首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Satpura Gondwana basin hosts a ~5 km thick siliciclastic succession that unconformably overlies the Precambrian basement. The Gondwana sequence in this basin starts from Early Permian (Talchir Formation) to Lower Cretaceous (Jabalpur Formation). The aim of this study is to (1) identify the source rock (provenance) for Early Triassic Pachmarhi sediments in the Satpura Gondwana succession and (2) to understand the relative role of tectonics and climate in determining the sandstone composition. These sandstones are medium to coarse-grained, moderately to moderately well sorted, subangular to subrounded, of moderate sphericity, and composed of several varieties of quartz, feldspar, rock fragments, and micas. Petrographically, the Pachmarhi sandstones are mostly quartzarenite and subarkose. The petrofacies in Qt–F–L and Qm–F–Lt triangular diagrams show that the bulk of the Pachmarhi was derived from continental (cratonic) source, especially from craton interior. Petrofacies, together with paleocurrent data, suggest that Pachmarhi Formation was deposited by a network of braided river system, which flowed dominantly from southeast to northwest. The study suggests that the sediments were mostly derived from Precambrian granites, gneiss, and metasedimentary basement rocks straddling the southern margin of the basin. Paleocurrent data also corroborates this contention.  相似文献   

2.
Provenance and tectonic history of the Jurassic accretionary complex, Mino terrane, located in the Inner Zone of south‐west Japan, were studied using sandstone framework composition and mudrock geochemistry. Modal analysis of sandstones shows that the tectonic setting of the source area for the studied Mino terrane clastic rocks was uplifted basement, largely dominated by high‐grade metamorphic terrain composed of quartz and feldspar, especially plagioclase. The textural and mineralogical immaturity, extent of alkali and alkaline earth element leaching, low chemical index of alteration values and depleted rare earth element (REE) contents suggest rapid uplift and erosion within the source terrain and a relatively weak weathering intensity. Factor analysis revealed that grain‐size effects governed compositional heterogeneity in the studied sediments. Provenance of the sediments is interpreted as being plagioclase‐enriched felsic basement rock, such as granodiorite, within a continental margin and evolved arc tectonic setting rather than active volcanic arc. Lack of a contribution from active volcanic arcs may have resulted from the cessation of volcanism during the reorganization of the subducting plate system and/or erosion of arc volcanics and exposure of basement. Considering the previous studies on palaeogeography and palaeocurrent reconstruction, the north‐eastern part of the Yeongnam massif in the Korean Peninsula is interpreted as the most probable source area for the studied turbidites. The results of mixing calculation for Mino terrane sediments suggest that Precambrian leucocratic granite and the basement rock of the Cretaceous Gyeongsang Basin shed large amounts of sediments to the Mino trench, whilst Precambrian granitic gneiss and the Triassic pluton supplied lesser amounts. The results of this study reveal that, although active subduction–accretion processes were occurring, the Mino trench was bordered by continental basement rocks. This knowledge contributes to enhanced understanding of the Jurassic palaeogeography of the east Asia continental margin.  相似文献   

3.
The present work provides a detailed lithological map of the western part of the Satpura basin around Sohagpur and reports the presence of new archosauromorph fossil bones from that region. The study area is dominated by the Bagra Formation along with a narrow patch of the underlying upper part of the Denwa Formation. The lower Denwa and the underlying Pachmarhi formations are absent here. The presence of the Pachmarhi Formation, as a tongue shaped area, as mapped by Crookshank (1936) is discarded in this study on the basis of lithology and petrographic analyses, instead the presence of the Bagra Formation is suggested in this area. A comparison of the lithologies and the vertebrate faunas of the upper Gondwana formations between eastern and western part of the basin has been carried out for the first time. The comparison indicates that the Denwa Formation present in the western sector represents only the topmost part of the formation while the complete succession of Denwa is preserved in the eastern sector. The Bagra Formation in the western sector documents the presence of sheet-like sandstone bodies unlike the eastern part. The vertebrate fauna of the eastern part is dominated by temnospondyl amphibians while that of the western part is dominated by archosauromorph. The vertebrate fossils of upper part of Denwa Formation, found from similar lithologies in west and east though, have differences in the amount of transportation before their burial.  相似文献   

