1.7,垂向层序表现为泥多砂少,具有曲流河的特征;但沉积层序顶部常直接覆盖河漫/洪泛平原沉积,特别是河道内砂坝发育造成河道分汊河,砂坝沉积物粒度特征反映受洪水控制的震荡性特点而与曲流河有重要差别。本文借用在水利学界和地貌学界广为使用的分汊河概念建立了研究区馆上段沉积相模式,包括河床、堤岸、河漫/洪泛平原、废弃河道等4个亚相,组成下粗上细的正旋回。其中,河道砂坝是其主要砂体,顶部常被洪泛平原直接覆盖;决口扇是仅次于河道砂坝的第二大砂体。  相似文献   

15.
Many published interpretations of ancient fluvial systems have relied on observations of extensive outcrops of thick successions. This paper, in contrast, demonstrates that a regional understanding of palaeoriver kinematics, depositional setting and sedimentation rates can be interpreted from local sedimentological measurements of bedform and barform strata. Dune and bar strata, channel planform geometry and bed topography are measured within exhumed fluvial strata exposed as ridges in the Ruby Ranch Member of the Cretaceous Cedar Mountain Formation, Utah, USA. The ridges are composed of lithified stacked channel belts, representing at least five or six re-occupations of a single-strand channel. Lateral sections reveal well-preserved barforms constructed of subaqueous dune cross-sets. The topography of palaeobarforms is preserved along the top surface of the outcrops. Comparisons of the channel-belt centreline to local palaeotransport directions indicate that channel planform geometry was preserved through the re-occupations, rather than being obscured by lateral migration. Rapid avulsions preserved the state of the active channel bed and its individual bars at the time of abandonment. Inferred minimum sedimentation durations for the preserved elements, inferred from cross-set thickness distributions and assumed bedform migration rates, vary within a belt from one to ten days. Using only these local sedimentological measurements, the depositional setting is interpreted as a fluvial megafan, given the similarity in river kinematics. This paper provides a systematic methodology for the future synthesis of vertical and planview data, including the drone-equipped 2020 Mars Rover mission, to exhumed fluvial and deltaic strata.  相似文献   

16.
The No. 1 and No. 2 coal seams from the Permian Vryheid Formation in the east Witbank Coalfield, South Africa are described with respect to their distribution, thickness and quality. These two coal seams accumulated in a postglacial climatic environment and peat accumulation was closely associated with and influenced by deposition in a braided river system. The fluvial channels that were syndepositional with peat accumulation have resulted in thinning of coal below and above channel axes and pinch-out of coal adjacent to channel margins. Low-ash coal originated from peat which accumulated in areas away from the influence of clastic sedimentation. In contrast, higher-ash coals are situated adjacent and parallel to channel margins where interbedded channel sand and silt contaminated the peat.The lower No. 1 seam peat originated under near-optimum conditions in a lacustrine swamp which blanketed an underlying platform of glaciofluvial braided river sediment. This peat swamp was not subjected to syndepositional clastic contamination and as a result is of superior quality (lower ash/higher calorific value and volatile matter) than the overlying No. 2 coal seam. The No. 2 seam is split by a clastic parting produced by a braided fluvial channel which transected the swamp midway through peat accumulation. This fluvial clastic parting deleteriously affected coal thickness and quality.A comparison of the Gondwanan Permian peat-forming conditions with those from Carboniferous northern hemisphere counterparts suggests that the differences in coal characteristics between these two regions are probably related to different palaeoclimatic conditions and basin tectonics. Cool-temperate climatic conditions which prevailed over the Permian peat swamps resulted in less species diversification of vegetation at these high-latitude settings than the diverse floral assemblages of the Carboniferous swamps. A stable intracronic basin platform caused lateral dispersion of sedimentary facies rather than the stacking of vertical facies which occurred in rapidly subsiding depositories. Partial exposure of the Permian peat swamps during peat accumulation may account for the relatively higher inertinite content of the coals.  相似文献   

17.
The Weichselian Late Pleniglacial, Lateglacial and Holocene fluvial history of the middle Tisza valley in Hungary has been compared with other river systems in West and Central Europe, enabling us to define local and regional forcing factors in fluvial system change. Four Weichselian to Holocene floodplain generations, differing in palaeochannel characteristics and elevation, were defined by geomorphological analysis. Coring transects enabled the construction of the channel geometry and fluvial architecture. Pollen analysis of the fine-grained deposits has determined the vegetation development over time and, for the first time, a bio(chrono)stratigraphic framework for the changes in the fluvial system. Radiocarbon dating has provided an absolute chronology; however, the results are problematic due to the partly reworked character of the organic material in the loamy sediments. During the Late Pleniglacial, aggradation by a braided precursor system of the Tisza and local deflation and dune formation took place in a steppe or open coniferous forest landscape. A channel pattern change from braided to large-scale meandering and gradual incision occurred during the Late Pleniglacial or start of the Lateglacial, due to climate warming and climate-related boreal forest development, leading to lower stream power and lower sediment supply, although bank-full discharges were still high. Alternatively, this fluvial change might reflect the tectonically induced avulsion of the River Tisza into the area. The climatic deterioration of the Younger Dryas Stadial, frequently registered by fluvial system changes along the North Atlantic margin, is not reflected in the middle Tisza valley and meandering persisted. The Lateglacial to Holocene climatic warming resulted in the growth of deciduous forest and channel incision and a prominent terrace scarp developed. The Holocene floodplain was formed by laterally migrating smaller meandering channels reflecting lower bank-full discharges. Intra-Holocene river changes have not been observed.  相似文献   

