首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we summarize results of studies on ophiolitic mélanges of the Bangong–Nujiang suture zone (BNSZ) and the Shiquanhe–Yongzhu–Jiali ophiolitic mélange belt (SYJMB) in central Tibet, and use these insights to constrain the nature and evolution of the Neo-Tethys oceanic basin in this region. The BNSZ is characterized by late Permian–Early Cretaceous ophiolitic fragments associated with thick sequences of Middle Triassic–Middle Jurassic flysch sediments. The BNSZ peridotites are similar to residual mantle related to mid-ocean-ridge basalts (MORBs) where the mantle was subsequently modified by interactions with the melt. The mafic rocks exhibit the mixing of various components, and the end-members range from MORB-types to island-arc tholeiites and ocean island basalts. The BNSZ ophiolites probably represent the main oceanic basin of the Neo-Tethys in central Tibet. The SYJMB ophiolitic sequences date from the Late Triassic to the Early Cretaceous, and they are dismembered and in fault contact with pre-Ordovician, Permian, and Jurassic–Early Cretaceous blocks. Geochemical and stratigraphic data are consistent with an origin in a short-lived intra-oceanic back-arc basin. The Neo-Tethys Ocean in central Tibet opened in the late Permian and widened during the Triassic. Southwards subduction started in the Late Triassic in the east and propagated westwards during the Jurassic. A short-lived back-arc basin developed in the middle and western parts of the oceanic basin from the Middle Jurassic to the Early Cretaceous. After the late Early Jurassic, the middle and western parts of the oceanic basin were subducted beneath the Southern Qiangtang terrane, separating the Nierong microcontinent from the Southern Qiangtang terrane. The closing of the Neo-Tethys Basin began in the east during the Early Jurassic and ended in the west during the early Late Cretaceous.  相似文献   

2.
The Yakchi chert–volcanogenic formation is differentiated at the base of the stratigraphic succession in the Khor-Tormasu subzone of the Central Sikhote-clin structural–formational zone or the Samarka terrane of the Jurassic accretionary prism. The paper considers the results of biostratigraphic study of its deposits and petrogeochemical studies of its basalts. A tectonically disrupted sequence of the Yakchi Formation is restored on the basis of fossil conodonts and radiolarians, and its Late cermian–Middle Jurassic age is determined. The authors interpret the resulting stratigraphic succession in terms of changing depositional settings on the moving oceanic plate and recognize events of the ocean history recorded in it. Chert accumulated on the oceanic plate in pelagic canthalassa/caleopacifica from the Late cermian through to the Middle Jurassic. Deposition of siliceous claystone in the Late cermian–Early Triassic reflects the decline in productivity of radiolarians and a long anoxic event in Panthalassa. Chert accumulation resumed in the Triassic and persisted in the Jurassic, and it was interrupted by the eruption of basalts of different nature. Formation of the Middle–Late Triassic oceanic intraplate basalts likely occurred on the thick and old oceanic lithosphere and that of the Jurassic basalts on the thin and newly created lithosphere. In the Middle Jurassic, chert accumulation was replaced by accumulation of tuffaceous siltstone at a subduction zone along the csian continental margin. The middle Bathonian–early Callovian age of this siltstone closely predates accretion of the Yakchi Formation. The materials of the upper layer of the oceanic plate that formed over 100 million years in different parts of the ocean and on the lithospheric fragments of different ages were accreted to the continental margin. The bulk of the accreted material consists of oceanic intraplate basalts, i.e., fragments of volcanic edifices on the oceanic floor. accretion of this western part of the Khor-Tormasu subzone occurred concurrently with accretion of the southeastern part of the Samarka subzone in Primorye, which clarifies the paleotectonic zonation of the Central Sikhote-Alin accretionary prism. The cataclastic gabbroids and granitoids, as well as the clastic rocks with shallow-marine fossils in the Khor-Tormasu subzone, are considered as possible analogues of the Okrainka-Sergeevka allochthonous complex.  相似文献   

