首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we present long term photometric variations of the close binary system GO Cyg. Modelling of the system shows that the primary is filling Roche lobe and the secondary of the system is almost filling its Roche lobe. The physical parameters of the system are M1 = 3.0 ± 0.2M, M2 = 1.3 ± 0.1M, R1 = 2.50 ± 0.12R, R2 = 1.75 ± 0.09R, L1 = 64 ± 9L, L2 = 4.9 ± 0.7L, and a = 5.5 ± 0.3R. Our results show that GO Cyg is the most massive system near contact binary (NCB). Analysis of times of the minima shows a sinusoidal variation with a period of 92.3 ± 0.5 yr due to a third body whose mass is less than 2.3M. Finally a period variation rate of −1.4 × 10−9 d/yr has been determined using all available light curves.  相似文献   

2.
This paper presents the results of spectroscopic and photometric observations of the early-type W UMa system V535 Ara. New high-resolution spectra were taken at the Mt. John University Observatory in 2007. Radial velocities and spectroscopic orbital elements of the system were determined by applying KOREL spectral disentangling. The resulting orbital elements were: a1sini = 0.0047 ± 0.0001 AU, a2sini = 0.0146 ± 0.0001 AU, M1sin3i = 1.85 ± 0.01 M, and M2sin3i = 0.59 ± 0.01 M. The components were found to be in synchronous rotation following examination of their disentangled Hγ line profiles. Four photometric data-sets (1966 BV, 1967 BV, HIPPARCOS and ASAS) were modeled using the Wilson-Devinney method. The model describes V535 Ara as an A sub-type W UMa type eclipsing binary which has a fill out factor of 0.22 in marginal contact configuration. The simultaneous solution of light and radial velocity curves gave the following absolute parameters: M1 = 1.94 ± 0.04 M, M2 = 0.59 ± 0.02 M, R1 = 2.09 ± 0.03 R, R2 = 1.23 ± 0.02R, L1 = 18 ± 3 L and L2 = 6 ± 1 L. The distance to V535 Ara was calculated as 123 ± 20 pc using distance modulus with correction for interstellar extinction.  相似文献   

3.
This paper presents charge-couple device (CCD) photometric observations for the eclipsing binary AW UMa. The V-band light curve in 2007 was analyzed using the 2003 version of the Wilson–Devinney code. It is confirmed that AW UMa is a total eclipsing binary with a higher degree of contact f=80.2% and a lower mass ratio of q=0.076. From the (OC) curve, the orbital period shows a continuous period decrease at a rate of dP/dt=−2.05×10−7 d yr−1. The long-term period decrease suggested that AW UMa is undergoing the mass transfer from the primary component to the secondary one, accompanied by angular momentum loss due to mass outflow L 2. Weak evidence indicates that there exists a cyclic variation with a period of 17.6 yr and a small amplitude of A=0. d 0019, which may be attributed to the light-time effect via the third body. If the existence of an additional body is true, it may remove a great amount of angular momentum from the central system. For this kind of contact binary, as the orbital period decreases, the shrinking of the inner and outer critical Roche lobes will cause the contact degree f to increase. Finally, this kind of binary will merge into a single rapid-rotation star.  相似文献   

4.
D. Sürgit  A. Erdem 《New Astronomy》2012,17(3):336-340
This paper presents the first analysis of spectroscopic and photometric observations of the eclipsing binary star WZ Hor. Observations of the system were made at the Mt. John University Observatory in 2007. Since the light contribution of the secondary component was merely 2-3% of the total light of the system in the optical wavelengths, the radial velocity of the primary component could only be determined using the cross-correlation method. A single-lined spectroscopic orbital solution of WZ Hor was obtained, and the BVRI light curves of the system and radial velocity curve of the primary component were analysed simultaneously using the Wilson-Devinney method. The results describe WZ Hor as a reverse Algol-like binary star with a detached configuration. The following absolute parameters of the components were also derived: M1 = 1.51 ± 0.03 M, M2 = 0.66 ± 0.01 M, R1 = 1.62 ± 0.02 R, R2 = 0.66 ± 0.01 R, L1 = 4.93 ± 0.64 L and L2 = 0.09 ± 0.02 L. The distance to WZ Hor was calculated as 95 ± 8 pc using distance modulus with correction for interstellar extinction, in agreement with the HIPPARCOS value.  相似文献   