4.
In Bengal basin the subcrop Gondwana sediments occur in N-S trending elongated grabens originated largely by the graben forming tectonisms of the Gondwanaland which overlie the crystalline basement in the sub-surface in an intra-cratonic setup. So far five wells in shelf part of Bengal Basin have penetrated Gondwana sediments, out of which three wells i.e.,G1, G3 and G2 have been drilled up to Precambrian basement. In subcrop Gondwana graben, glacial to glacio-fluvial Talchir Formation of Early Permian age was deposited above the basement. Early Permian Barakar Formation overlies Talchir Formaion. Flood basin model of deposition is postulated for this coal rich unit. In the absence of Barren Measure Formation, coal bearing Raniganj Formation overlies Barakar Formation. The fluvial set up changed over to arid environment during deposition of Panchet/Supra Panchet Formation (undifferentiated). The deposition of Panchet Formation is followed by eruption of doleritic rocks in both subcrop and outcrop Bengal Gondwana whereas lamprophyres are absent in subcrop of Bengal Gondwana. Rifting as well as pull-apart basin model due to transtensional movement is postulated for Gondwana basins. Detailed lithostratigraphic analysis of the core / cutting samples of the Gondwana sediments reveal that the sediments are mainly fine to coarse grained, poorly sorted sandstone. These sediments are characterized as poor reservoir and needs some treatment for permeability enhancement for hydrocarbon production.  相似文献   

5.
The Gackowa Formation of inferred Cambrian —Ordovician age is part of the metamorphosed pre-Variscan basement of the southern Kaczawa Mountains of the Sudetes region, south-west Poland. Previously variously interpreted as lavas, tuffs and sandstones, it is shown to consist of about 200 m of originally well-sorted siliclastic sedimentary rocks within a sequence of predominantly mafic volcanic rocks. Four facies have been distinguished based on relict sedimentary structures and textures and these suggest that deposition took place on a storm-dominated shelf, mostly above the wave base. The petrography, detrital zircon morphologies and geochemistry suggest affinity with, and derivation in large part from, acid volcanic rocks at a comparable stratigraphic position in a separate tectonostratigraphic unit to the south. The Gackowa Formation and its acid volcanic source rocks have a clear continental geochemical signature, in contrast with the mantle-derived basic/bimodal volcanic rocks below and above; it is suggested that the parent acid magma originated by crustal melting during the ascent of these mantle-derived magmas. A continental crust setting is inferred for the deposition of the Gackowa Formation sandstones, thus suggesting a continental setting for the associated within-plate basalts. The entire volcanic/sedimentary succession resembles elements of the Lower Palaeozoic of Germany, and all may have formed in an initial rift setting during Late Precambrian to Ordovician times.  相似文献   

6.
DANIELA FONTANA 《Sedimentology》1991,38(6):1085-1095
The Upper Cretaceous Pietraforte Formation, an allochthonous unit of the Ligurian domain in the northern Apennines, provides a case study of the importance of detrital carbonate grains for provenance determination in sandstones. The Pietraforte Formation is composed of turbidite sandstones with subordinate conglomerate, deposited in an external sector of the Ligurian ocean, close to the Adriatic margin. The sandstones have a lithic composition, characterized by abundant sedimentary and metasedimentary rock fragments (35–56% of the terrigenous framework), little feldspar (<7%) that is almost exclusively plagioclase, and a high ratio of fine- to coarse-grained polycrystalline quartzose grains to total quartzose grains (average Qp/Qt=0.37). Carbonate rock fragments dominate the lithic association of both sandstones and conglomerates and provide the most detailed information for provenance determination. They are composed primarily of dolostones and a wide variety of limestones containing identifiable age-diagnostic microfossils. Fossils and rock textures of carbonate clasts document the erosion of Upper Triassic to Lower Cretaceous shelf and pelagic carbonate units which can be matched with Mesozoic rock types present in the Tuscan domain of the northern Apennines. Compositional results constrain the source of the Pietraforte Formation sandstones to the western margin of the Adriatic plate, from uplifted sedimentary and metasedimentary rocks of the Tuscan domain and its low-grade metamorphic basement. Coeval intrabasinal sources provided additional supplies to the depositional basin of the Pietraforte Formation; this intrabasinal supply consists of shelf carbonate allochems, planktonic foraminifera and argillaceous rip-up clasts. The presence of carbonate grains from shallow-water environments may indicate the existence during deposition of marginal shelf areas favourable for carbonate allochem production.  相似文献   