3.
Basalts developed on the right bank of the Matai River belong to the Samarka terrane (Central Sikhote Alin), which is a fragment of the Jurassic accretionary prism. They associate with Carboniferous-Permian reef limestones, Permian pelagic cherts, Jurassic hemipelagic cherty-clayey deposits, and terrigenous rocks of the near-continental sedimentation area. The petrogeochemical features of the basalts provide insight into the character of the volcanism in different settings of the ancient Pantalassa ocean. In terms of chemistry, the Carboniferous-Permian basalts are similar to the within-plate ocean-island basalts related to plume mantle sources. They were presumably formed in an oceanic area with numerous islands and seamounts. The Permian basalts associated with cherts are tholeiitic in composition and were formed from depleted mantle in a spreading center located in the pelagic area. The Jurassic basalts are of plume origin and, in terms of geochemistry, occupy an intermediate position between OIB and E-MORB. They were presumably formed in a convergent zone in a geodynamic setting of rapid oblique subduction.  相似文献   

4.
BASIN-RANGE TRANSITION AND GENETIC TYPES OF SEQUENCE BOUNDARY OF THE QIANGTANG BASIN IN NORTHERN TIBET  相似文献   

5.
《Gondwana Research》2014,26(4):1680-1689
In southern Tibet, Late Triassic sequences are especially important to understanding the assembly of the Lhasa terrane prior to Indo-Asian collision. We report new data relevant to the provenance of a Late Triassic clastic sequence from the Mailonggang Formation in the central Lhasa terrane, Tibet. Petrographic studies and detrital heavy mineral assemblages indicate a proximal orogenic provenance, including volcanic, sedimentary and some ultramafic and metamorphic rocks. In situ detrital zircon Hf and U–Pb isotope data are consistent with derivation of these rocks from nearby Triassic magmatic rocks and basement that comprise part of the newly recognized Late Permian–Triassic Sumdo–Cuoqen orogenic belt. The new data suggests correlation with the Upper Triassic Langjiexue Group which lies on the opposing (southern) side of Indus–Yarlung ophiolite. Sediments from both the Mailonggang Formation and Langjiexue Group are interpreted to represent formerly contiguous parts of a sequence deposited on the southern flanks of the Sumdo–Cuoqen belt.  相似文献   

6.
The Late Permian–early Middle Triassic strata of the northern West Qinling area, northeastern Tibetan Plateau, are composed of sediment gravity flow deposits. Detailed sedimentary facies analysis indicates these strata were deposited in three successive deep-marine environments. The Late Permian–early Early Triassic strata of the Maomaolong Formation and the lowest part of the Longwuhe Formation define a NW–SE trending proximal slope environment. Facies of the Early Triassic strata composing the middle and upper Longwuhe Formation are consistent with deposition in a base-of-slope apron environment, whereas facies of the Middle Triassic Anisian age Gulangdi Formation are more closely associated with a base-of-slope fan depositional environment. The lithofacies and the spatial–temporal changes in paleocurrent data from these strata suggest the opening of a continental margin back-arc basin system during Late Permian to early Middle Triassic time in the northern West Qinling. U–Pb zircon ages for geochemically varied igneous rocks with diabasic through granitic compositions intruded into these deep-marine strata range from 250 to 234 Ma. These observations are consistent with extensional back-arc basin development and rifting between the Permian–Triassic Eastern Kunlun arc and North China block during the continent–continent collision and underthrusting of the South China block northward beneath the Qinling terrane of the North China block. Deep-marine sedimentation ended in the northern West Qinling by the Middle Triassic Ladinian age, but started in the southern West Qinling and Songpan-Ganzi to the south. We attribute these observations to southward directed rollback of Paleo-Tethys oceanic lithosphere, continued attenuation of the West Qinling on the upper plate, local post-rift isostatic compensation in the northern West Qinling area, and continued opening of a back-arc basin in the southern West Qinling and Songpan-Ganzi. Rollback and back-arc basin development during Late Permian to early Middle Triassic time in the West Qinling area explains: the truncated map pattern of the Eastern Kunlun arc, the age difference of deep-marine sediment gravity flow deposits between the Late Permian–early Middle Triassic northern West Qinling and the late Middle Triassic–Late Triassic southern West Qinling and Songpan-Ganzi, and the discontinuous trace of ophiolitic rocks associated with the Anyemaqen-Kunlun suture.  相似文献   