5.
6.
We present the results of the high-resolution spectroscopic observations of the neglected binary system HD 194495 (B3 IV-V+B4 V). A combined analysis of three different photometric data set (Tycho BT and VT photometry, Hp-band data of Hipparcos and V-band data of ASAS3 photometry) and radial velocities indicates that the system has an orbital period of 4.90494 ± 0.00005 days and an inclination of 69 ± 1 degrees. This solution yields masses and radii of M1 = 7.57 ± 0.08 M and R1 = 5.82 ± 0.03 R for the primary and M2 = 5.46 ± 0.09 M and R2 = 3.14 ± 0.08 R for the secondary. Based on the position of the two stars plotted on a theoretical H-R diagram, we find that the age of the system is ?28 Myr, according to stellar evolutionary models. The spectroscopic and photometric results are in agreement with those obtained using theoretical predictions.  相似文献   

7.
Two CCD epochs of light minimum and a complete R light curve of SS Ari are presented. The light curve obtained in 2007 was analyzed with the 2003 version of the W-D code. It is shown that SS Ari is a shallow contact binary system with a mass ratio q=3.25 and a degree of contact factor f=9.4%(±0.8%). A period investigation based on all available data shows that there may exist two distinct solutions about the assumed third body. One, assuming eccentric orbit of the third body and constant orbital period of the eclipsing pair, results in a massive third body with M 3=1.73M and P 3=87.0 yr. On the contrary, assuming continuous period changes of the eclipsing pair the orbital period of tertiary is 37.75 yr and its mass is about 0.278M . Both of the cases suggest the presence of an unseen third component in the system.  相似文献   

8.
We present a photometric study of a weak-contact binary V873 Per. New observations in BVR filter bands showed asymmetric light curves to be a negative type of the O’Connell effect, which can be described by magnetic activity of a cool spot on the more massive component. Our photometric solutions showed that V873 Per is a W-type with a mass ratio of q = 2.504(±0.0029), confirming the results of Samec et al. (2009). The derived contact degree was found to be f = 18.10%(±1.36%). Moreover, our analysis found the cyclic variation with the period of about 4 yr that could be due to existence of the third companion in the system or the mechanism of magnetic activity cycle in the binary. While available data indicated that the long-term orbital period tends to be stable rather than decreasing.  相似文献   

9.
A V-band nova search was carried out in NGC 3627 with archival Hubble Space Telescope WFPC2 data which was obtained in the period between November 1997 and January 1998. A total of four novae candidates were discovered which corresponds to a global nova rate of R = 83.65 ± 7.58 yr−1. Taking into account the K-band luminosity obtained from 2MASS (Jarrett et al., 2003) yielded a luminosity specific nova rate (LSNR) of νK = 9.60 ± 1.64 novae per year per 1010L⊙,K. Excluding one of the candidates which may be a long-period variable leads to a LSNR of νK = 7.20 ± 1.23 novae per year per 1010L⊙,K. These values are higher than other known nova rates for external galaxies except the Magellanic Clouds.  相似文献   

