首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Detached eclipsing binaries constitute potential accurate distance tracers. They are also useful as the test bench of stellar evolution. In BD–00° 3357 eclipses are partial and its orbital period is 1.d4. Our combined spectroscopic and photometric solution yields secure parameters of this system. The model of the star was obtained using the Wilson‐Devinney method. As result we obtained a semi major axis of 7.65 R and a mass ratio of 0.78. The derived masses and radii are M 1 = 1.73 M,M 2 = 1.34 MR 1 = 1.78 R, R 2 = 1.32 R, respectively. These values correspond to the slightly evolved F0 and F6.5 components, both slightly less than 1Gyr old. The distance of the star was estimated to be 310 ± 60 pc, and the corresponding photometric parallax is 3.24 ± 0.74 mas. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
In this paper, we report a rare reflection effect eclipsing sdB+dM binary, 2M?1533+3759. It is the seventh eclipsing sdB+dM binary that has been discovered to date. This system has an orbital period of 0.16177042 day and a velocity semi-amplitude of 71.1 km?s?1. Using a grid of zero-metallicity NLTE model atmospheres, we derived T eff=29250 K, log?g=5.58 and [He/H]=?2.37 from spectra taken near the reflection effection minimum. Lightcurve modeling resulted in a system mass ratio of 0.301 and an orbital inclination angle of 86.6°. The derived primary mass for 2M?1533+3759, 0.376±0.055 M , is significantly lower than the canonical mass (0.48 M ) found for most previously investigated sdB stars. This implies an initial progenitor mass >1.8 M , at least a main sequence A star and perhaps even one massive enough to undergo non-degenerate helium ignition.  相似文献   

3.
The eclipsing binary NN Vir is a short period system showing an EW‐type light curve. Photometric observations of NN Vir were done by Gomez‐Ferrellad & Garcia‐Melendo (1997) at Esteve Duran Observatory. We used photometric data of NN Vir for light curve analysis. The available spectroscopic data of NN Vir is new and we also used the first radial velocity data of this system obtained by Rusinski & Lu (1999) for analysis. The radial velocity and light curves analysis was made with the latest version ofWilson program(1998) and the geometric and physical elements of the system are derived. By searching the simultaneous solutions of the system, we have determined the masses and radii of the components : 1.89(M) and 1.65(R) for the primary component; 0.93(M) and 1.23(R) for the secondary component. We estimated effective temperatures of 7030(K) for the primary and 6977(K) for the secondary component. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
D. Sürgit  A. Erdem 《New Astronomy》2012,17(3):336-340
This paper presents the first analysis of spectroscopic and photometric observations of the eclipsing binary star WZ Hor. Observations of the system were made at the Mt. John University Observatory in 2007. Since the light contribution of the secondary component was merely 2-3% of the total light of the system in the optical wavelengths, the radial velocity of the primary component could only be determined using the cross-correlation method. A single-lined spectroscopic orbital solution of WZ Hor was obtained, and the BVRI light curves of the system and radial velocity curve of the primary component were analysed simultaneously using the Wilson-Devinney method. The results describe WZ Hor as a reverse Algol-like binary star with a detached configuration. The following absolute parameters of the components were also derived: M1 = 1.51 ± 0.03 M, M2 = 0.66 ± 0.01 M, R1 = 1.62 ± 0.02 R, R2 = 0.66 ± 0.01 R, L1 = 4.93 ± 0.64 L and L2 = 0.09 ± 0.02 L. The distance to WZ Hor was calculated as 95 ± 8 pc using distance modulus with correction for interstellar extinction, in agreement with the HIPPARCOS value.  相似文献   