18.
To study neotectonics, the structural and morphotectonic aspects are studied along a part of mountain front region of Northeast Himalaya, Arunachal Pradesh, India. Unpaired river terraces are recognized near north of transverse Burai River exit, which is cut by an oblique fault. Across this fault, fluvial terraces are located at heights of 22.7 and 3 m, respectively, on the left and right banks. A water gap is formed along the river channel where the uplifted Middle Siwalik sandstone beds dipping 43° towards ENE direction, thrust over the Quaternary deposit consisting of boulders, cobbles, pebbles and sandy matrix. This river channel incised the bedrock across the intraformational Ramghat Thrust along which the rocks of the Middle Siwalik Formation thrust over the Upper Siwalik Formation. Recent reactivated fault activity is suggested north of the Himalayan Frontal Thrust that forms the youngest deforming front of the Himalaya. The uplifting along the stream channel is noticed extended for a distance of ~130 m and as a result the alluvial river channel became a bedrock river. The relative displacement of rocks is variable along the length of strike–slip faults developed later within the Ramghat Thrust zone. Longitudinal and Channel gradient profiles of Burai River exhibit knick points and increase in river gradient along the tapering ends of the profiles. The study suggests active out-of-sequence neotectonically active thrusting along the mountain front. Neotectonics combined with climatic factor during the Holocene times presents a virgin landscape environment for studying tectonic geomorphology.  相似文献   

19.
河型转化研究进展综述   总被引:10,自引:0,他引:10  
河型研究是河流动力学及河流工程学中的一个基本问题,也是沉积学家判别地下不同成因砂体的一个关键问题。目前河型的分类大都基于河流的平面形态,而这一分类受到了越来越多的质疑,并提出了一些新的分类方案,许多研究者注意到河型并不是离散的,存在一系列连续变化的河型,同时,顺直河、曲流河以及辫状河这些常见的河型之间可能发生突变,河型转化是当前国际河流学界研究的前缘和薄弱环节。本文通过综述河型转化在现代沉积、模拟实验、露头以及地震四个方面的研究进展,认为河型转化主要受到构造作用、沉积物供给、气候条件和海(湖)平面变化四大因素控制,其中前三个因素对于古河型的演化至关重要。在上述因素的影响下,一条河流从上游往下游,往往具有由辫状河→低弯度曲流河→高弯度曲流河→网状河的演化规律。但是河流的位置并不是决定上述变化的主要因素,只要符合条件,即构造作用、沉积物供给及气候等因素发生重大变化的情况下,河型就可能发生转化。然而,河型转化的研究成果尚未引起石油地质学家们的足够重视,并没有被充分的应用到古代河流的解释中去,这将是今后的一个重点研究方向。  相似文献   

20.
断陷湖盆缓坡河流成因砂体是重要的油气储集单元。根据岩心观察、钻井岩/电特征并结合地震沉积学方法,分析断陷湖盆缓坡河流沉积体系和砂体时空分布特征,能为油气精细勘探提供可靠的依据。研究表明,霸县凹陷文安斜坡中部东营组三段周期性地发育4条呈NE-SW辫-曲复合型河流沉积,由河道沉积、砂坝沉积和泛滥平原沉积3种亚相以及辫状河道、曲流河道、砂质河道砂坝、泥质河道砂坝、决口扇和泛滥平原泥6种微相构成。河流展布方向与正北夹角(α)为40°~65°,河道视宽度(l)为1.47~2.64 km,主河道的视宽度(w)为0.03~0.58 km,河道带测量厚度(H)为16.0~52.0 m,主河道测量厚度(D)为8.0~23.0 m,主河道钻井解释厚度(d)为1~16.5 m,平均厚度6.5 m。断陷盆地断-坳转换期缓坡河流相沉积受控于盆地构造、气候、物源、沉积物压实及流速等多因素。边界断层差异性活动导致的盆地不均衡沉降是缓坡带河流相类型及砂体空间分布的主控因素。气候周期性变化通过流量控制了河型,调整和改造早期河道沉积物,决定了微相和砂体组合。斜坡中外带是粗粒沉积物主要卸载区,河道及河道砂坝等优势储集砂体呈条带状连片分布,斜坡内带形成的厚层泥岩限制油气垂向运移和侧向充注。斜坡中外带被油源断层切割,在油气运移路径上受晚期断层切割的厚层河道及河道砂坝是岩性-构造油气藏勘探的潜力区域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号