7.
This paper presents data on the geological position, geochemistry, age, and isotopic characteristics of the granitoids of the southern part of the Voznesenka terrane, Southern Primorye (Muraviev–Amursky Peninsula and its vicinities). All of the studied granitoids were formed in three stages: the Ordovician, Silurian, and Permian. The Silurian and Permian ages of the granitoid intrusions have been previously determined (Ostrovorussky Massif, 432–422 Ma, and 250 ± 4 Ma, early and late associations, respectively; Sedanka massif, 261 ± 3 Ma). The granites of the Artem and Nadezhdinsky massifs define an U–Pb zircon age of 481 ± 6 and 452 ± 4 Ma, respectively. The geochemical and isotope data show mainly the crustal nature of the granitoids. Their formation was related to melting of relatively immature rocks of the continental crust (mafic–intermediate volcanic rocks). The Nd isotope composition of the granitods (TNd(DM–2) = 1.3 Ga) indicates the absence of the mature ancient crust at the basement of the southern Voznesenka terrane. The maximum contribution of mantle sources to the granite formation is recorded in the Permian associations. A comparison of the peaks of intrusive magmatism in the southern part of the Voznesenka terrane and adjacent territories suggests that the formation of the granitoids of the Muraviev–Amursky Peninsula and its vicinities was caused by the interaction of continental blocks with two oceanic basins: the Paleoasian (and its fragments) and Paleopacific ones.  相似文献   

8.
The Kuznetsk Basin is located in the northern part of the Altai–Sayan Folded Area (ASFA), southwestern Siberia. Its Late Permian–Middle Triassic section includes basaltic stratum-like bodies, sills, formed at 250–248 Ma. The basalts are medium-high-Ti tholeiites enriched in La. Compositionally they are close to the Early Triassic basalts of the Syverma Formation in the Siberian Flood basalt large igneous province, basalts of the Urengoi Rift in the West Siberian Basin and to the Triassic basalts of the North-Mongolian rift system. The basalts probably formed in relation to mantle plume activity: they are enriched in light rare-earth elements (LREE; Lan = 90–115, La/Smn = 2.4–2.6) but relatively depleted in Nb (Nb/LaPM = 0.34–0.48). Low to medium differentiation of heavy rare-earth elements (HREE; Gd/Ybn = 1.4–1.7) suggests a spinel facies mantle source for basaltic melts. Our obtained data on the composition and age of the Kuznetsk basalts support the previous idea about their genetic and structural links with the Permian–Triassic continental flood basalts of the Siberian Platform (Siberian Traps) possibly related to the activity of the Siberian superplume which peaked at 252–248 Ma. The abruptly changing thickness of the Kuznetsk Late Permian–Middle Triassic units suggests their formation within an extensional regime similar to the exposed rifts of Southern Urals and northern Mongolia and buried rifts of the West Siberian Basin.  相似文献   

