首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an infrared study of thermal anomalies during the lunar night. From observations of the most intense anomalies at several wavelengths it is deduced that fields of boulders are responsible for the thermal enhancement; the cooling curves of the remainder are consistent with such a model. High resolution Lunar Orbiter photographs of some of the thermal anomalies reveal boulders to be present within them in just the right numbers. The ages and distribution of thermal anomalies are discussed in the light of this model.  相似文献   

2.
Between 1000 and 2000 infrared (eclipse) and radar anomalies have been mapped on the nearside hemisphere of the Moon. A study of 52 of these anomalies indicates that most are related to impact craters and that the nature of the infrared and radar responses is compatible with a previously developed geologic model of crater aging processes. The youngest craters are pronounced thermal and radar anomalies; that is, they have enhanced eclipse temperatures and are strong radar scatterers. With increasing crater age, the associated thermal and radar responses become progressively less noticeable until they assume values for the average lunar surface. The last type of anomaly to disappear is radar enhancement at longer wavelengths. A few craters, however, have infrared and radar behaviors not predicted by the aging model. One previously unknown feature - a field strewn with centimeter-sized rock fragments - has been identified by this technique of comparing maps at the infrared, radar, and visual wavelengths.  相似文献   

3.
Radar, infrared, and photogeologic properties of lunar craters have been studied to determine whether there is a systematic difference in blocky craters between the maria and terrae and whether this difference may be due to a deep megaregolith of pulverized material forming the terra surface, as opposed to a layer of semi-coherent basalt flows forming the mare surface. Some 1310 craters from about 4 to 100 km diameter have been catalogued as radar and/or infrared anomalies. In addition, a study of Apollo Orbital Photography confirmed that the radar and infrared anomalies are correlated with blocky rubble around the crater.Analysis of the radar and infrared data indicated systematic terra—mare differences. Fresh terra craters smaller than 12 km were less likely to be infrared and radar anomalies than comparable mare craters: but terra and mare craters larger than 12 km had similar infrared and radar signatures. Also, there are many terra craters which are radar bright but not infrared anomalies.Our interpretation of these data is that while the maria are rock layers (basaltic flow units) where craters eject boulder fields, the terrae are covered by relatively pulverized megaregolith at least 2 km deep, where craters eject less rocky rubble. Blocky rubble, either in the form of actual rocks or partly consolidated blocks, contributes to the radar and infrared signatures of the crater. However, aging by impacts rapidly destroys these effects, possibly through burial by secondary debris or by disintegration of the blocks themselves, especially in terra regions.PSI Contribution No. 110.  相似文献   

4.
Chemical and isotopic anomalies in meteorites may be understandable in terms of the chemical fractionation routinely expected in the interstellar medium (ISM). Dust of distinct composition is idealized as being of three types: (1) thermal supernova condensates (SUNOCONS), (2) thermal condensation during other stellar mass-loss processes (STARDUST), and (3) nonthermal sticking processes in cold nebulae (NEBCONS). Great depletions in ISM of Ca Al Ti are due to SUNOCONS, although STARDUST is about twice as abundant. An abundance table of interstellar SUNOCONS is presented. Parent bodies in the solar system are accumulated directly from the ISM. No hot solar condensation sequence is assumed. Only relatively volatile elements within NEBOCONS are vaporized in the warm solar accretion disk. Variations in the relative amounts of these components during accumulation processes plus subsequent solid chemistry may have produced such chemical anomalies as the meteoritic fractionation patterns and the Ca Al-rich inclusions. Isotopic anomalies result from four processes that selectively site specific isotopes: (1) extinct radioactivities, (2) distinct supernova shells, (3) gas-dust separation, and (4) gas-dust age difference. Planetary accumulation will have been fingerprinted by the chemical state of the ISM if this picture is correct.Paper presented at the Conference on Protostars and Planets, held at the Planetary Science Institute, University of Arizona, Tucson, Arizona, between January 3 and 7, 1978.  相似文献   