10.
We present photometric observations of two post-common-envelope stars, NY Vir (=PG 1336-018) and HS 0705 + 6700. The V band CCD observation of NY Vir was performed by a 40 cm telescope at Ege University Observatory and the R band observations of HS 0705 + 6700 were performed by 100 cm telescope at TÜB?TAK National Observatory. The new light curves were analyzed by the WD code and the physical parameters of stars were determined. We obtained new mid-eclipse timings for HS 0705 + 6700 and combined them with those previously published data. The analysis of the O-C residuals yields a period of about 8.06 ± 0.28 yr and an amplitude of 98.5 s for the system HS 0705 + 6700, which is attributed to the third star physically bounded to the evolved eclipsing pair. A mass function of 1.2 × 10−4 M for the third star is obtained. The existence of a third star is also confirmed by the light curve analysis, indicating light contribution of about 0.043 at phase 0.25 in R-bandpass of the eclipsing pair. Using mass-luminosity relationship of the low mass stars we estimate a mass of 0.12 M with an orbital inclination of about 20°. The O-C residuals obtained for the system NY Vir were represented by a downward parabola which indicates orbital period decrease in the system. Using the coefficient of quadratic term we calculate a rate of orbital period decrease of about dP/dt = −4.09 × 10−8days yr−1. The period decrease we have measured in NY Vir may be explained by angular momentum loss from the binary system.  相似文献   

11.
We study the kinematics of the Galactic thin and thick disk populations using stars from the RAVE survey’s second data release together with distance estimates from Breddels et al. (2010). The velocity distribution exhibits the expected moving groups present in the solar neighborhood. We separate thick and thin disk stars by applying the X (stellar-population) criterion of Schuster et al. (1993), which takes into account both kinematic and metallicity information. For 1906 thin disk and 110 thick disk stars classified in this way, we find a vertical velocity dispersion, mean rotational velocity and mean orbital eccentricity of (σW, 〈VΦ〉, 〈e〉)thin = (18 ± 0.3 km s−1, 223 ± 0.4 km s−1, 0.07 ± 0.07) and (σW, 〈VΦ〉, 〈e〉)thick = (35 ± 2 km s−1, 163 ± 3 km s−1, 0.31 ± 0.16), respectively. From the radial Jeans equation, we derive a thick disk scale length in the range 1.5-2.2 kpc, whose greatest uncertainty lies in the adopted form of the underlying potential. The shape of the orbital eccentricity distribution indicates that the thick disk stars in our sample most likely formed in situ with minor gas-rich mergers and/or radial migration being the most likely cause for their orbits. We further obtain mean metal abundances of 〈[M/H]〉thin = +0.03 ± 0.17, and 〈[M/H]〉thick = −0.51 ± 0.23, in good agreement with previous estimates. We estimate a radial metallicity gradient in the thin disk of −0.07 dex kpc−1, which is larger than predicted by chemical evolution models where the disk grows inside-out from infalling gas. It is, however, consistent with models where significant migration of stars shapes the chemical signature of the disk, implying that radial migration might play at least part of a role in the thick disk’s formation.  相似文献   

12.
A radial velocity study of the cataclysmic variable ES Dra (PG 1524+622) is presented. ES Dra is found to have an orbital period of 0.17660 ± 0.00006 day (4.2384 ± 0.0014 h). The mass-losing secondary star of ES Dra is detectable in the spectrum, and it has a spectral type of M2 ± 1. From this, we estimate the absolute magnitude of ES Dra during our spectroscopic observations to have been MR = 6.5 ± 0.5, and its distance to be 720 ± 150 pc. The long-term light curve of ES Dra compiled by the American Association of Variable Star Observers (AAVSO) shows that ES Dra is a Z Cam star, which between 1995 and 2009 spent most of its time in standstill.  相似文献   

13.
In this paper, we present standard Johnson UBV photometry of the eclipsing binary BD+36 3317 which is known as a member of Delta Lyrae (Stephenson 1) cluster. We determined colors and brightness of the system, calculated E(B − V) color excess. We discovered that the system shows total eclipse in secondary minimum. Using this advantage, we found that the primary component of the system has B9 − A0 spectral type. Although there is no published orbital solution, we tried to estimate the physical properties of the system from simultaneous analysis of UBV light curves with 2003 version of Wilson-Devinney code. Then we considered photometric solution results together with evolutionary models and estimated the masses of the components as M1 = 2.5 M and M2 = 1.6 M. Those estimations gave the distance of the system as 353 pc. Considering the uncertainties in distance estimation, resulting distance is in agreement with the distance of Delta Lyrae cluster.  相似文献   