9.
Regional mapping (1:50,000) and U-Pb and K-Ar geochronology in the El Indio region refines the knowledge of the distribution, lithostratigraphy, and age of the sedimentary, volcanic, and intrusive rocks that comprise the regionally extensive Pastos Blancos Group which is equivalent to the Choiyoi Group of the Argentine Frontal Cordillera. The Pastos Blancos Group (which we elevate to Group status herein) includes at least two diachronous volcanic–sedimentary sequences: an older felsic volcanic and volcaniclastic unit, the Guanaco Sonso sequence, that is Permian in age, and a younger bimodal volcanic and volcaniclastic unit, the Los Tilos sequence that is Middle Triassic to Early Jurassic. Sedimentary rocks of the Los Tilos sequence are transitional upward into the overlying Early to Middle Jurassic shallow marine limestones of the Lautaro Formation.Intrusions that make up the regionally extensive Permian to Early Jurassic plutons of the Chollay and Elqui-Limarı́ batholiths that were previously mapped as a single plutonic association, the Ingaguás Complex, include in the El Indio region at least three discrete intrusive units. These include: Early Permian (280–270 Ma) biotite granites, Early to Middle Triassic (242–238 Ma) silica-rich leucocratic granites and rhyolitic porphyries that made up the bulk of the Chollay Batholith, and a younger Late Triassic–Early Jurassic unit (221–200 Ma) of mainly intrusive rhyolitic porphyries, extrusive domes, and subordinate mafic intrusions and both felsic and mafic dikes, which are coeval with volcanic rocks of the Los Tilos sequence.Our data show that latest Paleozoic to Early Jurassic intrusive, volcanic, and sedimentary rocks in the El Indio region of the High Andes of Chile between 29–30°S likely formed during extension driven processes after the cessation of Carboniferous–Early Permian subduction along the western edge of Gondwana. These processes began by Late Permian time, but instead of recording a single and protracted magmatic event, as has been previously suggested, rocks that belong to the Pastos Blancos Group and the Ingaguás Intrusive Complex record at least three discrete periods of silicic to bimodal magmatism which occurred during the Middle Permian to Early Jurassic interval.  相似文献   

10.
四川盆地中三叠统雷口坡组勘探已近40年,但迄今为止只发现了两个大中型气藏.近年来,雷口坡组钻井油气显示活跃,展示了良好的勘探前景.四川盆地中三叠统气藏储层主要位于底部雷一段、顶部雷三一雷四段,天然气主要来源于上二叠统龙潭组和上三叠统须家河组烃源岩,各气藏天然气组分特征也不尽相同,储集空间均以各类次生溶蚀孔隙为主,多为低...  相似文献   

11.
We present zircon U–Pb dating, whole-rock geochemistry, and Sr–Nd isotope results for the Upper Permian–Upper Triassic volcanic rocks to constrain the timing of the final closure of the eastern segment of the Palaeo-Asian Ocean. The volcanic rocks were mainly collected from the Yanbian area in eastern Jilin Province, northeastern China. The zircon U–Pb dating results indicate that the samples can be classified as Upper Permian–Lower Triassic basalts (ca. 262–244 Ma) and Upper Triassic dacites (ca. 216 Ma). The whole-rock geochemical results indicate that the rocks predominately belong to the medium-K and high-K calc-alkaline series. The basalts are enriched in large ion lithophile elements (LILEs, e.g. Ba and K) and depleted in high field strength elements (HFSEs, e.g. Nb and Ta), with weak positive Eu anomalies. The dacites are enriched in LILEs (e.g. Rb, Ba, Th, and K) and light rare earth elements (LREEs) and marked depletion in some HFSEs (e.g. Nb, Ta, and Ti), with significant negative Sr, P, and Eu anomalies. Moreover, the Upper Permian–Lower Triassic basalts have low initial 87Sr/86Sr ratios (0.7037–0.7048) and high εNd values (4.4–5.4). In contrast, the Upper Triassic dacites possess relatively high initial 87Sr/86Sr ratios (0.7052) compared with their low εNd values (1.4). The basaltic magma likely originated from the partial melting of a depleted mantle wedge metasomatized by subduction-related fluids, and the felsic magmas likely originated from the partial melting of a dominantly juvenile source with a minor component of ancient crust. Taken together, the Upper Permian–Lower Triassic basalts (ca. 262–244 Ma) are arc basalts that formed in an active continental margin setting, and the Upper Triassic dacites (ca. 216 Ma) are A-type granitic rocks that formed in an extensional setting. Therefore, the final closure of the Palaeo-Asian Ocean occurred during the Middle–Late Triassic.  相似文献   