5.
This paper presents the first analysis of spectroscopic and photometric observations of the neglected southern eclipsing binary star, QY Tel. Spectroscopic observations were carried out at the South African Astronomical Observatory in 2013. New radial velocity curves from this study and V light curves from the All Sky Automated Survey were solved simultaneously using modern light and radial velocity curve synthesis methods. The final model describes QY Tel as a detached binary star where both component stars fill at least half of their Roche limiting lobes. The masses and radii were found to be 1.32 (± 0.06) M, 1.74 (± 0.15) R and 1.44 (± 0.09) M, 2.70 (± 0.16) R for the primary and secondary components of the system, respectively. The distance to QY Tel was calculated as 365 (± 40) pc, taking into account interstellar extinction. The evolution case of QY Tel is also examined. Both components of the system are evolved main-sequence stars with an age of approximately 3.2  Gy, when compared to Geneva theoretical evolution models.  相似文献   

6.
We report the Balmer broad absorption lines (BALs) in the quasar SDSS J2220 + 0109 discovered from the SDSS data, and present a detailed analysis of the peculiar absorption line spectrum, including the He I* multiplet at λλ3189, 3889 arising from the metastable 23s-state helium and the Balmer Hα and Hβ lines from the excited hydrogen H I of n = 2 level, which are rarely seen in quasar spectra, as well as many absorption lines arising from the excited Fe II* of the levels 7 955 cm−1, 13 474 cm−1 and 13 673 cm−1 in the wavelength range 3100∼3300 Å. Ca II H, K absorption line doublets also clearly appear in the SDSS spectrum. All absorption lines show a similar blueshifted velocity structure of Δv ≈ − 1500 ∼ 0 km·s−1 relative to the quasar's systematic redshift determined from the emission lines. Detailed analysis suggests that the Balmer absorption lines should arise from the partially ionized region with a column density of NHI ≈ 1021 cm−2 for an electron density of ne ∼ 106 cm−3; and that the hydrogen n = 2 level may be populated via collisional excitation with Lyα pumping.  相似文献   

7.
This paper presents the results of spectroscopic and photometric observations of the early-type W UMa system V535 Ara. New high-resolution spectra were taken at the Mt. John University Observatory in 2007. Radial velocities and spectroscopic orbital elements of the system were determined by applying KOREL spectral disentangling. The resulting orbital elements were: a1sini = 0.0047 ± 0.0001 AU, a2sini = 0.0146 ± 0.0001 AU, M1sin3i = 1.85 ± 0.01 M, and M2sin3i = 0.59 ± 0.01 M. The components were found to be in synchronous rotation following examination of their disentangled Hγ line profiles. Four photometric data-sets (1966 BV, 1967 BV, HIPPARCOS and ASAS) were modeled using the Wilson-Devinney method. The model describes V535 Ara as an A sub-type W UMa type eclipsing binary which has a fill out factor of 0.22 in marginal contact configuration. The simultaneous solution of light and radial velocity curves gave the following absolute parameters: M1 = 1.94 ± 0.04 M, M2 = 0.59 ± 0.02 M, R1 = 2.09 ± 0.03 R, R2 = 1.23 ± 0.02R, L1 = 18 ± 3 L and L2 = 6 ± 1 L. The distance to V535 Ara was calculated as 123 ± 20 pc using distance modulus with correction for interstellar extinction.  相似文献   

8.
In this paper, we present standard Johnson UBV photometry of the eclipsing binary BD+36 3317 which is known as a member of Delta Lyrae (Stephenson 1) cluster. We determined colors and brightness of the system, calculated E(B − V) color excess. We discovered that the system shows total eclipse in secondary minimum. Using this advantage, we found that the primary component of the system has B9 − A0 spectral type. Although there is no published orbital solution, we tried to estimate the physical properties of the system from simultaneous analysis of UBV light curves with 2003 version of Wilson-Devinney code. Then we considered photometric solution results together with evolutionary models and estimated the masses of the components as M1 = 2.5 M and M2 = 1.6 M. Those estimations gave the distance of the system as 353 pc. Considering the uncertainties in distance estimation, resulting distance is in agreement with the distance of Delta Lyrae cluster.  相似文献   