7.
The aim of this paper is to study the provenance of Late Cretaceous sandstones deposited along the south flank of the Golfo San Jorge Basin. For this purpose, detrital modes of three hundred thirty-seven sandstone samples collected in the Mina del Carmen, Bajo Barreal, and Cañadón Seco Formations were studied in ten oil fields. According to the modal composition of the sandstones, six petrofacies were defined allowing the identification of not only principal, but also secondary provenance areas. The QVM and VQM petrofacies are more than 20% metamorphic, sedimentary, and polycrystalline quartz clasts (Lm + Ls + Qpg > 20%), evidencing a secondary signal of basement supply masked by a predominant volcanic provenance. The petrofacies VP and VF are characterized by Lm + Ls + Qpg <20% and more than 20% total feldspar (Pm + Om >20%.), which indicate a supply of sediment from volcanic terrains and scarce derivation of materials from basement rocks. Based on the plagioclase/k-feldspar ratio, the VF petrofacies is interpreted to be dominated by the supply of sand grains from the Andean volcanic-arc, while VP is supposed have originated through the erosion of intermediate volcanic rock outcroppings in the Macizo del Deseado. Finally, both the VQ and QV petrofacies show Lm + Ls + Qpg <20% and Pm + Om<20%, indicating a provenance of volcanic areas coupled with minor contributions from basement rocks. During the Late Cretaceous, the Golfo San Jorge Basin underwent a sag phase that was characterized by very scarce volcanism and tectonic activity. Although these conditions did not favor defined patterns in the vertical stacking of petrofacies, the sandstones exhibit remarkable changes in their regional distribution, which were determined by the paleogeography of the basin and differences in basement composition within the source areas. Finally, a paleogeographic model for sediment circulation in the basin is proposed. This model recognizes the main fluvial dispersal trends that flowed northwest to southeast and transported large amounts of volcanic clasts (associated with petrofacies VF-VQ). To the extent that rivers flowed eastward, a secondary supply from the Precambrian basement, which were composed of low-to high-grade metamorphic rocks, was also important (petrofacies association VQM and QVM). The southwestern area of the basin is dominated by VP petrofacies that record the supply of plagioclase-rich volcanic clasts. This petrofacies likely corresponds to the erosion of Jurassic volcanic units that crop out in the Macizo del Deseado.  相似文献   

8.
The Upper Jurassic Tordillo Formation is exposed along the western edge of the Neuquén Basin (west central Argentina) and consists of fluvial strata deposited under arid/semiarid conditions. The pebble composition of conglomerates, mineralogical composition of sandstones and pelitic rocks, and major- and trace-element geochemistry of sandstones, mudstones, and primary pyroclastic deposits are evaluated to determine the provenance and tectonic setting of the sedimentary basin. Conglomerates and sandstones derived almost exclusively from volcanic sources. The stratigraphic sections to the south show a clast population of conglomerates dominated by silicic volcanic fragments and a predominance of feldspathic litharenites. This framework composition records erosion of Triassic–Jurassic synrift volcaniclastic rocks and basement rocks from the Huincul arch, which was exhumed as a result of Late Jurassic inversion. In the northwestern part of the study area, conglomerates show a large proportion of mafic and acidic volcanic rock fragments, and sandstones are characterised by a high content of mafic volcanic rock fragments and plagioclase. These data suggest that the source of the sandstones and conglomerates was primarily the Andean magmatic arc, located west of the Neuquén Basin. The clay mineral assemblage is interpreted as the result of a complex set of factors, including source rock, climate, transport, and diagenesis. Postdepositional processes produced significant variations in the original compositions, especially the fine-grained deposits. The Tordillo sediments are characterised by moderate SiO2 contents, variable abundances of K2O and Na2O, and a relatively high proportion of ferromagnesian elements. The degree of chemical weathering in the source area, expressed as the chemical index of alteration, is low to moderate. The major element geochemistry and Th/Sc, K/Rb, Co/Th, La/Sc, and Cr/Th values point to a significant input of detrital volcanic material of calcalkaline felsic and intermediate composition. However, major element geochemistry is not useful for interpreting the tectonic setting. Discrimination plots based on immobile trace elements, such as Ti, Zr, La, Sc, and Th, show that most data lie in the active continental margin field. Geochemical information is not sufficiently sensitive to differentiate the two different source areas recognized by petrographic and modal analyses of conglomerates and sandstones.  相似文献   