5.
We discuss observations of the Moon at a wavelength of 49.3 cm made with the Owens Valley Radio Observatory Interferometer. These observations have been fit to models in order to estimate the lunar dielectric constant, the equatorial subsurface temperature, the latitude dependence of the subsurface temperature, and the subsurface temperature gradient. The models are most consistent with a dielectric constant of 2.52 ± 0.01 (formal errors), an equatorial subsurface temperature of 249?5+8K, and a change in the subsurface temperature with latitude (ψ), which is proportional to cos0.38ψ. Since the temperature of the Moon has been measured by the Apollo Lunar Heat Flow Experiment, we have been able to use our determination of the equatorial temperature to estimate the error in the flux density calibration scale at 49.3cm (608 MHz). This results in a correction factor of 1.03 ± 0.04, which must be applied to the flux density scale. This factor is much different from 1.21 ± 0.09 estimated by Muhleman et al. (1973) from the brightness temperature of Venus and apparently indicates that the observed decrease in the brightness temperature of Venus at long wavelengths is a real effect.The estimates of the temperature gradient, which are based on the measurement of limb darkening, are small and negative (temperature decreases with depth) and may be insignificantly different from zero since they are only as large as their formal errors. We estimate that a temperature gradient in excess of 0.6K/m at 10m depth would have been observed. Thus, a temperature gradient like that measured in situ at the Apollo 15 and 17 landing sites in the upper 2m of the regolith is not typical of the entire lunar frontside at the 10m depths where the 49.3 cm wavelength emission originates. This result may indicate that the mean lunar heat flow is lower than that measured at the Apollo landing sites, that the thermal conductivity is greater at 10m depth than it is at 2m depth, or that the radio opacity is greater at 10m depth than at 2m depth. The negative estimates of the temperature gradient indicate that the Moon appeared limb bright and might be explained by scattering of the emission from boulders or an interface with solid rock. The presence of solid rock at 10m depths will probably cause heat flows like those measured by Apollo to be unobservable by our interferometric method at long wavelengths, since it will cause both the thermal conductivity and radio opacity of the regolith to increase. Thus, our data may be most consistent with a change in the physical properties of the regolith to those of solid rock or a mixture of rock and soil at depths of 7 to 16m. Our results show that future radio measurements for heat flow determinations must utilize wavelengths considerably shorter than 50 cm (25 cm or less) to avoid the rock regions below the regolith.  相似文献   

6.
There are ∼300 features on the Asteroid 433 Eros that morphologically resemble ponds (flat-floored and sharply embaying the bounding depression in which they sit). Because boulders on Eros are apparently eroding in place and because ponds with associated boulders tend to be larger than ponds without blocks, we propose that ponds form from thermally disaggregated and seismically flattened boulder material, under the assumption that repeated day/night cycling causes material fatigue that leads to erosion of the boulders. Results from a simple boulder emplacement/thermal erosion model with boulders emplaced in a few discrete events (i.e., large impacts) match well the observed size distribution. Under this scenario, the subtle color differences of ponds (somewhat bluer than the rest of the surface) might be due to some combination of less space-weathered material and density stratification of silicate-rich chondrules and more metal-rich matrix from a disaggregated boulder. Volume estimates of ponds derived from NEAR Laser Rangefinder profiles are consistent with what can be supplied by boulders. Ponds are also observed to be concentrated in regions of low slope and high elevation, which suggests the presence of a less mobile regolith and thus a contrast in the resistance to seismic shaking between the pond material and the material that makes up the bounding depression. Future tests include shake-table experiments and temperature cycling (fatigue) of ordinary chondrites to test the thermal erosion mechanism.  相似文献   

7.
Abstract— Four exposures of Chicxulub impact ejecta along the Mexico‐Belize border have been sampled and analyzed for major and trace element abundances. The ejecta deposits consist of a lower spheroid bed, containing clay and dolomite spheroids, and an upper diamictite bed with boulders and clasts of limestone and dolomite. The matrix of both beds is composed of clay and micritic dolomite. The rare earth element (REE) compositions in the matrix of both units show strong similarities in concentrations and pattern. Furthermore, the Zr/TiO2 scatter plot shows a linear correlation indicating one source. These results indicate that the basal spheroid bed has the same source and was generated during the same event as the overlying diamictite bed, which lends support to a single‐impact scenario for the Albion Formation ejecta deposits. The elevated concentrations of non‐meteoritic elements such as Sb, As, U, and Zn in the matrix of the lower spheroid bed are regarded to have been derived from the sedimentary target rocks at the Chicxulub impact site. The positive Eu and Ce anomalies in clay concretion and in the matrix of the lower part of the spheroid bed in Albion Island quarry is probably related to processes involved in the impact, such as high temperature and oxidizing conditions. Analogous trace element anomalies have been reported from the distal Cretaceous‐Paleogene (K/T) boundary clay layer at different sites. Thus, the trace element signals, reported herein, are regarded to support a genetic link between the Chicxulub impact, the ejecta deposits along the Mexico‐Belize border, and the global K/T boundary layer.  相似文献   