9.
Results of photometric and spectroscopic studies for the new eclipsing cataclysmic variable star HBHA 4705-03 with an orbital period of 0.1718 days are presented. Its spectrum exhibits hydrogen and helium emission lines. The Doppler maps constructed from hydrogen lines and the He II λ 4686 line show that the regions near the inner Lagrangian point are the main source of emission in these lines, while the maps constructed from He I lines suggest the presence of an accretion disk around the primary. The masses of the components (M WD = 0.54 ± 0.10M andM RD = 0.45 ± 0.05 M ) and the orbital inclination of the system (i = 71.8° ± 0.7°) have been determined from observational data using well-known relations for close binaries and cataclysmic variable stars.  相似文献   

10.
New photometry for the eclipsing binary BE Cephei was performed from 2008 to 2011. The light-curve synthesis indicates that it is a marginal-contact binary with a mass ratio of q = 2.340(±0.009) and a degree of contact of f = 6.9%(±2.3%). From the O − C curve, it is discovered that the orbital period changes show a sinusoidal curve superimposed on a downward parabola. The period and semi-amplitude of the cyclic variation are Pmod = 59.26(±0.52) yr and A = 0.d0067(±0.d0010), which may be possibly attributed to light-time effect via the presence of an unseen third body. The long-term period decreases at a rate of dP/dt = −4.84(±0.31) × 10−8 d yr−1, which may result from mass transfer from the more massive component to the less massive one, accompanied by angular momentum loss. With the period decreasing, the degree of contact will increase. Finally, the marginal-contact binary BE Cep may be evolving into a deep-contact configuration.  相似文献   

11.
This paper reports 13CO, C18O, HCO+ (J = 1−0) spectral observations toward IRAS 23133+6050 with the 13.7 m millimeter-wave telescope at Qinghai Station of PMO. Corresponding to the 13CO, C18O, HCO+ line emissions, the size of the observed molecular cloud core is 4.0 pc, 2.1 pc and 2.3 pc, the virial mass is 2.7 × 103 M, 0.9 × 103 M and 2.3 × 103 M, and the volume density of H2 is 2.7 × 103 cm−3, 5.1 × 103 cm−3 and 4.6 × 103 cm−3, respectively. Using the power-law function n(r) ∼rp, the spatial density distribution of the cloud core was analyzed, the obtained exponent p is respectively 1.75, 1.56 and 1.48 for the 13CO, C18O and HCO+ cores, and it is found that the density distribution becomes gradually flatter from the outer region to the inner region of the core. The HCO+ abundance is 4.6 × 10−10, one order of magnitude less than the value for dark clouds, and slightly less than that for giant molecular clouds. The 13CO/C18O relative abundance ratio is 12.2, comparable with the value 11.8 for dark clouds, and the value 9.0 ∼ 15.6 for giant molecular clouds. A 13CO bipolar outflow is found in this region. The IRAS far-infrared luminosity and the virial masses give the luminosity-mass ratios 18.1, 51.1 and 21.2 from the three lines.  相似文献   

12.
A brief history of investigations of Lyr, an emission‐line binary and one of the first ever discovered Be stars is presented. A rather fast progress in the understanding of this enigmatic object during the past fifteen years is then discussed in some detail. The current picture of β Lyr is that it is an eclipsing binary in a stage of mass transfer between the components. The mass‐losing star is a B6‐8II object, with a mass of about 3 M, which is filling the Roche lobe and sending material towards its more massive companion at a rate of about 2 × 10—5 M yr—1. This leads to the observed rapid increase of the orbital period at a rate of 19 s per year. The mass‐gaining star is as early B star with a mass of about 13 M. It is completely hidden inside an opaque accretion disk, jet‐like structures, perpendicular to the orbital plane and a light‐scattering halo above the poles of the star. The observed radiation of the disk corresponds to an effective temperature which is much lower than what would correspond to an early B star. The disk shields the radiation of the central star in the directions along the orbital plane and redistributes it in the directions perpendicular to it. That is why the mass‐losing star appears brighter of the two in the optical region of the spectrum. At present, rather reliable estimates of all basic properties of the binary and its components are available. However, in spite of great progress in understanding the system in recent years, some disagreement between the existing models and observed phase variations still remains, both for continuum and line spectrum, which deserves further effort.  相似文献   

