首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents results of measurements of magnetic-field longitudinal components B e , radial velocities V r , and projections of the rotation velocity in the line of sight v e sin i for 74 objects, mainly main-sequence chemically peculiar stars and standard stars. Observations were carried out in 2011 at the 6-m BTA telescope using the Main Stellar Spectrograph (MSS) with a Zeeman analyzer. Seven new magnetic stars were discovered: HD38129, HD47152, HD50341, HD63347, HD188501, HD191287, and HD260858. Three more stars were suspected to have magnetic fields. Observations of magnetic standard stars and non-magnetic stars confirm the absence of any systematic errors capable of introducing distortions into the B e longitudinal-field measurement results. The paper gives comments on the research results for each of the 74 stars.  相似文献   

2.
Observations with the 6-m telescope revealed eight new magnetic, chemically peculiar stars: HD 29925, HD 40711, HD 115606, HD 168796, HD 178892, HD 196691, HD 209051, and BD+32°2827. Zeeman observations of all these objects have been carried out for the first time. We selected candidates by analyzing the depression profile at a wavelength of λ5200 Å. This technique for selecting candidate magnetic stars was shown to be efficient: we found magnetic fields in 14 of the 15 objects that we selected for our observations with a Zeeman analyzer. A maximum longitudinal field strength B e exceeding 8 kG was found in HD 178892; in HD 209051 and HD196691, B e reaches 3.3 and 2.2 kG, respectively. For the remaining stars, we obtained lower limits of the longitudinal field (more than several hundred G).  相似文献   

3.
In this paper of the series we analyze three stars listed among stars with discrepant v sin i: HD9531 and HD31592, which also show radial velocity variations inherent to spectroscopic binaries, and HD129174 which is an Mn-type star with a possible magnetic field. In HD9531 we confirm the radial velocity derived fromthe hydrogen lines as well as fromthe Ca II line at 3933 Å as variable. The profile of the calcium line also appears variable, and with the estimated magnetic induction Be = ?630 ± 1340 G, this suggests that the abundance of calcium possibly varies over the surface of the star. We identified the lines of the secondary component in the spectrum of HD31592 revealing thus it is an SB2 binary with B9.5V and A0V components. While the primary star rotates with v sin i = 50 km s?1, the secondary star is faster with v sin i = 170 km s?1. We find that only 60% of the Mn lines identified in the spectrum of HD129174 can be fitted with a unique abundance value, whereas the remaining lines are stronger or fainter. We also identified two Xe II lines at 5339.33 Å and 5419.15 Å and estimated their log g f.  相似文献   

4.
We analyzed magnetic-field structures of three three-dipole magnetic stars HD 18078, HD 37776, and HD 149438. The fact that the model and observed phase dependences B e (Φ) and B s (Φ) for HD 18078 computed with the same parameters of the dipoles agree with each other shows conclusively that global magnetic structures are formed by dipole structures. Magnetic poles show up conspicuously on Mercator maps of the distribution of magnetic field, the field strength there is maximal and equal to B p = 3577, 10 700, and 275Gin the three stars mentioned above.Dipolemodelsmake it possible to analyze magnetic-field structure inside stars.  相似文献   

5.
Based on observations with the 6-m SAO RAS telescope, we have found that chemically peculiar star with a large depression of the continuum at λ5200 Å and strengthened silicon lines in the spectrum has a strong magnetic field. The longitudinal field component Be has a negative polarity and varies from ?300 G to ?2000 G with a period of 1.756 days. Photometric variations of brightness take place with the same period. We determined the variability of the radial velocity at times of about tens of years pointing to a possible binarity of the object. We have built a magnetic model of this star, determined the inclination angles of the rotation axis to the line of sight i = 20° and of the dipole axis to the rotation axis β = 116°, and the field strength at the pole is Bp = 10 kG. We carried out a chemical composition analysis and found a lack of helium for almost an order of magnitude, some overabundance of silicon and metal elements for more than an order of magnitude, particularly, cobalt for three orders of magnitude.  相似文献   

6.
We analyzed the chemical composition of the chemically peculiar (CP) star HD 0221=43 Cas using spectra taken with the NES spectrograph of the 6-m telescope with a spectral resolution of 45 000. The Hβ line profile corresponds most closely to Teff = 11 900 K and log g = 3.9. The rotational velocity is ve sin i = 27 ± 2 km s?1, and the microturbulence is ξt = 1 km s?1. The results of our abundance determination by the method of synthetic spectra show that the star has chemical anomalies typical of SrCrEu stars, although its effective magnetic field is weak, Be < 100 G. For silicon, we obtained an abundance distribution in atmospheric depth with a sharp jump of 1.5 dex at an optical depth of log τ5000 = ?0.3 and with silicon concentration in deep atmospheric layers. Similar distributions were found in the atmospheres of cooler stars with strong and weak magnetic fields. A comparison of the chemical peculiarities in HD 10221 with known CP stars with magnetic fields of various strengths leads us to conclude that a low rotational velocity rather than amagnetic field is the determining factor in the formation mechanism of chemical anomalies in the atmospheres of CP stars.  相似文献   