9.
Two contrasting marine sedimentary facies, the Haida Formation of sandy and argillaceous sediments and the conformably overlying Honna Formation of gravelly sediments were formed within different types of tectonic basins during mid- to Late Cretaceous time. The sediments of both formations were derived from the east. Sandstones from the two formations show characteristics of mature magmatic arc provenance and are classified as lithic and feldspathic arenites. However, the Honna sandstones are more feldspathic and less quartzose than the Haida sandstones. The Honna sandstones have many volcanic rock fragments (VRF) but the Haida sandstones do not. Feldspars of the VRF-rich Honna sandstones, however, do not seem to have been derived from the breakdown of volcanic rocks. The observed petrographic differences between the two formations can be ascribed to a process in which the volcanic cover and the basement rock denudation took place simultaneously in the source area during deposition of the Honna Formation.  相似文献   

10.
The Boa Vista Basin (BVB) is located approximately 60 km southwest of Campina Grande, Paraíba, northeastern Brazil. It has a half-graben geometry controlled by dip-slip normal faults striking NE–SW. From the base to the top, the BVB is composed of (1) a lower volcanic unit of altered basalts and basaltic andesites overlying Precambrian basement rocks, (2) an intermediate unit of bentonitic shales that pass upward to medium- to coarse-grained sandstones and conglomerates and downward to sandstones and siltstones, and (3) an upper volcanic unit of massive to vesiculated basaltic flows grading to pillowed or autobrecciated basalts. These basalts show porphyritic (olivine and augite microphenocrysts), glomeroporphyritic, intersetal, pilotaxitic, and variolitic textures. They are medium-K, Fe-rich tholeiites with SiO2 of 50.2–53.3 wt%, magnesium number of 50.54–60.21 wt%, total alkali of 2.15–3.92 wt%, and TiO2 of 1.8–1.9 wt% and are related by low-pressure fractionation of olivine, plagioclase, magnetite, ilmenite, and apatite. They are LREE-enriched (LaN/YbN=8.54–44.14) with no significant europium anomaly. Trace element modeling suggests a garnet-bearing metasomatised lherzolite as their source. The geological context and geochemistry of the basalts suggest a close connection between reactivated deep-rooted Precambrian shear zones, which channeled mantle-derived Tertiary tholeiitic magmas, and continental rifting in northeastern Brazil.  相似文献   

11.
The Avalon Platform, which is often assumed to be the southeastern margin of the Appalachian—Caledonian orogenic belt, is represented in New Brunswick by the Late Precambrian volcanic rocks of the Coldbrook Group underlain by the metacarbonates and gneisses of the Greenhead Group. The overlying Palaeozoic sequence has been affected by the Acadian (Siluro-Devonian) and Variscan orogenic movements. Granites and a dyke/sill swarm of possible Precambrian age intrude the metasedimentary and volcanic rocks. A pre-Acadian structural event in the Greenhead Group is associated with the local formation of migmatite gneisses. The New Brunswick succession is compared with Cape Breton, Newfoundland and the British Isles. An ensialic volcanic-arc model is proposed for the unified ‘Avalon Platform’ that, during the Late Precambrian, stretched from present-day southern Massachusetts to southern Britain as a microcontinent. The Acadian, Caledonian and Variscan orogenies and the later Mesozoic distentional movements resulted in the fragmentation of the platform.  相似文献   