12.
羌塘盆地东部那益雄组玄武岩地球化学特征及构造意义   总被引:1,自引:0,他引:1  
羌塘盆地东部那益雄组玄武岩作为裂谷演化最后阶段的喷发产物,其成岩年龄和地球化学特征为裂谷的关闭时间和二叠纪构造演化提供了重要约束.在剖面地质调查基础上,对那益雄组玄武岩进行了LA-ICP-MS锆石U-Pb测年及全岩分析测试,结果显示:那益雄组玄武岩锆石U-Pb年龄为257.2±2.9 Ma,形成于晚二叠世;该玄武岩属于大陆拉斑玄武岩系列,轻微富集Ta元素而轻微亏损Nb元素,是软流圈地幔物质上涌与岩石圈地幔相互作用的产物,形成于裂谷关闭碰撞后的伸展背景.羌塘地块东部二叠纪玄武岩的地球化学数据显示,早二叠世-晚二叠世玄武岩具有由OIB型玄武岩向火山弧型玄武岩过渡的演化趋势,表明羌塘地块东部板内裂谷在早二叠世打开,中二叠世进入裂谷演化阶段,于晚二叠世关闭.   相似文献   

13.

Devonian and Carboniferous (Yarrol terrane) rocks, Early Permian strata, and Permian‐(?)Triassic plutons outcrop in the Stanage Bay region of the northern New England Fold Belt. The Early‐(?)Middle Devonian Mt Holly Formation consists mainly of coarse volcaniclastic rocks of intermediate‐silicic provenance, and mafic, intermediate and silicic volcanics. Limestone is abundant in the Duke Island, along with a significant component of quartz sandstone on Hunter Island. Most Carboniferous rocks can be placed in two units, the late Tournaisian‐Namurian Campwyn Volcanics, composed of coarse volcaniclastic sedimentary rocks, silicic ash flow tuff and widespread oolitic limestone, and the conformably overlying Neerkol Formation dominated by volcaniclastic sandstone and siltstone with uncommon pebble conglomerate and scattered silicic ash fall tuff. Strata of uncertain stratigraphic affinity are mapped as ‘undifferentiated Carboniferous’. The Early Permian Youlambie Conglomerate unconformably overlies Carboniferous rocks. It consists of mudstone, sandstone and conglomerate, the last containing clasts of Carboniferous sedimentary rocks, diverse volcanics and rare granitic rocks. Intrusive bodies include the altered and variably strained Tynemouth Diorite of possible Devonian age, and a quartz monzonite mass of likely Late Permian or Triassic age.

The rocks of the Yarrol terrane accumulated in shallow (Mt Holly, Campwyn) and deeper (Neerkol) marine conditions proximal to an active magmatic arc which was probably of continental margin type. The Youlambie Conglomerate was deposited unconformably above the Yarrol terrane in a rift basin. Late Permian regional deformation, which involved east‐west horizontal shortening achieved by folding, cleavage formation and east‐over‐west thrusting, increases in intensity towards the east.  相似文献   

14.
黄云飞  张昌民  朱锐  易雪斐  瞿建华  唐勇 《地球科学》2017,42(10):1736-1749
二叠纪-三叠纪之交重大地质转折期,海相地质记录指示全球发生了一系列显著的生物和环境事件, 但是,该时期陆相古气候、古风化作用等方面的研究还很薄弱,争议较大.为了恢复新疆准噶尔盆地玛湖凹陷上二叠统乌尔禾组至中三叠统克拉玛依组的古气候、物源特征等, 本研究对玛湖凹陷钻井岩心中的泥岩样品开展了全岩主量和微量元素测试,采用多种化学风化指数判定源区风化程度及古气候条件,通过多种地球化学比值及图解来恢复源岩岩性及其构造背景.化学蚀变指数(Chemical Index of Alteration, CIA)、化学风化指数(Chemical Index of Weathering, CIW)、Parker风化指数(Weathering Index of Parker, WIP)和斜长石蚀变指数(Plagioclase Index of Alteration, PIA)等多种化学风化作用指标均指示,玛湖凹陷自晚二叠世至早三叠世发生显著的风化作用变化,由低等程度的化学风化作用转变为中等程度的化学风化作用,某些季节可能会较为温暖湿润,且在整个早三叠世保持大致稳定,在早三叠世晚期稍减弱,这与锶同位素反映的全球风化作用变化趋势一致.中三叠世时的化学风化作用与早三叠世相比,并未降低,反而稍有增加,这可能代表了地区性事件.早三叠世化学风化作用显著增强的原因可能在于全球变暖、植被破坏及季节性降雨增加等.此外,上二叠统乌尔禾组至中三叠统克拉玛依组的物源岩性主要为长英质火成岩,源岩形成时的构造背景可能为大洋岛弧环境.   相似文献   