14.
We performed a complete wavelet analysis of Saturn’s C ring on 62 stellar occultation profiles. These profiles were obtained by Cassini’s Ultraviolet Imaging Spectrograph High Speed Photometer. We used a WWZ wavelet power transform to analyze them. With a co-adding process, we found evidence of 40 wavelike structures, 18 of which are reported here for the first time. Seventeen of these appear to be propagating waves (wavelength changing systematically with distance from Saturn). The longest new wavetrain in the C ring is a 52-km-long wave in a plateau at 86,397 km. We produced a complete map of resonances with external satellites and possible structures rotating with Saturn’s rotation period up to the eighth order, allowing us to associate a previously observed wave with the Atlas 2:1 inner Lindblad resonance (ILR) and newly detected waves with the Mimas 6:2 ILR and the Pandora 4:2 ILR. We derived surface mass densities and mass extinction coefficients, finding σ = 0.22(±0.03) g cm−2 for the Atlas 2:1 ILR, σ = 1.31(±0.20) g cm−2 for the Mimas 6:2 ILR, and σ = 1.42(±0.21) g cm−2 for the Pandora 4:2 ILR. We determined a range of mass extinction coefficients (κ = τ/σ) for the waves associated with resonances with κ = 0.13 (±0.03) to 0.28(±0.06) cm2 g−1, where τ is the optical depth. These values are higher than the reported values for the A ring (0.01-0.02 cm2 g−1) and the Cassini Division (0.07-0.12 cm2 g−1 from Colwell et al. (Colwell, J.E., Cooney, J.H., Esposito, L.W., Srem?evi?, M. [2009]. Icarus 200, 574-580)). We also note that the mass extinction coefficient is probably not constant across the C ring (in contrast to the A ring and the Cassini Division): it is systematically higher in the plateaus than elsewhere, suggesting smaller particles in the plateaus. We present the results of our analysis of these waves in the C ring and estimate the mass of the C ring to be between3.7(±0.9) × 1016 kg and 7.9(±2.0) × 1016 kg (equivalent to an icy satellite of radius between 28.0(±2.3) km and 36.2(±3.0) km with a density of 400 kg m−3, close to that of Pan or Atlas). Using the ring viscosity derived from the wave damping length, we also estimate the vertical thickness of the C ring between 1.9(±0.4) m and 5.6(±1.4) m, comparable to the vertical thickness of the Cassini Division.  相似文献   

15.
Using the archival ROSAT PSPC observations, AB Dor is found to be variable in X-rays. The periodic variations are consistent with previously reported rotational period of 0 d .514. The average spectrum of AB Dor is best represented with two-temperature Raymond-Smith model with kT values of 0.19±0.07 and 1.17±0.02 keV. The quiescent luminosity of the system is found to be 4.36±0.6×1030 ergs s–1. A flare with a rise time of 350 seconds is detected during which X-ray luminosity rises from 5.8±1.6×1030 to 15.8±4.9×1030 ergs s–1. We conclude that AB Dor is very similar to the active components of RS CVn binaries and other active classes. In view of the wide separation from the binary companion Rst 137B, this activity must be intrinsic to the active star.  相似文献   

16.
An updated period analysis for the overcontact eclipsing binary ER Orionis is presented. Featured is an improved derivation of parameters for the light time effect (LTE) due to the third star (in actuality, a pair of stars) utilising the latest set of eclipse timings. The very good fit between the eclipse timing differences (ETD) plot (otherwise known as an O–C diagram) and the theoretical ETD curve makes possible an improved determination of the rate of mass interchange between the binary pair, dm1/dt = +1.83(6) × 10−7 Mʘ/year. In addition, the mass of the companion system (in actuality, m3 sin i) and the elements of its orbit were computed. A suggestion is made for a method of future determination of the inclination of the orbit of the companion system.  相似文献   