12.
The Permo-Carboniferous Talchir Formation in the southeastern part of the Talchir basin is represented by about 260 m thick clastic succession resting on the Precambrian basement rocks of the Eastern Ghats Group. The succession is tentatively subdivided into four lithostratigraphic units, namely A-I, A-II, B and C from base to top. Unit A-I comprises mud-matrixed, very poorly sorted diamictites and interbedded thin sandstone and mudstone yielding dropstones. They reveal deposition in a proglacial lake environment in which ice rafting and suspension sedimentation, as well as meltwater-underflow processes, produced variety of facies. The succession of unit A-II is dominated by pebble to boulder conglomerates and sandstones. They were deposited mostly from various kinds of high-energy sediment gravity flows, both subaerial and subaqueous, and formed steep-faced fan-delta on the margin of the basin. Unit B demonstrates turbidite sedimentation in lake-margin slope and base-of-slope environments, in which a sublacustrine channel-fan system developed. The lake-margin slope was dissected by channels which were accompanied by overbank and levee deposits. Sediments delivered from the mouth of a channel were deposited at the base-of-slope, forming a fan lobe which prograded onto the lake basin floor. Unit C dominantly consists of mudstone with intercalations of siltstone and sandstone and forms a large-scale coarsening-upward deltaic sequence eventually covered by the fluvial deposits of the Karharbari Formation.Following the glacially influenced sedimentation, the Talchir succession shows a vertical facies progression suggesting gradual deepening of the lake basin and eventual filling up of it due to rapid delta progradation. Such a succession represents deglacial control on basin evolution during the Talchir time. In the initial stage of glacial recession, collapse of a glacier and failure of montane glacial lakes frequently occurred and gave rise to generation of a highly sediment-laden debris flow and a catastrophic flood, which brought abundant coarse clastics into the lake and built a fan-delta on the basin margin. The continued recession and disappearance of glacier resulted in abundant supply of ice-melt water into the graben as well as eustatic sea-level rise, being the cause of the rise in lake-level. Subsequent rapid delta progradation and eventual filling-up of the lake basin suggest rapid lake-level fall after deepening of lake basin. It was possibly caused by the regional uplift due to post-glacial isostatic rebound. Rapid draining of lake water through the graben gave rise to the establishment of an axial drainage system which rapidly filled the lake basin in form of an axially fed delta.  相似文献   

13.
The Menderes Massif, exposed in western Anatolia, is a metamorphic complex cropping out in the Alpine orogenic belt. The metamorphic rock succession of the Massif is made up of a Precambrian basement and overlying Paleozoic-early Tertiary cover series. The Pan-African basement is composed of late Proterozoic metasedimentary rocks consisting of partially migmatized paragneisses and conformably overlying medium- to high-grade mica schists, intruded by orthogneisses and metagabbros. Along the southern flank of the southern submassif, we recognized well-preserved primary contact relationship between biotite and leucocratic tourmaline orthogneisses and country rocks as the orthogneisses represent numerous large plutons, stocks and vein rocks intruded into a basement of garnet mica schists. Based on the radiometric data, the primary deposition age of the precursors of the country rocks, garnet mica schist, can be constrained between 600 and 550?Ma (latest Neoproterozoic). The North Africa–Arabian-Nubian Shield in the Mozambique Belt can be suggested as the possible provenance of these metaclastics. The intrusion ages of the leucocratic tourmaline orthogneisses and biotite orthogneisses were dated at 550–540?Ma (latest Neoproterozoic–earliest Cambrian) by zircon U/Pb and Pb/Pb geochronology. These granitoids represent the products of the widespread Pan-African acidic magmatic activity, which can be attributed to the closure of the Mozambique Ocean during the final collision of East and West Gondwana. Detrital zircon ages at about 550?Ma in the Paleozoic muscovite-quartz schists show that these Pan-African granitoids in the basement form the source rocks of the cover series of the Menderes Massif.  相似文献   

