首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We described seasonal fish-assemblages in an estuarine marsh fringing Matagorda Bay, Gulf of Mexico. Habitat zones were identified by patterns of fish species abundance and indicator species optima along gradients in salinity, dissolved oxygen (DO), and depth in our samples. Indicators of the lower brackish zone (lower lake and tidal bayou closest to the bay) were gulf menhaden (Brevoortia patronus), bay anchovy (Anchoa mitchilli), silver perch (Bairdiella chrysoura), and spotted seatrout (Cynoscion nebulosus) at salinity >15‰, DO 7–10 mg l−1, and depth <0.5 m. Indicators of the upper brackish zone (lake and fringing salt marsh) were pinfish (Lagodon rhomboides) and spot (Leiostomus xanthurus) at salinity 10–20‰, DO >10 mg l−1, and depth <0.5 m. In the freshwater wetland zone (diked wetland, ephemeral pool, and perennial scour pool), indicators were sheepshed minnow (Cyprinod on variegatus), rainwater killifish (Lucania parva), mosquitofish (Gambusia affinis), and sailfin molly (Poecilia latipinna) at salinity <5‰, DO <5 mg l−1, and depth ≥1 m. In the freshwater channelized zone (slough and irrigation canal), indicators were three sunfish species (Lepomis), white crappie (Pomoxis annularis), and gizzard shad (Dorosoma cepedianum) at salinity <5‰, DO <5 mg l−1, and depth >1.5 m. In brackish zones, seasonal variation in species diversity among sites was positively correlated with temperature, but assemblage structure also was influenced by depth and DO. In the freshwater zones, seasonal variation in species diversity among sites was positively correlated with depth, DO, and salinity, but assemblage structure was weakly associated with temperature. Species diversity and assemblage structure were strongly affected by the connectivity between freshwater wetland and brackish zones. Uncommon species in diked wetlands, such as tarpon (Megalops atlanticus) and fat sleeper (Dormitator maculatus), indicated movement of fishes from the brackish zone as the water level rose during natural flooding and scheduled (July) releases from the diked wetland. From September to July, diversity in the freshwater wetland zone decreased as receding waters left small isolated pools, and fish movement became blocked by a water-control structure. Subsequently, diversity was reduced to a few species with opportunistic life histories and tolerance to anoxic conditions that developed as flooded vegetation decayed.  相似文献   

2.
A 52-yr record of dissolved oxygen in Chesapeake Bay (1950–2001) and a record of nitrate (NO3 ) loading by the Susquehanna River spanning a longer period (1903, 1945–2001) were assembled to describe the long-term pattern of hypoxia and anoxia in Chesapeake Bay and its relationship to NO3 loading. The effect of freshwater inflow on NO3 loading and hypoxia was also examined to characterize its effect at internannual and longer time scales. Year to year variability in river flow accounted for some of the observed changes in hypoxic volume, but the long-term increase was not due to increased river flow. From 1950–2001, the volume of hypoxic water in mid summer increased substantially and at an accelerating rate. Predicted anoxic volume (DO<0.2 mg I−1) at average river flow increased from zero in 1950 to 3.6×109 m3 in 2001. Severe hypoxia (DO<1.0 mg I−1) increased from 1.6×109 to 6.5×109 m3 over the same period, while mild hypoxia (DO<2.0 mg I−1) increased from 3.4×109 to 9.2×109 m3. NO3 concentrations in the Susquehanna River at Harrisburg, Pennsylvania, increased up to 3-fold from 1945 to a 1989 maximum and declined through 2001. On a decadal average basis, the superposition of changes in river flow on the long-term increase in NO3 resulted in a 2-fold increase in NO3 loading from the Susquehanna River during the 1960s to 1970s. Decadal average loads were subsequently stable through the 1990s. Hypoxia was positively correlated with NO3 loading, but more extensive hypoxia was observed in recent years than would be expected from the observed relationship. The results suggested that the Bay may have become more susceptible to NO3 loading. To eliminate or greatly reduce anoxia will require reducing average annual total nitrogen loading to the Maryland mainstem Bay to 50×106 kg yr−1, a reduction of 40% from recent levels.  相似文献   