17.
A radial velocity study is presented of the cataclysmic variable V378 Pegasi (PG 2337 + 300). It is found to have an orbital period of 0.13858 ± 0.00004 d (3.32592 ± 0.00096 h). Its spectrum and long-term light curve suggest that V378 Peg is a nova-like variable, with no outbursts. We use the approximate distance and position in the Galaxy of V378 Peg to estimate E(B − V) = 0.095, and use near-infrared magnitudes to calculate a distance of 680 ± 90 pc and MV = 4.68 ± 0.70, consistent with V378 Peg being a nova-like. Time-resolved photometry taken between 2001 and 2009 reveals a period of 0.1346 ± 0.0004 d (3.23 ± 0.01 h). We identify this photometric variability to be negative superhumps, from a precessing, tilted accretion disk. Our repeated measurements of the photometric period of V378 Peg are consistent with this period having been stable between 2001 and 2009, with its negative superhumps showing coherence over as many as hundreds or even thousands of cycles.  相似文献   

18.
Photometric and spectroscopic results for the star HD 172189, member of the open cluster IC 4756 in the summer field of the space mission COROT, are presented. From photometric observations in the Strömgren system carried out at various epochs, its binary nature as well as the presence of a δ Scuti-type pulsating component have been discovered. The frequency analysis of the whole dataset confirms a dominant frequency of 19.5974 c d?1 with a maximum amplitude near 0.02 mag plus other frequencies in the range 18–20 c d?1. A preliminary orbital solution from the light curve and from four FEROS spectra reveals two similar components of around 1.5 M orbiting with a period of 5.702 d.  相似文献   

19.
Arecibo (2380 MHz, 12.6 cm) and Goldstone (8560 MHz, 3.5 cm) delay-Doppler radar images obtained in July and August of 2000 reveal that 4486 Mithra is an irregular, significantly bifurcated object, with a central valley ∼380 m deep and a long axis potentially exceeding 2 km. With its bimodal appearance, Mithra is a strong candidate for a contact binary asteroid. Sequences of Goldstone images spanning up to 3 h per day show very little rotation and establish that Mithra is an unusually slow rotator. We used Goldstone and Arecibo data to estimate Mithra’s 3D shape and spin state. We obtain prograde (λ = 337°, β = 19°) and retrograde (λ = 154°, β = −19°) models that give comparable fits, have very similar shapes roughly resembling an hourglass, and have a rotation period of 67.5 ± 6.0 h. The dimensions of these two models are very similar; for the prograde solution the maximum dimensions are X = 2.35 ± 0.15 km, Y = 1.65 ± 0.10 km, Z = 1.44 ± 0.10 km. Dynamical analysis of our models suggests that in the past, Mithra most likely went through a period of even slower rotation with its obliquity close to 90°. The spin rate is predicted to be increasing due to thermal torque (YORP), while the obliquity, which is currently +68° and +106° for the prograde and retrograde models, respectively, is predicted to move away from 90°.  相似文献   

20.
The first complete charge-coupled device (CCD) light curves in B and V bands of the short-period binary system, RV Psc, are presented. It is found that the light curves of RV Psc are symmetric and belong to the EW type rather than the EA type as described in the 4th edition of the GCVS. Photometric solutions were derived by using the 2003 version of the Wilson–Devinney (W-D) method. It is shown that RV Psc is a marginal contact system (f=5.8%±6.6%) with a mass ratio of q=0.5978±0.0096. The temperature difference between both components is only 17 K. Analysis of the O-C curve suggests that the period of RV Psc shows a long-term continuous decrease at a rate of dP/dt=?5.89×10?8 days/year. The long-time period decrease, the marginal-contact configuration, and the astrophysical parameters of the binary system, all suggest that it is a newly formed marginal contact binary from a case A mass transfer and will evolve into a normal overcontact binary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号