7.
We present the results of measuring longitudinal magnetic fields (Be), rotation velocities (ve sin i), and radial velocities (Vr) of 44 stars observed with the Main Stellar Spectrograph (MSS) of the 6-m BTA telescope of the Special Astrophysical Observatory in 2009. For the first time, magnetic fields were detected for the stars HD5441, HD199180, HD225627, and BD+00° 4535. We show that for the same stars, the longitudinal fields Be measured from the Hβ hydrogen line core and from metal lines can differ by 10% and up to a factor of 2–3. Except in rare cases, magnetic fields measured from the metal lines are stronger. We believe that this phenomenon is of a physical nature and depends on the magnetic field topology and the physical conditions inside a specific star. Observations of standard stars without magnetic fields confirm the absence of systematic errors capable of introducing distortions into the longitudinal-field measurement results. In this work we comment on the results for each of the stars.  相似文献   

8.
Observations of the chemically peculiar star HD 27404 with the 6-m SAO RAS telescope showed a strong magnetic field with the longitudinal field component varying in a complicated way in the range of ?2.5 to 1 kG. Fundamental parameters of the star (Teff = 11 300 K, log g = 3.9) were estimated analyzing photometric indices in the Geneva and in the Stro¨ mgren–Crawford photometric systems. We detected weak radial velocity variations which can be due to the presence of a close star companion or chemical spots in the photosphere. Rapid estimation of the key chemical element abundance allows us to refer HD 27404 to a SiCr or Si+ chemically peculiar A0–B9 star.  相似文献   

9.
Our spectrophotometric analysis of the atmospheres of HD 37058, HD 212454, and HD 224926 shows these objects to be typical He-w stars with close-to-zero microturbulence velocities, very different magnetic fields, and wide scatter of chemical anomalies. However, one of the main manifestations of separation is that helium moves from the outer layers of the atmosphere into the star’s interior.Our analysis of the stars HD 212454 and 224926 with Be<100 G shows that despite their weak magnetic fields they have the same degree of chemical anomaly as highly magnetized stars. Chemical composition varies over a wide range for stars with the same magnitude of magnetic field. We find the conditions in the temperature interval 13000–16000 K to be the most favorable for the formation of He-w type stars. Helium underabundance is the strongest near the maximum of the distribution and it is observed in stars with weak as well as strong fields. Because of the scatter mentioned above the degree of chemical anomalies is not strictly related to the magnitude of the magnetic field, although the field has an appreciable effect on the formation of chemical inhomogeneities at the star’s surface. Its influence is minimal in stars with very weak magnetic fields and the presence of strong chemical anomalies indicates that microturbulence in these stars is sufficiently weak even without the effect of the magnetic field. It is plausible to assume that the anomalies arise due to slow rotation.The temperature dependences of rotation velocity vsini for stars with weak magnetic fields show no apparent trends associated with the magnitude of magnetic field. The rotation velocities vsini of almost all stars are lower than those of normal stars, except for HD 131120, 142096, 142990, and 143669, which rotate with the same velocity or even faster than normal stars. These objects do not obey the general rule and their example shows that stable atmospheres can also be found among fast rotators and that magnetic field takes no part in the spin-down of CP stars. We believe that CP stars inherited their slow rotation from protostellar clouds.  相似文献   

10.
We present the results of magnetic field measurements of four chemically peculiar (CP) stars, the members of the Orion stellar association OB1. Observations were carried out with the circular polarization analyzer at the Main Stellar Spectrograph of the 6-m telescope. All the studied stars refer to the subtype of Bp stars with weak helium lines. Canadian astronomer E. F. Borra detected a magnetic field in three of them (HD35456, HD36313, and HD36526) from the Balmer line magnetometer observations. HD35881 was observed for the first time for the purpose to search for a magnetic field. We obtained the following results: HD35456 is a magnetic star with longitudinal field variation range from +300 to +650 G and a period of 4.9506 days; HD35881 is possible a new magnetic star, the longitudinal component of which varies from?1 to +1 kGwith a period of 0.6998 days, however, a small number of lines broadened by rotation does not allow us to conduct measurements more accurately; HD36313 is a binary star with the components similar in brightness, the primary component is a magnetic star with broad lines, the magnetic field of the secondary component (the star with narrow lines) was not detected. Measurements in the Hβ hydrogen line showed the variations of the longitudinal component from ?1.5 to +2 kG with a period of 1.17862 days; a strong longitudinal field was detected in HD36526 (from 0 to +3000 G) varying with a rotation period of the star of 3.081 days. In all the cases, we observe considerable discrepancies with the data on magnetic fields of these objects obtained earlier.  相似文献   