3.
A Poisson catch rate model for striped bass (Morone saxatilis) anglers in Chesapeake Bay was developed that incorporates the effect of bottom temperature and dissolved oxygen (DO). Angler catch rates are shown to be negatively affected by low DO. Predicted angler catch rates were then used in a random utility model of striped bass fishing location choice. Where anglers choose to fish is significantly related to expected catch rate and the travel cost and time from the anglers residence to the fishing location. Results from the random utility model were then used to simulate the economic welfare changes that result from changing DO levels in the Patuxent River. Since there are many substitute sites for fishing in the Patuxent River, the welfare effects are small. Increases in DO from current levels have a small effect on angler welfare, but if levels are allowed to deteriorate so they never exceed 5 mg l−1, the welfare effects are much larger. Under this latter scenario, the net present value of angler losses exceeds 100,000, and are almost100,000, and are almost 300,000 if the fishing grounds are anoxic. Losses are considerably higher as the area impacted by low oxygen conditions increases.  相似文献   

4.
Ecological and paleoecological studies from the Patuxent River mouth reveal dynamic variations in benthic ostracode assemblages over the past 600 years due to climatic and anthropogenic factors. Prior to the late 20th century, centennial-scale changes in species dominance were influenced by climatic and hydrological factors that primarily affected salinity and at times led to oxygen depletion. Decadal-scale droughts also occurred resulting in higher salinities and migration of ostracode species from the deep chanel (Loxoconcha sp.,Cytheromorpha newportensis) into shallower water along the flanks of the bay. During the 19th century the abundance ofLeptocythere nikraveshae andPerissocytheridea brachyforma suggest increased turbidity and decreased salinity. Unprecedented changes in benthic ostracodes at the Patuxent mouth and in the deep channel of the bay occurred after the 1960s whenCythermorpha curta became the dominant species, reflecting seasonal anoxia. The change in benthic assemblages coicided with the appearance of deformities in foraminifers. A combination of increased nitrate loading due to greater fertilize use and increased fresh-water flow explains this shift. A review of the geochemical and paleoecological evidence for dissolved oxygen indicates that seasonal oxygen depletion in the main channel of Chesapeake Bay varies over centennial and decadal timescales. Prior to 1700 AD, a relatively wet climate and high freshwater runoff led to oxygen depletion but rarely anoxia. Between 1700 and 1700, progressive eutrophication occurred related to land clearance and increased sedimentation, but this was superimposed on the oscillatory pattern of oxygen depleton most likely driven by climatological and hydrological factors. It also seems probable that the four-to five-fold increase in sedimentation due to agricultural and timber activity could have contributed to an increased natural nutrient load, likely fueling the early periods (1700–1900) of hypoxia prior to widespread fertilizer use. Twentieth-century anoxia worsened in the late 1930s–1940s and again around 1970, reaching unprecedented levels in the past few decades. Decadal and interannual variability in oxygen depletion even in the 20th century is still strongly influenced by climatic processes influencing precipitation and freshwater runoff.  相似文献   

5.
We used growth rates of juvenile winter flounderPseudopleuronectes americanus to assess anthropogenic influence on habitat quality at three sites in Narragansett Bay, Rhode Island. The upper bay site, Gaspee Point, had the highest population density and concentration of total nitrogen; human inputs decreased down bay. Growth rates of individually marked fish were measured in three 15-d experiments from June 8 to July 6, 1998 in 1-m2 cages placed at upper, middle, and lower bay sites. Water temperature, salinity, dissolved oxygen (DO), and benthic food were also measured. Stable isotopes of nitrogen and carbon were measured in experimental fish as possible indicators of nutrient enrichment and to identify organic carbon sources. Growth rates were 0.22–0.60 mm d−1, with the highest average at the mid-bay site. Growth was initially fastest at Gaspee Point, but dropped off as DO concentrations fell. Step-wise multiple regression indicated that location (upper, middle, or lower bay) explained most of the variability in fish growth (40%). Coefficients of other significant variables indicated that fish grew faster at lower salinities, smaller sizes, and with decreased time that DO was below 2.3 mg l−1. Benthic prey varied among sites and there was significantly less food and fewer species at Gaspee Point.Polydora cornuta was a favored food at all sites and was found in over half the stomachs. Values of δ15N in fish and sediments did not reflect differences in total nitrogen concentrations recorded near the sites. We suggest that anthropogenic influences, such as nutrients and sewage, affected habitat quality by reducing DO, which lowered fish growth rates.  相似文献   