14.
额尔古纳地块基底地质构造   总被引:15,自引:0,他引:15  
额尔古纳地块是额尔古纳-马门-加格达奇拼合地块中的典型代表.研究表明,其基底由前中元古代绿岩及与之伴生的花岗质杂岩组成,它们具有地壳早期演化的地质构造特征.绿岩带为典型的变质基性-酸性火山岩及部分变质沉积岩系构成的火山-沉积建造,火山岩以拉斑玄武岩为主,向上过渡为钙碱性火山岩系列,表现为双峰态型特点.花岗岩类为TTG岩系及石英二长岩-花岗岩组合.花岗岩-绿岩地体内各岩石类型的岩石地球化学特征与国外太古宙及我国华北陆台花岗岩-绿岩带内同类岩石极为相似.双峰态型火山岩及绿岩建造组合,以及类似于TH2、FII型的变质基性火山岩和长英质火山岩特征,结合高铝型英云闪长岩-奥长花岗岩组合,指示了研究区绿岩带的形成环境类似于大陆边缘弧后裂谷型火山-沉积盆地.  相似文献   

15.
中国西秦岭碎屑锆石U-Pb年龄及其构造意义   总被引:5,自引:1,他引:4  
西秦岭是北接华北克拉通、西接祁连与柴达木、南接松潘—甘孜地块的东秦岭造山带的西延。文中研究了该区从前寒武纪到三叠纪的碎屑沉积岩。这些碎屑沉积岩中分离出的锆石由LA-ICPMS(激光剥蚀等离子体质谱)进行了U-Pb定年。全岩Nd亏损地幔模式年龄类似于扬子克拉通年龄,主要分布于1.55~1.98Ga,峰值为1.81Ga,而与华北克拉通主要为古元古代与太古宙的模式年龄形成明显的对比。泥盆系中的碎屑锆石930~730Ma的U-Pb年龄指示其与扬子克拉通具亲缘性。930~730Ma是源区地壳的强烈增长阶段。二叠系—三叠系的碎屑沉积岩主体以含老于1600Ma的碎屑锆石为特征。碎屑锆石U-Pb年龄与Sm-Nd同位素组成指示此时华北克拉通南缘的基底岩石成为二叠系—三叠系碎屑沉积岩的重要物源。扬子克拉通在三叠纪时与华北克拉通拼接。西秦岭二叠系—三叠系碎屑沉积岩含有高达50%的华北克拉通南缘的基底岩石。  相似文献   

16.
Field, geochemical, and geochronologic data of high-grade basement metamafic and evolved rocks are used to identify the nature and timing of pre-Alpine crustal growth of the Rhodope Massif. These rocks occur intrusive into clastic-carbonate metasedimentary succession. Petrography and mineral chemistry show compositions consistent with Alpine amphibolite-facies metamorphism that obliterated the original igneous textures of the protoliths. Bulk-rock geochemistry identifies low-Ti tholeiitic to calc-alkaline gabbroic-basaltic and plagiogranite precursors, with MORB-IAT supra-subduction zone signature and trace elements comparable to modern back-arc basalts. The U-Pb zircon dating revealed a mean age of 455 Ma for the magmatic crystallization of the protoliths that contain inherited Cambrian (528–534 Ma) zircons. Carboniferous, Jurassic, and Eocene metamorphic events overprinted the Ordovician protoliths. The radiometric results of the metamorphic rocks demonstrate that Ordovician oceanic crust was involved in the build-up of the Rhodope high-grade basement. Dating of Eocene-Oligocene volcanic rocks overlying or cross-cutting the metamorphic rocks supplied Neoproterozoic, Ordovician and Permo-Carboniferous xenocrystic zircons that were sampled en route to the surface from the basement. The volcanic rocks thus confirm sub-regionally present Neoproterozoic and Paleozoic igneous and metamorphic basement. We interpret the origin of the Middle-Late Ordovician oceanic magmatism in a back-arc rift-spreading center propagating along peri-Gondwanan Cadomian basement terrane related to the Rheic Ocean widening. The results highlight the presence of elements of Cadomian northern Gondwana margin in the high-grade basement and record of Rheic Ocean evolution. The eastern Rhodope Massif high-grade basement compared to adjacent terranes with Neoproterozoic and Cambro-Ordovician evolution shares analogous tectono-magmatic record providing a linkage among basement terranes incorporated in the Alpine belt of the north Aegean region.  相似文献   