15.
A dropstone‐bearing, Middle Permian to Early Triassic peri‐glacial sedimentary unit was first discovered from the Khangai–Khentei Belt in Mongolia, Central Asian Orogenic Belt. The unit, Urmegtei Formation, is assumed to cover the early Carboniferous Khangai–Khentei accretionary complex, and is an upward‐fining sequence, consisting of conglomerates, sandstones, and varved sandstone and mudstone beds with granite dropstones in ascending order. The formation was cut by a felsic dike, and was deformed and metamorphosed together with the felsic dike. An undeformed porphyritic granite batholith finally cut all the deformed and metamorphosed rocks. LA‐ICP‐MS, U–Pb zircon dating has revealed the following 206Pb/238U weighted mean igneous ages: (i) a granite dropstone in the Urmegtei Formation is 273 ± 5 Ma (Kungurian of Early Permian); (ii) the deformed felsic dike is 247 ± 4 Ma (Olenekian of Early Triassic); and (iii) the undeformed granite batholith is 218 ± 9 Ma (Carnian of Late Triassic). From these data, the age of sedimentation of the Urmegtei Formation is constrained between the Kungurian and the Olenekian (273–247 Ma), and the age of deformation and metamorphism is constrained between the Olenekian and the Carnian (247–218 Ma). In Permian and Triassic times, the global climate was in a warming trend from the Serpukhovian (early Late Carboniferous) to the Kungurian long and severe cool mode (328–271 Ma) to the Roadian to Bajocian (Middle Jurassic) warm mode (271–168 Ma), with an interruption with the Capitanian Kamura cooling event (266–260 Ma). The dropstone‐bearing strata of the Urmegtei Formation, together with the glacier‐related deposits in the Verkhoyansk, Kolyma, and Omolon areas of northeastern Siberia (said to be of Middle to Late Permian age), must be products of the Capitanian cooling event. Although further study is needed, the dropstone‐bearing strata we found can be explained in two ways: (i) the Urmegtei Formation is an autochthonous formation indicating a short‐term expansion of land glacier to the central part of Siberia in Capitanian age; or (ii) the Urmegtei Formation was deposited in or around a limited ice‐covered continent in northeast Siberia in the Capitanian and was displaced to the present position by the Carnian.  相似文献   

16.
论古代海洋碳酸盐沉积环境基本模式   总被引:5,自引:0,他引:5       下载免费PDF全文
我国碳酸盐地层分布广泛,厚度巨大,类型复杂,从而为我国碳酸盐研究提供广阔前景。解放以后,我国首先在四川盆地的二、三叠系碳酸盐岩中获得高产气田,推动了碳酸盐岩的研究。  相似文献   

17.
New data on geochemical features of the Lower Paleozoic terrigenous rocks in the Mamyn terrane (eastern Central Asian Fold Belt) and U–Pb geochronological studies of the detrital zircon from these rocks are presented. The obtained results suggest the following conclusions. 1. At present, the Kosmataya sequence includes different age Lower Cambrian terrigenous–carbonate and Lower Ordovician terrigenous rocks or represents Lower Ordovician olistostromes including limestone blocks with the Lower Cambrian fauna. Lower Ordovician terrigenous rocks were formed in an island arc or active continental margin, mainly, owing to the erosion of Cambrian–Early Ordovician plutons and volcanics that are widespread in structures of the Mamyn terrane and weakly reworked by the chemical weathering. 2. The Silurian Mamyn Formation was developed at a passive continental margin. The main sources of clastic material for this formation were the same Cambrian–Early Ordovician igneous rocks as for the Cambrian sequence, with the participation of Early Silurian and Vendian igneous complexes. The obtained data significantly refine concepts about the geological structure of the Mamyn terrane, which is a member of the Argun Superterrane, one of the largest tectonic structures in the eastern Central Asian Fold Belt.  相似文献   