6.
Seasonal hypoxia [dissolved oxygen (DO)?≤?2 mg?l?1] occurs over large regions of the northwestern Gulf of Mexico continental shelf during the summer months (June–August) as a result of nutrient enrichment from the Mississippi–Atchafalaya River system. We characterized the community structure of mobile fishes and invertebrates (i.e., nekton) in and around the hypoxic zone using 3 years of bottom trawl and hydrographic data. Species richness and total abundance were lowest in anoxic waters (DO?≤?1 mg?l?1) and increased at intermediate DO levels (2–4 mg?l?1). Species were primarily structured as a benthic assemblage dominated by Atlantic croaker (Micropogonias undulatus) and sand and silver seatrout (Cynoscion spp.), and a pelagic assemblage dominated by Atlantic bumper (Chloroscombrus chrysurus). Of the environmental variables examined, bottom DO and distance to the edge of the hypoxic zone were most strongly correlated with assemblage structure, while temperature and depth were important in some years. Hypoxia altered the spatial distribution of both assemblages, but these effects were more severe for the benthic assemblage than for the pelagic assemblage. Brown shrimp, the primary target of the commercial shrimp trawl fishery during the summer, occurred in both assemblages, but was more abundant within the benthic assemblage. Given the similarity of the demersal nekton community described here to that taken as bycatch in the shrimp fishery, our results suggest that hypoxia-induced changes in spatial dynamics have the potential to influence harvest and bycatch interactions in and around the Gulf hypoxic zone.  相似文献   

7.
Recent studies of Chesapeake Bay hypoxia suggest higher susceptibility to hypoxia in years after the 1980s. We used two simple mechanistic models and Bayesian estimation of their parameters and prediction uncertainty to explore the nature of this regime shift. Model estimates show increasing nutrient conversion efficiency since the 1980s, with lower DO concentrations and large hypoxic volumes as a result. In earlier work, we suggested a 35% reduction from the average 1980–1990 total nitrogen load would restore the Bay to hypoxic volumes of the 1950s–1970s. With Bayesian inference, our model indicates that, if the physical and biogeochemical processes prior to the 1980s resume, the 35% reduction would result in hypoxic volume averaging 2.7 km3 in a typical year, below the average hypoxic volume of 1950s–1970s. However, if the post-1980 processes persist the 35% reduction would result in much higher hypoxic volume averaging 6.0 km3. Load reductions recommended in the 2003 agreement will likely meet dissolved oxygen attainment goals if the Bay functions as it did prior to the 1980s; however, it may not reach those goals if current processes prevail.  相似文献   

8.
Nitrate pollution of groundwater in Toyserkan,western Iran   总被引:5,自引:2,他引:3  
A total of 95 groundwater samples were collected from Toyserkan, western Iran to assess the chemical composition and nitrate (NO3 ) status of groundwater. The most prevalent water type is Ca–HCO3 followed by water types Ca–Mg–HCO3. In comparison with the World Health Organization (WHO) drinking water guideline of 50 mg l−1 for NO3 , a total of nine wells (9.5%) showed higher concentrations. In 36% of samples (34) NO3 concentration was low (<20 mg l−1), and in 53.7% of samples (51), in the range of 20–50 mg l−1. The samples were classified into four groups based on NO3 and chloride (Cl) concentrations. Of the samples, 40% were classified as group 4 and were relatively high in Cl and NO3 (Cl > 47 mg l−1, NO3  > 27 mg l−1). The high correlation between NO3 and Cl (r = 0.86, p < 0.01) is consistent with a manure source, resulting from the practice of adding salt to animal feed. Pollution of groundwaters appeared to be affected by the application of inorganic fertilizer at greater than agronomic rates, Cl-salt inputs, and irrigation practice.  相似文献   