8.
C. Debi Prasad 《Solar physics》1995,159(1):181-190
A study of existing observations and theoretical concepts about the circumsolar emission in infrared radiation and its relation to the dust ring have been carried out. It is shown that the dust ring is temporally variable and depends on the solar cycle - being easily observable during minimum phase of the solar activity. Its constituent must be fine particles, instead of 10 km sized boulders at 4R from the Sun. It is also shown that the measurement along the coronal features such as streamers give rise to higher flux estimates.  相似文献   

9.
Oleg Abramov  John R. Spencer 《Icarus》2008,195(1):378-385
A variety of recent resurfacing features have been observed on Europa, which may produce thermal anomalies detectable by a future mission. However, the likelihood of such a detection depends on their size and lifetimes. The results of this numerical study suggest that the lifetime of a thermal anomaly associated with the emplacement of 100 m of water onto the surface of Europa is several hundred years, and ∼10 years for 10 m of water. If warm ice is emplaced on the surface instead of liquid water, these lifetimes decrease by up to a factor of two. Exploration of model parameters indicates that a thin insulating surface layer can double thermal anomaly lifetimes, anomalies emplaced at a latitude of 80° can remain detectable nearly a factor of two longer than those at equatorial latitudes, and anomalies on the night side can remain detectable for up to ∼20% longer than those on the day side. High temperatures are very short-lived as the surface ice cools very rapidly to below 200 K due to sublimation cooling. Assuming steady-state resurfacing, the number of detectable thermal anomalies associated with the emplacement of 100 m of water would be on the order of 10 if the typical resurfacing area is 15 km2. If recent resurfacing is dominated by chaos regions with typical areas of 100 to 1000 km2 and lifetimes of 1000 to 4000 years, the number of detectable thermal anomalies would be on the order of 1 to 10.  相似文献   

10.
The Apollo orbital geochemistry, photogeologic, and other remote sensing data sets were used to identify and characterize geochemical anomalies on the eastern limb and farside of the Moon and to investigate the processes responsible for their formation. The anomalies are located in the following regions: (1) Balmer basin, (2) terrain northeast of Mare Smythii, (3) near Langemak crater, (4) Pasteur crater, (5) terrain northwest of Milne basin, (6) northeast of Mendeleev basin, (7) north and northeast of Korolev basin, (8) terrain north of Taruntius crater, and (9) terrain north of Orientale basin. The anomalies are commonly associated with Imbrian- or Nectarian-aged light plains units which exhibit dark-haloed impact craters. The results of recent spectral reflectance studies of dark-haloed impact craters plus consideration of the surface chemistry of the anomalies strongly indicate that those geochemical anomalies associated with light plains deposits which display dark-haloed impact craters result from the presence of basaltic units that are either covered by varying thickness of highland debris or have a surface contaminated with significant amounts of highlands material. The burial or contamination of ancient volcanic surfaces by varying amounts of highland material appears to have been an important (though not the dominant) process in the formation of lunar light plains. Basaltic volcanism on the eastern limb and farside of the Moon was more extensive in both space and time than has been accepted.  相似文献   

11.
On the sub-kilometer S-type asteroid, 25143 Itokawa, some boulders on rough terrains seem to be exposed without any powdery material covering. Based on surface morphological features, there are two major types of boulders: one has rounded edges and corners (rounded boulders), while the other has angular edges and corners (angular boulders). The surface features of the rounded boulders suggest that they have hardness heterogeneity and that some may be breccias. The angular boulders appear to be more resistant to impact disruption than the rounded ones, which may be due to a difference in lithology. The major constituents of Itokawa may be LL chondrite-like brecciated lithology (rounded boulders) along with a remarkable number of boulders suggesting that lithology is atypical among LL chondrites (angular boulders). Some of both types of boulders contain intersecting and stepped planar foliations. Comparison with meteorite ALH76009 suggests that the planar foliations may be marks where rocks were torn apart. As lithified breccias cannot be formed on present-day sub-kilometer-sized Itokawa, it is reasonable that boulders with various lithologies on Itokawa were formed on its large ancestor(s). The rubble-pile structure of Itokawa suggested by its low density (∼1.9 g/cm3) indicates that boulders on Itokawa are reassembled fragments formed by catastrophic disruption of large ancestor(s).  相似文献   