13.
We study the kinematics of the Galactic thin and thick disk populations using stars from the RAVE survey’s second data release together with distance estimates from Breddels et al. (2010). The velocity distribution exhibits the expected moving groups present in the solar neighborhood. We separate thick and thin disk stars by applying the X (stellar-population) criterion of Schuster et al. (1993), which takes into account both kinematic and metallicity information. For 1906 thin disk and 110 thick disk stars classified in this way, we find a vertical velocity dispersion, mean rotational velocity and mean orbital eccentricity of (σW, 〈VΦ〉, 〈e〉)thin = (18 ± 0.3 km s−1, 223 ± 0.4 km s−1, 0.07 ± 0.07) and (σW, 〈VΦ〉, 〈e〉)thick = (35 ± 2 km s−1, 163 ± 3 km s−1, 0.31 ± 0.16), respectively. From the radial Jeans equation, we derive a thick disk scale length in the range 1.5-2.2 kpc, whose greatest uncertainty lies in the adopted form of the underlying potential. The shape of the orbital eccentricity distribution indicates that the thick disk stars in our sample most likely formed in situ with minor gas-rich mergers and/or radial migration being the most likely cause for their orbits. We further obtain mean metal abundances of 〈[M/H]〉thin = +0.03 ± 0.17, and 〈[M/H]〉thick = −0.51 ± 0.23, in good agreement with previous estimates. We estimate a radial metallicity gradient in the thin disk of −0.07 dex kpc−1, which is larger than predicted by chemical evolution models where the disk grows inside-out from infalling gas. It is, however, consistent with models where significant migration of stars shapes the chemical signature of the disk, implying that radial migration might play at least part of a role in the thick disk’s formation.  相似文献   

14.
In this study, we present long term photometric variations of the close binary system GO Cyg. Modelling of the system shows that the primary is filling Roche lobe and the secondary of the system is almost filling its Roche lobe. The physical parameters of the system are M1 = 3.0 ± 0.2M, M2 = 1.3 ± 0.1M, R1 = 2.50 ± 0.12R, R2 = 1.75 ± 0.09R, L1 = 64 ± 9L, L2 = 4.9 ± 0.7L, and a = 5.5 ± 0.3R. Our results show that GO Cyg is the most massive system near contact binary (NCB). Analysis of times of the minima shows a sinusoidal variation with a period of 92.3 ± 0.5 yr due to a third body whose mass is less than 2.3M. Finally a period variation rate of −1.4 × 10−9 d/yr has been determined using all available light curves.  相似文献   

15.
We have carried out deep (V ∼ 21 mag) UBVRI photometric study of the star cluster Stock 18. These along with archival Infrared data have been used to derive the basic cluster parameters and also to study the star formation processes in and around the cluster region. The distance to the cluster is derived as 2.8 ± 0.2 kpc while its age is estimated as 6.0 ± 2.0 Myr. Present study indicates that interstellar reddening is normal in the direction of the cluster. The mass function slope is found to be −1.37 ± 0.27 for the mass range 1 < M/M < 11.9. There is no evidence found for the effect of mass segregation in main-sequence stars of the cluster. A young stellar population with age between 1-2 Myr have been found in and around the cluster region. The presence of IRAS and AKARI sources with MSX intensity map also show the youth of the Sh2-170 region.  相似文献   

16.
We present N-body simulations of planetary accretion beginning with 1 km radius planetesimals in orbit about a 1 M star at 0.4 AU. The initial disk of planetesimals contains too many bodies for any current N-body code to integrate; therefore, we model a sample patch of the disk. Although this greatly reduces the number of bodies, we still track in excess of 105 particles. We consider three initial velocity distributions and monitor the growth of the planetesimals. The masses of some particles increase by more than a factor of 100. Additionally, the escape speed of the largest particle grows considerably faster than the velocity dispersion of the particles, suggesting impending runaway growth, although no particle grows large enough to detach itself from the power law size-frequency distribution. These results are in general agreement with previous statistical and analytical results. We compute rotation rates by assuming conservation of angular momentum around the center of mass at impact and that merged planetesimals relax to spherical shapes. At the end of our simulations, the majority of bodies that have undergone at least one merger are rotating faster than the breakup frequency. This implies that the assumption of completely inelastic collisions (perfect accretion), which is made in most simulations of planetary growth at sizes 1 km and above, is inappropriate. Our simulations reveal that, subsequent to the number of particles in the patch having been decreased by mergers to half its initial value, the presence of larger bodies in neighboring regions of the disk may limit the validity of simulations employing the patch approximation.  相似文献   