9.
The hydroelectric reservoir of Petit Saut, French Guiana, was created in 1994–1995 by flooding 350 km2 of tropical forest. When sampled in 1999, the lake exhibited a permanent stratification separating the 3–5 m thick, oxygenated epilimnion from the anoxic hypolimnion. The rate of anaerobic organic carbon mineralization below the oxycline was on the order of 1 μmol C m−2 s−1 and did not show a pronounced difference between wet and dry seasons. Methanogenesis accounted for 76–83% of anaerobic carbon mineralization, with lesser contributions of sulfate reduction and dissimilatory iron reduction. Upward mixing of reduced inorganic solutes explained 90% of the water column O 2 demand during the dry season, while most O 2 consumption during the wet season was coupled to aerobic respiration of organic matter synthesized in the surface waters. Inorganic mercury species represented 10–40% of total dissolved mercury in the epilimnion, but were of relatively minor importance (≤10%) in the anoxic portion of the water column. Net production of soluble organic mercury compounds in the flooded soils and anoxic water column did not vary significantly between wet and dry seasons. Methylmercury accounted for about 15% of total dissolved mercury below the oxycline. Its estimated net production rate, 0.04 mg m−2 yr−1, is of the same order of magnitude as values reported for contaminated lakes and flooded terrestrial ecosystems.  相似文献   

10.
The chemical quality of groundwater of western Haryana, India was assessed for its suitability for drinking purposes. A total of 275 water samples were collected from deep aquifer based hand-pumps situated in 37 different villages/towns of Bhiwani region. The water samples were analyzed for different physico-chemical properties, e.g., pH, total dissolved solids (TDS), total harness (TH), total alkalinity (TA), calcium, magnesium, carbonate, bicarbonate, sulphate, chloride and fluoride concentrations. In this study, the average TDS content was greater ranging 1,692 (Bhiwani block) to 2,560 mg l−1 (Siwani block), and other important parameters of water, e.g., TA (442–1,232 mg l−1), TH (437–864 mg l−1) and bicarbonate (554–672 mg l−1), were also higher than maximum permissible limit by WHO or BIS. The fluoride appeared as a major problem of safe drinking water in this region. We recorded greater fluoride concentration, i.e., 86.0 mg l−1 from Motipura village that is highest fluoride level ever recorded for Haryana state. The average fluoride concentration ranged between 7.1 and 0.8 mg l−1 in different blocks of western Haryana. On the basis of fluoride concentration, Siwani block showed the maximum number of water samples (84% of total collected samples) unsuitable for drinking purposes (containing fluoride >1.5 mg l−1) followed by Charki Dadri block (58%), Bhiwani block (52%), Bawani Khera block (33%) and Loharu block (14%). This study clearly suggest that some health deteriorating chemicals in drinking water were at dangerous level and; therefore, water quality could be a major health threat for local residents of western Haryana. The high fluoride level in drinking water has posed some serious dental health risks in local residents.  相似文献   

11.
Hydrological impacts from climate change are of principal interest to water resource policy-makers and practicing engineers. Predictive climatic models have been extensively investigated to quantify the impacts. Palaeoclmatic investigations, on the other hand, show unequivocal and strong periodicity of climate variations in proxy evidence. Yet how to use the periodicity in future hydroclimatic timing and forecasting has received less attention. This paper examines the periodicity in Pleistocene–Holocene glacial–interglacial events and in modern precipitation records, and discusses a way in which the periodicity is used for hydroclimatic predictions. The analysis, based on published CO2, ΔT2H) and δ18O proxy data of polar ice cores and deep oceanic benthic fossils, shows a periodicity in a ~100, ~40 or 25 kyear duration consistent with Milankovitch orbital regulations during the glacial–interglacial periods. On a fine time scale, millennium and multi-decadal periodicity is observed in high-resolution proxy variations of Greenland ice cores and in instrumental precipitation records of the contiguous USA. A basic periodicity of decadal and multi-decadal changes in ~20 and ~10–15 year duration is apparent in wavelet frequency analysis of both ice core proxy and precipitation data. While the kyear-scale periodicity is found of global prevalence, the millennium and decadal variations vary in space and are region-specific. Based on these findings, a generalized time-downscaling hierarchy of periodicity is proposed as a potential approach for timing and forecasting future hydroclimatic conditions at a resolution relevant to the water resources engineering and management.  相似文献   