12.
For impact craters with dimensions such as the Ries crater (corresponding to a 1 km meteorite) it has become a standard reference in textbooks on planetary science that under terrestrial conditions distal transfer of boulders may reach as far as 200 km. In order to test this assumption we simulated the impact-induced ballistic transfer of limestone boulders ejected out of the Ries crater and have come to the conclusion that “Reutersche Blöcke” and “Ries-Brockhorizonte,” found at distances of up to 130 km away, are distal Ries ejecta. Boulders alleged to be Ries components found in Northern Switzerland at distances of up to 200 km away can be related to the Ries event, if the parameters of our numerical simulation are stretched to its limits. Our simulation includes the following assumptions and variables: (1) boulders are ejected from the interference zone at a very early stage of impact; (2) starting conditions may range between velocities of 1 and 4 km/s and 35° to 65° for the flight path angle; (3) drag-free and transitional conditions at the impact site have been incorporated into the density model of the atmosphere; (4) a typical boulder is represented by an suitable aerodynamic drag model; (5) an aerothermal heat model was used to determine heat load.  相似文献   

13.
14.
Preliminary measurements of craters and boulders have been made in various locations on Eros from images acquired during the first nine months of NEAR Shoemaker's orbital mission, including the October 2000 low altitude flyover. (We offer some very preliminary, qualitative analysis of later LAF images and very high-resolution images obtained during NEAR's landing on 12 February 2001). Craters on Eros >100 m diameter closely resemble the saturated crater population of Ida; Eros is more heavily cratered than Gaspra but lacks the saturated giant craters of Mathilde. These craters and the other large-scale geological features were formed over a duration of very roughly 2 Gyr while Eros was in the main asteroid belt, between the time when its parent body was disrupted and Eros was injected into an Earth-approaching orbit (probably tens of Myr ago). Saturation equilibrium had been expected to shape Eros' crater population down to very small sizes, as on the lunar maria. However, craters <200 m diameter are instead progressively depleted toward smaller sizes and are a factor of ∼200 below empirical saturation at diameters of 4 m. Conversely, boulders and positive relief features (PRFs) rise rapidly in numbers (differential power-law index ∼−5) and those <10 m in size dominate the landscape at high resolutions. The pervasive boulders and minimal craters on Eros is radically different from the lunar surface at similar scales. This may be partly explained by a major depletion of meter-scale projectiles in the asteroid belt (due to the Yarkovsky Effect: Bell 2001), which thus form few small craters and destroy few boulders. Additionally, the small size and low gravity of Eros may result in redistribution or loss of ejecta due to seismic shaking, thus preferentially destroying small craters formed in such regolith. Possibly Eros has only a patchy, thin regolith of mobile fines; the smaller PRFs may then reflect exposures of fractured bedrock or piles of large ejecta blocks, which might further inhibit formation of craters <10 m in size. Eros may well have been largely detached dynamically and collisionally from the main asteroid belt for the past tens of Myr, in which case its cratering rate would have dropped by two orders of magnitude, perhaps enhancing the relative efficacy of other processes that would normally be negligible in competition with cratering. Such processes include thermal creep, electrostatic levitation and redistribution of fines, and space weathering (e.g., bombardment by micrometeorites and solar wind particles). Combined with other small-body responses to impact cratering (e.g., greater widespread distribution of bouldery ejecta), such processes may also help explain the unexpected small-scale character of geology on Eros. If there was a recent virtual hiatus in cratering of Eros (during which only craters <∼300 m diameter would be expected to have formed), space weathering may have reached maturity, thus explaining Eros' remarkable spectral homogeneity compared with Ida.  相似文献   

15.
The thermal emission of the lunar surface has been mapped by an infrared scanner from lunar orbit. Samples from approximately 2.5 × 105 scans reveal the full range of lunar temperatures from 80 K to 400 K. The temperature resolution was 1 K with about ± 2 K absolute precision. Spatial resolution was approximately 2 km over most of the horizon-to-horizon scan. The total mapped area amounted to approximately 30% of the lunar surface. The data currently available confirms the large population of nighttime thermal anomalies in western Oceanus Procellarum predicted by Earthbased observations. Most of these ‘hot spots’ are associated with fresh impact features or boulder fields. Also seen in the data are ‘cold spots’ where  相似文献   

16.
The Galileo photopolarimeter–radiometer (PPR) made over 100 observations of Europa’s surface temperature. We have used these data to constrain a diurnal thermal model and, thus, map the thermal inertia and bolometric albedo over 20% of the surface. We find an increased thermal inertia at mid-latitudes that is widespread in longitude and does not appear to correlate with geology, albedo, or other observables. Our derived thermophysical properties can be used to predict volatile stability across the surface over the course of a day and in planning of infrared instruments on future missions. Furthermore, while observations in the thermal infrared can and have been used to find endogenic activity, no such activity was detected at Europa. We have calculated the detection limits of these PPR observations and find that 100 km2 hotspots with temperatures of 116–1200 K could exist undetected on the surface, depending on the location.  相似文献   