18.
In order to constrain the detrital provenance of the siliciclastic rocks, palaeogeographic variations, and crustal growth history of central China, we carried out simultaneously in situ U–Pb dating and trace element and Hf isotope analyses on 368 detrital zircons obtained from upper Permian–Triassic sandstones of the Songpan terrane, eastern Tibetan Plateau. Two groups of detrital zircons, i.e. magmatic and metamorphic in origin, have been identified based on cathodoluminescence images, zircon Ti-temperatures, and Th/U ratios. Our data suggest that the derivation of siliciclastic rocks in the Songpan terrane was mainly from the Qinling, Qilian, and Kunlun orogens, whereas the Yangtze and North China Cratons served as minor source areas during late Permian–Triassic times. The detrital zircons from Middle–Late Triassic siliciclastic rocks exhibit wide age spectra with two dominant populations of 230–600 Ma and >1600 Ma, peaking at ~1.8–1.9 Ga and ~2.4–2.5 Ga, suggestive of a derivation from the Qinling, Qilian, and Kunlun orogens and the Yangtze Craton being the minor source area. The proportions of detrital zircon populations from the northern Qinling, Qilian, and Kunlun orogens distinctly decreased during Middle–Late Triassic time, demonstrating that the initial uplift of the western Qinling occurred then and it could have blocked most of the detritus from the Qilian–northern Qinling orogens and North China Cratons into the main Songpan–Ganzi depositional basin. The relatively detrital zircon proportions of the Yangtze Craton source decreased during Early-Middle Late Triassic time, indicating that the Longmenshan orogen was probably being elevated, since the early Late Triassic and gradually formed a barrier between the Yangtze Craton and the Songpan terrane. In addition, our Lu–Hf isotopic results also reveal that the Phanerozoic magmatic rocks in central China had been the primary products of crustal reworking with insignificant formation of a juvenile crust.  相似文献   

19.
广西晚古生代构造沉积背景的初步研究   总被引:36,自引:4,他引:36       下载免费PDF全文
广西西部存在晚古生代连续深海沉积,其中各个时代玄武岩广泛分布,具大洋板内地化特征。桂西和柳州地区晚古生代硅质岩有明显的铈负异常,指示本区可能属远洋沉积环境。狭窄的深水地层条带具强烈的构造形变,所环绕的碳酸盐台地却产状平缓。区域地质分析表明,广西在晚古生代可能代表扬子和印支地块之间的古特提斯水道,碳酸盐台地可能为广海中的水下高地。  相似文献   

20.
The time of final closure of the Palaeo-Tethys and the Sibumasu-Indochina collision in Southeast Asia represents a major unresolved geologic problem. Here, we present zircon chronology, whole-rock elemental, Sr–Nd, and zircon Hf isotopic geochemistry for newly discovered mafic dikes from the northern segment of the Sibumasu terrane, to provide constraints on this issue. Zircon U–Pb data indicate that the dikes were emplaced at 240 ± 3 Ma. These are the earliest Mesozoic magmatic rocks reported so far in the Sibumasu terrane, the late Palaeozoic passive margin of the Palaeo-Tethys. They are subalkaline tholeiites, showing geochemical characteristics similar to those of enriched mid-ocean ridge basalts (E-MORBs). They have 87Sr/86Sr(t) ratios of 0.703161–0.703826, ?Nd(t) of +4.8 to +7.5, and zircon ?Hf(t) of +9.2 to +13.3, implying strong mantle depletion. They were derived by partial melting of asthenospheric mantle and underwent subsequent fractional crystallization and lithospheric assimilation. The geologic–petrologic evidence suggests that the mafic dikes were generated in a collisional setting, when suturing of the Baoshan and Simao subterranes (the two subterranes are part of the Sibumasu and Indochina terranes, respectively) occurred. These early Middle Triassic mafic dikes provide an upper limit for Sibumasu–Indochina collision. In conjunction with previous work, we conclude that the final closure of the Palaeo-Tethys and collision of the Sibumasu and Indochina terranes took place during the late Permian to Early Triassic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号