12.
Dreissena larval fluxes were studied in the lower stretch of the Seine River in 1996–1998. Fluxes reached 150×1012 ind d−1, representing a larval concentration of 5,000 ind l−1 in the Seine estuary. We showed that a sampling frequency with a 3-d interval allowed us to adequately estimate the annual production of larvae. The water residence time in the Seine River and estuary is sufficient for theDreissena larvae to complete their cycle and settlement. High abundance of the larvae in the plankton samples from the Seine River and its estuary showed the existence of a large community of benthic adults, known to be powerful filter-feeders. The progenitor population and the geographical extent of the adultDreissena were estimated from cohort analyses of the planktonic larvae. The maximum density ofDreissena was found in the highly channelized part of the estuary (up to 4,500 ind m−2). Estimated values were compared with concentration of mussels in the benthic traps and samples. Calculated filtration rates of benthic mussels were compared with those of larvae at different stages and with filtration of the zooplankton community. The impact of theDreissena was much higher than that of zooplankton; the filtration of the larvae exceeded that of adults during short periods of maximum larval emission.  相似文献   

13.
We investigated the hypothesis that effects of cultural eutrophication can be reversed through natural resource restoration via addition of an oyster module to a predictive eutrophication model. We explored the potential effects of native oyster restoration on dissolved oxygen (DO), chlorophyll, light attenuation, and submerged aquatic vegetation (SAV) in eutrophic Chesapeake Bay. A tenfold increase in existing oyster biomass is projected to reduce system-wide summer surface chlorophyll by approximately 1 mg m−3, increase summer-average deep-water DO by 0.25 g m−3, add 2100 kg C (20%) to summer SAV biomass, and remove 30,000 kg d−1 nitrogen through enhanced denitrification. The influence of osyter restoration on deep extensive pelagic waters is limited. Oyster restoration is recommended as a supplement to nutrient load reduction, not as a substitute.  相似文献   

14.
Biogeochemical processes occurring near the sediment-water interface of shallow (≈20 m) water sediments lying beneath the Mississippi River plume on the Louisiana shelf were studied using benthic chambers and sediment cores. Three sites were chosen with distinctly different characteristics. One was overlain by oxic water where aerobic respiration dominated organic matter remineralization. The second site was overlain by oxic water but organic matter remineralization was dominated by sulfate reduction. The third site was overlain by hypoxic water and aerobic remineralization was of minor significance. Major differences were observed in the fluxes of CO2(17–56 mmol m−2 d−1), O2(2–56 mmol m−2 d−1) and nutrients (e.g., NH4 +, 2.6–4.2 mmol m−2 d−1) across the sediment-water interface, and the relative importance of different electron acceptors, even though the sites were in close proximity and at nearly the same water depth. Large variations in the efficiency of organic-C burial (3%–51%) were also calculated based on a simplified model of the relationships between the fraction of organic matter remineralized by sulfate reduction and the fraction of sulfide produced that is buried as pyrite. These observations demonstrate the high degree of spatial heterogeneity of benthic biogeochemistry in this important near-deltaic environment.  相似文献   

15.
This study demonstrates the feasibility of using direct N2 measurements in an estuary for determination of denitrification. High precision measurements of dinitrogen: argon ratios (N2∶Ar) were made by membrane inlet mass spectrometry on water samples taken along the length of the Chesapeake Bay in July and October 2004. The N2∶Ar ratio in low salinity surface water was elevated relative to air saturation by 0.3–0.5% with no systematic change along the length of the Bay. N2∶Ar in high salinity bottom water exhibited a linear increase in the landward direction along a 144-km longitudinal section. In this section of the Bay covering 20% of the main stem, the bottom water salinity was statistically uniform and the increase in N2∶Ar was in the direction of net residual current flow. The system was analyzed as a capped river with the assumption that N2 entered the water from the underlying sediment where denitrification is known to take place. The rate of denitrification needed to support the measured increase in N2 was calculated using an average residual current velocity and water column depth. The increase in N2 with distance (0.046μmol N l−1 km−1) equated to an average denitrification flux of 73 μmol N m−2 h−1. N2 fluxes determined on sediment cores taken from the source and terminus regions of the delineated water mass were 45±23 and 83±39 μmol N m−2 hr−1, respectively, which were not statistically different from the whole system estimate. The measured change in oxygen concentration within the bottom water was used to estimate nitrogen remineralization and the efficiency of denitrification. Denitrification efficiency (nitrogen denitrified/nitrogen remineralized) was estimated to be in the range of 22–28% for the bottom water sediment system and 30–37% considering the sediment zone alone.  相似文献   