11.
We describe the results of our magnetometric monitoring of two white dwarfs: 40 Eri B and WD 0009+501. We found periodic variations in the longitudinal magnetic field of 40 Eri B. The field variability with an amplitude of ~4 kG and a zero mean is discussed in terms of an oblique rotator model. The rotation period is ~5 h 17 min, but there is another period of 2 h 25 min that may be related to nondipolar field components. The published projected rotational velocities of 40 Eri B measured from a narrow non-LTE Hα peak V sin i?8 km s?1 are in good agreement with our measurements of the magnetic field and the rotation period. The combined effect of magnetic and rotational broadening of the central Hα component constrains the rotation period, P? 5.2 h. We discovered the rotation period (1.83 h) of the magnetic white dwarf WD 0009+501. The period was found from the periodically varying magnetic field of the star with a mean 〈Be〉 = ?42.3±5.4 kG and a half-amplitude of 32.0±6.8 kG.  相似文献   

12.
The method of “virtual magnetic charges” is used to analyze the structure of the magnetic field of the CP star HD32633. The phase relation of its magnetic field differs strongly from a sine wave. The structure of the star’s field can be described fairly well by two dipoles located in the opposite regions of the star near its rotation equator. Each of these dipoles produces two pairs of magnetic spots of opposite polarity similar to sunspots. The dipoles are located at a distance of Δa=0.6 R from the center, where R is the radius of the star. The field strength at the poles is equal to ±42 and ±19 kG.  相似文献   

13.
We make a comparative analysis of magnetic fields and rotation parameters of magnetic CP stars with strong and weak anomalies in the spectral energy distribution. Stars with strong depressions in the continuum at 5200 Å are shown to have significantly stronger fields (the mean longitudinal component of the fields of these stars is 〈B e〉 = 1341 ± 98 G) compared to objects with weaker depressions (〈B e〉 = 645 ± 58 G). Stars with stronger depressions are also found to occur more commonly among slow rotators. Their rotation periods are, on the average, about 10 days long, three times longer than these of stars with weak depressions (about three days). This fact is indicative of a decrease of the degree of anomality of the magnetic stars continuum spectrum with increasing rotational velocity. Yet another proof has been obtained suggesting that slow rotation is one of the crucial factors contributing to the development of the phenomenon of magnetic chemically peculiar stars.Magnetic CP stars with weak depressions at 5200 Å are intermediate objects between stars with strong depressions and normal A- and B-type stars both in terms of field strength and rotational velocity.  相似文献   

14.
Our observations with the 6-m telescope revealed six new magnetic chemically peculiar (CP) stars among objects with large depressions in the continuum: HDE 293764, BD+17°3622, HD 169887, HDE 231054, HDE 338226, and HDE 343872. The presence of a magnetic field is suspected in several other CP stars. The maximum longitudinal field component B e exceeds 1.5 kG for all six stars; in HDE 293764 and HDE 343872, it reaches 3.8 kG. For each object, we present our magnetic-field measurements and published data on previous studies. The method of searching for magnetic stars based on an analysis of spectrophotometry shows its efficiency.  相似文献   

15.
We present an LTE analysis of high resolution echelle optical spectra obtained with the 3.9-m Anglo-Australian Telescope (AAT) and the UCLES spectrograph for a B1Ib high galactic latitude supergiant HD119608. A fresh determination of the atmospheric parameters using line-blanketed LTE model atmospheres and spectral synthesis provided Teff = 23 300 ± 1000 K, log g = 3.0 ± 0.3, and the microturbulent velocity ξ = 6.0 ± 1.0 kms?1 and [Fe/H] = 0.16. The rotational velocity of the star was derived fromC, O, N, Al, and Fe lines as v sin i = 55.8 ± 1.3 kms?1. Elemental abundances were obtained for 10 different species. He, Al, and P abundances of the star were determined for the first time. In the spectra, hot post-AGB status as well as the Pop I characteristics of the star were examined. The approximately solar carbon and oxygen abundances, along with mild excess in helium and nitrogen abundances do not stipulate a CNO processed surface composition, hence a hot post-AGB status. The LTE abundances analysis also indicates solar sulphur and moderately enriched magnesium abundances. The average abundances of B dwarfs of well studied OB associations and Population I stars show a striking resemblance to abundances obtained for HD119608 in this study. This may imply a runaway status for the star.  相似文献   