17.
18.
Some results of the photographic observations of double stars with 65 cm refractor of Pulkovo observatory are presented. We use the apparent motion parameters (AMP) method which allows to determine the orbits and to carry out the dynamical investigation of wide binaries on the basis of a short arc of their orbital motion. We have determined more than 40 orbits for wide pairs and also the sum of masses and in some cases—the mass-ratio of components. The references to our works and the basic results of observations are contained in Kisselev et al. [2004. Catalogue of relative positions of visual double stars made on the observations with 26 refractor of Pulkovo observatory. Strassbourg, I/297]. We apply two ways of revealing the hidden mass of our stars, namely: revealing of possible perturbations from comparison of observational and calculated positions using differences O-C (for instance, perturbations in the orbital motion of ADS 15571) and also by means of comparison of the sum of the masses obtained by us and the sum of the masses obtained by means of the mass-luminosity relation. An excess of masses of about 1-3 solar masses is detected for binaries: ADS 497, ADS 8450 and ADS 10329 by means of last method.The estimations of the masses for some binaries are discussed. Also we justify the necessity of precise parallaxes and relative radial velocities of stars, which could be measured by space telescopes such as the GAIA as the additional parameters for determination of orbits of binaries.  相似文献   

19.
The impact of a supernova shell onto 2.82M and 20.0M main-sequence stars is investigated for various initial orbital separations, and various supernova shell masses and velocities. The inelastic collision between the star and the supernova shell, the shock propagation into the companion star, and other forms of momentum transfer such as the rocket effect are considered. The total momentum transfer due to the supernova is insufficient to eject the companion from the binary as long as the companion retains most of its mass, regardless of the initial orbital separation. Ejection of the companion may occur if the companion is nearly destroyed. Even in contact binaries destruction does not necessarily occur, and if the orbital separation exceeds 1012 cm, destruction of the companion becomes quite unlikely.  相似文献   

20.
We report the physical and orbital parameters of the visible component of the spectroscopic binary HD37737 (m V = 8.03). The observations were performed with the 1.2-m telescope of the Kourovka Astronomical Observatory of the Ural Federal University in 2012 and the 6-m BTA telescope of the SAO RAS in 2007 and 2009. Radial velocities were measured separately from each spectral line of the list by the cross-correlation method with a synthetic spectrum. The latter was calculated using the grids of non-LTE model atmospheres with solar chemical compositions. A significant difference in the epochs of observations (2005–2012) allowed to refine the orbital period of the star (7 · d 84705) and the orbital elements of the binary system. We obtained an estimate of the mass function f(m) = 0.23 ± 0.02M . The best agreement between the synthetic and observed spectra is achieved at T eff = 30 000 K and log g = 3.50 according to the observations on both instruments. The obtained parameters correspond to a star of spectral type O9.5 III, with mass estimated at 26 ± 2M . The minimum mass estimate of the secondary component of the binary is 6.2 ± 0.5M . We have discovered a fact that the velocities, obtained from different spectral lines, differ, which is typical for giant stars. Engaging additional spectra, obtained in 2005 with the 2.1-m KPNO telescope, we investigated the effect of this fact on the estimate of the speed of the system’s center of mass. The difference in the velocities of various lines is approximately the same in the spectra, obtained at all the three instruments. The obtained ratios suggest that the deeper layers of the atmosphere of the star are moving with a greater velocity than the outer layers. Depending on the line, the estimate of the heliocentric velocity of the binary’s center of mass varies in the range from ?11 to 1 km/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号