16.
The study was designed to establish the distributions of trace metals, dissolved organic carbon, and inorganic nutrients as well as to assess the extent of anthropogenic inputs into the Narmada and Tapti rivers. Water and sediment qualities are variable in the rivers, and there are major pollution problems at certain locations, mainly associated with urban and industrial centers. The metal concentrations of samples of the aquatic compartments investigated were close to the maximum permissible concentration for the survival of aquatic life, except for higher values of Cu (5–763 μg l−1), Pb (24–376 μg l−1), Zn (24–730 μg l−1), and Cr (70–740 μg l−1) and for drinking water except for elevated concentrations of metals such as Pb, Fe (850–2,060 μg l−1), Cr, and Ni (20–120 μg l−1). In general, the concentrations of trace metals in the rivers vary down stream which may affect the “health” of the aquatic ecosystem and may also affect the health of the rural community that depends on the untreated river water directly for domestic use. The assessment of EF, I geo, and PLI in the sediments reveals overall moderate pollution in the river basins.  相似文献   

17.
Twenty-six groundwater samples were collected from the Eastern Thessaly region and analysed by ICP-ES for these elements: Al, As, P, Pb, Zn, Mn, Fe, Cr, Sb, Cu, Na, Br, Cl, Si, Mg, Ag, Be, Bi, Dy, Er, Eu, Au, Ge, Ho, In, Ir, Os, Pt, Re, Rh, Ru, Lu, Hf, Hg, Tm, Zr and Nb. The objectives of the study were to assess the level of water contamination with respect to the EC and the USEPA health-based drinking water criteria. The geology of the studied area includes schists, amphibolites, marbles of Palaeozoic age, ophiolites, limestones of Triassic and Cretaceous age, Neogene and Quaternary deposits. The element ranges for groundwater samples are: Al 7–56 μg l−1, As 1–125 μg l−1, Br 6–60 μg l−1, Cl 500–25,000 μg l−1, Cr 1–6 μg l−1, Cu 1–15 μg l−1, Fe 10–352 μg l−1, Mg 2,940–40,100 μg l−1, Mn 0–8 μg l−1, Na 3,650–13,740 μg l−1, P 20–48 μg l−1, Pb 0–7 μg l−1, Sb 0–21 μg l−1, Si 3,310–13,240 μg l−1 and Zn 7–994 μg l−1. The results of groundwater analyses from the region of Eastern Thessaly showed elevated concentrations of As and Sb. Factor analysis explained 77.8% of the total variance of the data through five factors. Concentration of Br, Cl, Mg, Na and Si is directly related to the presence of saltwater in the aquifer, so grouping of these variables in factor 1 probably reflects the seawater intrusion. Al, As and Sb are known to form complexes in the environment, so grouping of these elements in factor 2 indicates their similar geochemical behaviour in the environment. The high negative loading of Mn in factor 2 indicates the presence of manganese oxides–hydroxides in the study area. Pb and Zn are associated together in sulphide mineralisation; so grouping of these elements in factor 3 reflects the sulphide mineralization paragenesis in the Melivoia area. P and Cu are associated together in phosphate fertilizers; so grouping of these variables in factor 4 could be related to agricultural practices. Cr, Fe, Mn and Mg are associated together in iron and manganese oxides–hydroxides and the weathering products of the olivine of the ultrabasic rocks; so grouping of these elements in factor 5 reflects the lithology of the area. There is a natural contamination of groundwaters with elevated concentrations of As and Sb due to the presence of the arsenopyrite and stibnite mineralisation in the Melivoia, Sotiritsa and Ano Polydendri areas. Contamination over the health-based drinking water guidelines given by EC and EPA has been investigated from nine sampling sites out of 26 of Eastern Thessaly region.  相似文献   

18.
The eastern Alaska Beaufort Sea coast is characterized by numerous shallow (2–5 m) estuarine lagoons, fed by streams and small rivers that drain northward from the Brooks Range through the arctic coastal plain, and bounded seaward by barrier islands and shoals. Millions of birds from six continents nest and forage during the summer period in this region using the river deltas, lagoons, and shoreline along with several species of anadromous and marine fish. We examined biogeochemical processes linking the benthic community to the overall food web structure of these poorly studied but pristine estuaries, which are largely covered by 1.8 m of ice for 10 months annually. In summer, these lagoons are relatively warm with brackish salinities (5–10°C, S = 10–25) compared to more open coastal waters (0–5°C, S > 27). The stable isotopic composition of organic materials in sediments (i.e., benthic particulate organic matter) and water column suspended particulate organic matter from both streams and lagoons are largely indistinguishable and reflect strong terrestrial contributions, based upon δ13C and δ15N values (−25.6‰ to −27.4‰ and 1.4‰ to 3.3‰, respectively). By comparison, shifts toward more heavy isotope-enriched organic materials reflecting marine influence are observed on the adjacent coastal shelf (−24.8‰ to −25.4‰ and 3.4‰ to 5.3‰, respectively). The isotopic composition of lagoon fauna is consistent with a food web dominated by omnivorous detritovores strongly dependent on microbial processing of terrestrial sources of carbon. Biomagnification of 15N in benthic organisms indicate that the benthic food web in lagoons support up to four trophic levels, with carnivorous gastropod predators and benthic fishes (δ15N values up to 14.4‰) at the apex.  相似文献   