17.
Heavy mineral analysis has been carried out in the Barakar Formation of the Talchir Gondwana Bbasin, Orissa. The characteristic heavy minerals are garnet, zircon, tourmaline, rutile, biotite, chlorite, pyroxenes, hornblende, staurolite, sillimanite, apatite, epidote, sphene, spinel and siderite including opaques and leucoxene. These heavy minerals are divisible into four groups on the basis of principal component analysis and suggest derivation of Barakar sediments from pegmatite, acid and basic igneous as well as low- and high-rank metamorphic rocks lying to the south of the Talchir Gondwana Basin. Though the heavy mineral suites of all the sandstone samples are by and large similar, differences have been noticed in the frequencies of many heavy minerals in vertical succession. Cyclic nature and vertical fluctuation of heavy mineral frequencies can be ascribed to variation of the relief of the source area, sudden release of some of the minerals in the source region and/or existence of favourable geochemical condition to escape partial dissolution.  相似文献   

18.
Heavy mineral analysis of the late Paleozoic Barakar and Raniganj sandstones from the Singrauli Gondwana sub-basin shows relative abundance of garnet, epidote, zircon, tourmaline and muscovite in the Raniganj Sandstone and epidote, garnet, rutile and tourmaline in the Barakar sandstones. Stratigraphically, the heavy mineral crops donot exhibit marked variation in their relative abundance, though garnet, epidote and muscovite form the bulk of the heavy minerals. Significant interspecific association among heavy minerals and provenance of the Barakar and Raniganj sandstones are evaluated by using σ-M multivariate model. Quantitative result suggests that the Barakar Sandstone are characterized by the basic pair match significantly more than expected due to chance alone (p value <<0.05) are garnet-tourmaline and epidote-rutile, whereas, the succeeding Raniganj sandstone are characterized by zircon-rutile and epidote-garnet. These basic pairs may be regarded as interspecific association among the heavy minerals. The basic pairs deduced from heavy mineral suites suggest that the source rocks of late Paleozoic Barakar and Raniganj sandstones have been principally derived from the acid plutonic rocks and low to high grade metasediments lying to the south and southeast of the Singrauli Gondwana sub-basin.  相似文献   

19.
An integrated interpretation of seismic reflection and gravity results yields an image of the structural units (nappes, overthrust sheets and underthrust slabs) of the Cambrian-Ordovician metasedimentary and metavolcanic sequences of the Appalachian province of southern Quebec at depth and the relative position of the underlying Precambrian crystalline basement. The tectonics related to crystalline Precambrian basement may be correlated with four interpretations and combinations of these. A décollement of Paleozoic sedimentary and volcanic piles over a rigid crystalline basement is most probable considering the interpretation of gravity and especially seismic data. The tectonic style at depth is rather unresolved from surface geological information. The elaboration of a two-dimensional model is constrained by physical properties of rocks, maximum depth extents of individual bodies and seismic reflectors in addition to surface geology. Finally, a minimum of 1500 km of shortening and Iapetan closing is suggested.  相似文献   

20.
新疆三塘湖盆地基底特征及砂岩型铀矿的铀源条件   总被引:1,自引:0,他引:1  
通过对三塘湖盆地基底地层,特别是其中火山岩岩石组合及其形成的构造环境进行的研究,认为盆地基底主要由岛弧系列的火山岩及火山碎屑岩、正常碎屑岩组成,在早石炭世处于岛孤环境。通过分析与对比.认为盆地的铀源条件局部较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号