17.
Ashok  N. M.  Chandrasekhar  T.  Ragland  Sam  Bhatt  H. C. 《Experimental Astronomy》1994,4(3-4):177-188
A recently developed near infrared high speed photometer intended for lunar oc-cultation studies is described. The primary scientific objective is to reach milli arc second levels of angular resolution so that circumstellar structure of the occulted sources can be resolved. Near infrared sky brightness close to the lunar limb is also studied. Angular diameter derived from the observed occultation of IRC +20169 is presented and system performance discussed.  相似文献   

18.
During the 1973 to 1974 opportunity, we obtained thermal maps of Venus on 16 days during a span of 43 days just before inferior conjunction. The spatial resolution was about 3 arcsec. The average limb darkening differs from that given by Ingersoll and Orton (1974). Real day-to-day changes in limb darkening were found. An indication of 4-day repetition of a thermal anomaly was found on one occasion. The lifetime of this disturbance probably lies between 4 and 8 days. Solar-related anomalies appear to repeat in most of the images. A southern hemisphere, solar-related disturbance showed significant changes in both position and intensity over 30 days, and we tentatively identify its lifetime as about equal to this period.  相似文献   

19.
Tetsuya Tokano 《Icarus》2005,173(1):222-242
The latitudinal profile of near-surface air temperature on Titan retrieved by Voyager 1 has been difficult to understand and raised several speculations about possible exotic processes that might be occurring near Titan's surface, while the thermal properties of the surface itself are unknown. This study systematically investigates the seasonal and spatial variation of the surface temperature and air temperature in the lower troposphere by a 3-dimensional general circulation model for different putative surface types (porous icy regolith, rock-ice mixture, hydrocarbon lakes). For any viable surface type the surface temperature is unlikely to be constant through the year and should more or less vary seasonally and even diurnally, most likely by a few K. Recent observations of tropospheric clouds may be evidence of seasonal variation of the surface temperature and the model predicts in the case of solid surface the development of a convective layer with superadiabatic lapse rates near the surface exactly at those latitudes and seasons where clouds have been identified. The latitudinal profile of the surface temperature retrieved from Voyager 1 infrared spectra can be explained without invoking exotic effects, provided the thermal inertia of the surface is relatively small and/or the surface albedo is low. A dominance of water ice (high thermal inertia and high albedo) at the surface is unfavorable to reproduce the observation. The latitudinal gradient of the surface temperature is particularly large at the hydrocarbon lake surface due to low albedo and small surface drag. Local anomalies of the surface albedo or surface thermal inertia are likely to cause substantial inhomogeneities of the surface temperature. Quasi-permanent accumulation of stratospheric haze at both poles would create a perennial equator-to-pole contrast of the surface temperature, but also a substantially lower global-mean surface temperature due to an enhanced anti-greenhouse effect in summer. The air temperature in the lower troposphere exhibits a tiny latitudinal gradient and a pole-to-pole gradient due to the presence of a pole-to-pole Hadley circulation, indicating that the temperature within the planetary boundary layer may exhibit a vertical profile characteristic of season, location and scenario. There may be a shallow near-surface inversion layer in cold seasons and a shallow convective layer in warm seasons.  相似文献   

20.
We collected almost all Galactic Wolf-Rayet (hereafter WR) stars found so far from the literature. 578 WR stars are gathered in this paper. 2MASS counterparts with good quality magnitudes in all JHK bands are listed for 364 WR stars. In addition, WISE counterparts for these sources are also identified. It is found that free-free emission is the main dominant source for the infrared excess in most WR stars up to 3.4 μm. However at the longer wavelengths the thermal radiation is dominant. In addition, WR stars in Clusters of the Galactic center region have the strong infrared excess in the near infrared due to the dust thermal emission from the strong star forming activity in the Galactic center region. For some WR stars with the WC spectral type, in particular, with WCd type, the dust thermal emission is important radiation source while many WR stars with the WC spectral type have the near infrared flux enhancement from the broad line emission in the K band. It is also shown that many single WC stars with different spectral sub-types have different locations in the near infrared two-color diagram, in particular, WC6 and WC9d stars can be separated respectively from other spectral type stars while single WN stars with different spectral sub-types can not be separated in the near infrared two-color diagram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号