19.
Bulk carbonate content, planktic and benthic foraminiferal assemblages, stable isotope compositions of bulk carbonate and Nuttallides truempyi (benthic foraminifera), and non-carbonate mineralogy were examined across ∼30 m of carbonate-rich Paleogene sediment at Deep Sea Drilling Project (DSDP) Site 259, on Perth Abyssal Plain off Western Australia. Carbonate content, mostly reflecting nannofossil abundance, ranges from 3 to 80% and generally exceeds 50% between 35 and 57 mbsf. A clay-rich horizon with a carbonate content of about 37% occurs between 55.17 and 55.37 mbsf. The carbonate-rich interval spans planktic foraminiferal zones P4c to P6b (∼57–52 Ma), with the clay-rich horizon near the base of our Zone P5 (upper)—P6b. Throughout the studied interval, benthic species dominate foraminiferal assemblages, with scarce planktic foraminifera usually of poor preservation and limited species diversity. A prominent Benthic Foraminiferal Extinction Event (BFEE) occurs across the clay-rich horizon, with an influx of large Acarinina immediately above. The δ13C records of bulk carbonate and N. truempyi exhibit trends similar to those observed in upper Paleocene–lower Eocene (∼57–52 Ma) sediment from other locations. Two successive decreases in bulk carbonate and N. truempyi δ13C of 0.5 and 1.0‰ characterize the interval at and immediately above the BFEE. Despite major changes in carbonate content, foraminiferal assemblages and carbon isotopes, the mineralogy of the non-carbonate fraction consistently comprises expanding clay, heulandite (zeolite), quartz, feldspar (sodic or calcic), minor mica, and pyrolusite (MnO2). The uniformity of this mineral assemblage suggests that Site 259 received similar non-carbonate sediment before, during and after pelagic carbonate deposition. The carbonate plug at Site 259 probably represents a drop in the CCD from ∼57 to 52–51 Ma, as also recognized at other locations.  相似文献   

20.
The geochemical study of groundwaters and core sediments from the Old Brahmaputra plain of Bangladesh was conducted to investigate the distribution of arsenic and related trace elements. Groundwaters from tube wells are characterized by pH of 6.4–7.4, dissolved oxygen (DO) of 0.8–1.8 mg/l, Ca contents of 5–50 mg/l, and Fe contents of 0.2–12.9 mg/l. Arsenic concentrations ranged from 8 to 251 μg/l, with an average value of 63 μg/l. A strong positive correlation exists between As and Fe (r 2 = 0.802; p = 0.001) concentrations in groundwater. The stratigraphic sequences in the cores consist of yellowish silty clays at top, passing downward into grayish to yellowish clays and sands. The uppermost 3 m and lower parts (from 13 to 31 m) of the core sediments are oxidized (average oxidation reduction potential (ORP) +170 and +220 mV, respectively), and the ORP values gradually become negative from 3 to 13 m depths (−35 to −180 mV), indicating that anoxic conditions prevail in the shallow aquifers of the Brahmaputra plain. Age determinations suggest that clay horizons at ~10 m depth were deposited at around 2,000 and 5,000 years BP (14C ages) during the transgressive phase of sea-level change. Elevated concentrations of As, Pb, Zn, Cu, Ni, Cr, and V are present in the silts and clays, probably due to adsorption onto clay particles. Significant concentrations of As occur in black peat and peaty sediments at depths between 9 and 13 m. A strong positive correlation between As and Fe was found in the sediments, indicating As may be adsorbed onto Fe oxides in aquifer sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号