16.
We present the results of a comprehensive study of the chemically peculiar stars HD 5797 and HD 40711. The stars have the same effective^temperature, T eff = 8900 K, and a similar chemical composition with large iron (+1.5 dex) and chromium (+3 dex) overabundances compared to the Sun. The overabundance of rare-earth elements typically reaches +3 dex. We have measured the magnetic field of HD 5797. The longitudinal field component B e has been found to vary sinusoidally between −100 and +1000 G with a period of 69 days. Our estimate of the evolutionary status of the stars suggests that HD 5797 and HD 40711, old objects with an age t ≈ 5 × 108 yr, are near the end of the core hydrogen burning phase.  相似文献   

17.
The processing of the plates of the Kitab part of the FON project has been completed. In total, 1963 plates were processed. The catalog of equatorial coordinates α, δ, and B-magnitudes for 13 413268 stars and galaxies up to B ≤ 17.5 m for the epoch 1984.97 is compiled. The Epson Expression 10000XL scanner with a 1200 dpi scanning mode and a plate size of 30 × 30 cm or 13000 × 13000 pel was used to digitize astronegatives. Coordinates of stars and galaxies are obtained in the Tycho-2 catalog system and B-magnitudes are obtained in the photovoltaic system. The catalog internal accuracy for all objects is σα,δ = 0.23" and σ B = 0.15 m (for stars in the range B = 5 m …14 m , errors are σα,δ = 0.085" and σ B = 0.054 m ) for equatorial coordinates and stellar B-magnitudes, respectively. Convergence between the calculated and reference positions is σα,δ = 0.042", and convergence between photoelectric B-magnitudes is σ B = 0.16 m . Coordinate errors with respect to the UCAC-4 catalog are σα,δ = 0.26" (9892697 or 73.75% of stars and galaxies were identified).  相似文献   

18.
The spectra taken with the Main Stellar Spectrograph (MSS) of the 6-m telescope with a resolution of R ~ 15000 and a signal-to-noise ratio of 200–300 are used to determine the radial velocities and projected rotational velocities (υ e sin i) for 32 magnetic CP stars. Measured υ e sin i values range from 18 km/s (the lower boundary determined by the instrumental profile) to 65 km/s. Measurements of standard stars demonstrate the absence of systematic differences between our and published data. Eight of the 32 magnetic stars are found or confirmed to be binary and binarity is suspected for another four stars. The components of tangential velocity are determined for 27 stars with known parallaxes.  相似文献   

19.
We present the results of multicolor (UBV JHKLM) photometry (2009–2017) and low-resolution spectroscopy (2016–2017) of the semi-regular variable V1427 Aql = HD 179821, a yellow supergiant with gas-dust envelope. The star displays low-amplitude (ΔV<0 . m 2) semi-periodic brightness variations superimposed on a long-term trend. The light curve shape and timescale change from cycle to cycle. There are temperature variations characteristic for pulsations; brightness oscillations with no significant change of color are also observed. The UBV data for the 2009–2011 interval are well reproduced by a superposition of two periodic components with P = 170d and 141d (or P = 217d—the one year alias of P = 141d). The variation became less regular after 2011, the timescale increased and exceeded 250d. Unusual photometric behavior was seen in 2015 when the star brightness increased by 0 . m 25 in the V filter in 130 days and reached the maximum value ever observed in the course of our monitoring since 1990. In 2009–2016 the annual average brightness monotonically increased in V, J, K, whereas it decreased in U and B. The annual average U ? B, B ? V, and J ? K colors grew, the star was getting redder. The cooling and expanding of the star photosphere along with the increasing of luminosity may explain the long-term trend in brightness and colors. Based on our photometric data we suppose that the photosphere temperature decreased by ~400 K in the 2008–2016 interval, the radius increased by ~24%, and the luminosity grew by ~19%. We review the change of annual average photometric data for almost 30 years of observations. Low-resolution spectra in the λ4000?9000 Å wavelength range obtained in 2016–2017 indicate significant changes in the spectrum of V1427 Aql as compared with the 1994–2008 interval, i.e., the Ba II and near-infraredCa II triplet absorptions have gotten stronger while the OI λ7771-4 triplet blend has weakened that points out the decrease of temperature in the region where the absorptions are formed. The evolutionary stage of the star is discussed. We also compare V1427 Aql with post-AGB stars and yellow hypergiants.  相似文献   

20.
The possibility of investigating the vertical structure of the magnetic field in chemically peculiar main-sequence stars is discussed. The nonuniform distribution of chemical elements over the surface complicates the problem substantially. The most efficient measurements are shown to be those of the longitudinal field components based on spectral lines with wavelengths longer and shorter than 3646 Å (shortward and longward of the Balmer jump), which form at different optical depths in the atmosphere. Various methodological problems are addressed that must be overcome in order to accomplish the task. The brightest magnetic star α 2 CVn is observed with the echelle spectrometer equipped with an Uppsala CCD chip. New observations corroborate our previous result: the longitudinal component of the magnetic field B e of the α 2 CVn star increases with depth by about 30% over the atmosphere thickness scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号