首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Degassing and in situ development of a mobile gas saturation take place when an aqueous phase saturated with gas at a pressure higher than the subsurface pressure is injected in water-saturated porous media. In the first part of this work, a pore network model is used to study the key physical aspects of this novel and hitherto unexplored way of introducing a gas phase in the subsurface. Following heterogeneous nucleation, growth of gas phase clusters driven by convective diffusion of solute from the bulk aqueous phase, is shown to result in a ramified pattern of gas-occupied pores, which is controlled by capillary and buoyancy forces. The interplay between mass transfer and immiscible displacement processes, namely gas cluster coalescence, mobilization under the action of buoyancy forces and fragmentation resulting from capillary instabilities, is seen to favour the propagation of a stable gas saturation front. Pore network model predictions of the macroscopic mass transfer rate coefficient are in fair agreement with a recently published empirical correlation.  相似文献   

2.
海底冷泉羽状流与海底天然气水合物的分布密切相关,对水合物稳定带的边界具有指示作用,是未来能源勘探的重要领域.研究海底冷泉羽状流的地震响应特征,对确定天然气水合物的储集区域及成藏环境等均有重要意义.当前获得海底冷泉羽状流的地震响应主要通过数值模拟进行,然而该过程所依据的含气泡介质声速模型及随机介质理论不能完整描述海底冷泉的物理性质,采用的声波方程也不适用于高频地震波数值模拟.为了准确地实现海底冷泉羽状流地震波数值模拟,精确分析其地震响应特征,本文提出利用Keller-Miksis气泡振动模型来描述气泡在声波作用下的运动状态,同时考虑气泡间的相互作用,建立海底冷泉气泡模型.在此基础上,本文创新性地采用含气泡液体声波方程进行海底冷泉高频地震波数值模拟.数值模拟结果表明,本文提出的方法能够实现海底冷泉羽状流地震响应的高精度数值模拟.  相似文献   

3.
We present a semi-analytical, combinatorial approach to compute three-phase capillary entry pressures for gas invasion into pore throats with constant cross-sections of arbitrary shapes that are occupied by oil and/or water. For a specific set of three-phase capillary pressures, geometrically allowed gas/oil, oil/water and gas/water arc menisci are determined by moving two circles in opposite directions along the pore/solid boundary for each fluid pair such that the contact angle is defined at the front circular arcs. Intersections of the two circles determine the geometrically allowed arc menisci for each fluid pair. The resulting interfaces are combined systematically to allow for all geometrically possible three-phase configuration changes. The three-phase extension of the Mayer and Stowe – Princen method is adopted to calculate capillary entry pressures for all determined configuration candidates, from which the most favorable gas invasion configuration is determined. The model is validated by comparing computed three-phase capillary entry pressures and corresponding fluid configurations with analytical solutions in idealized triangular star-shaped pores. It is demonstrated that the model accounts for all scenarios that have been analyzed previously in these shapes. Finally, three-phase capillary entry pressures and associated fluid configurations are computed in throat cross-sections extracted from segmented SEM images of Bentheim sandstone. The computed gas/oil capillary entry pressures account for the expected dependence of oil/water capillary pressure in spreading and non-spreading fluid systems at the considered wetting conditions. Because these geometries are irregular and include constrictions, we introduce three-phase displacements that have not been identified previously in pore-network models that are based on idealized pore shapes. However, in the limited number of pore geometries considered in this work, we find that the favorable displacements are not generically different from those already encountered in network models previously, except that the size and shape of oil layers that are surrounded by gas and water are described more realistically. The significance of the results for describing oil connectivity in porous media accurately can only be evaluated by including throats with more complex cross-sections in three-phase pore-network models.  相似文献   

4.
Models that simulate the signature of single airguns form the basis for modelingthe signals of airgun arrays. Most of the existing models assume that the air inside theproduced bubble is ideal gas, which may lead to errors because of the high operating pressureof the airguns. In this study, we propose a model that precisely simulates the signals of singleairguns by applying the Van der Waals equation based on the Ziolkowski algorithm. We alsoconsider a thermodynamically open quasistatic system, the heat transition between waterand gas, the throttling effect of the port and the bubble rise, and the effect of the sea surface.Modeling experiments show that (1) the energy of the source increases and the signal-to-noise ratio of the signature wavelet decreases with increasing seawater temperature, (2) thereflection coefficient of the sea surface under the actual state and depth of the source affectsthe notch caused by the surface reflection, (3) the computed signature with the proposedmodel is very close to the actual data, and (4) the proposed model accurately simulates thesignature of sinale air~uns.  相似文献   

5.
During June 1999, we measured the amplitude and rate (number of events per second) at which gas exited the vent at Stromboli volcano as discrete gas bursts or puffs. This allowed us to identify two styles of gas burst (puffing) activity. The first is characterized by frequent, rapidly rising puffs, the second by less frequent, slowly rising puffs. Each style persisted over 5–40-min-long durations and was associated with a high and low number of strombolian explosions per hour, respectively. Each period was also associated with characteristic delay times between the arrival of the infrasonic and thermal signals during strombolian explosions; the delays were longer during vigorous puffing periods. To explain our observations, we propose a model in which the degassing process cycles between vigorous and weak degassing phases. During vigorous degassing phases, bubble layers ascend the conduit at a frequency of 0.5–1.0 s−1. This high degassing level reflects a gas-rich magma column and leads to an increased rate in the formation of shallow foams and, hence, an increase in puffing and explosive activity, as well as a higher free surface level and/or gas jet velocity. During weak phases, bubble layers ascend the conduit at a reduced frequency of 0.2–0.3 s−1. During such times the magma column is poor in gas. This leads to a decreased rate of foam layer formation and hence a reduction in puffing and explosive activity, as well as a lower free surface level and/or gas jet velocity. Variations in puffing activity can thus be used to track changes in the rate at which the shallow system is supplied by fresh, gas-rich magma. Our observations indicate that the two degassing styles last from 5 to 40 min and that the switch from one to the other occurs over a matter of minutes.  相似文献   

6.
Experiments in an 850 litre water tank were performed in order to study temperature effects on airgun signatures, and to achieve a better understanding of the physical processes that influence an airgun signature. The source was a bolt airgun with a chamber volume of 1.6 cu.in. The pressure used was 100 bar and the gun depth was 0.5 m. The water temperature in the tank was varied between 5°C and 45°C. Near-field signatures were recorded at different water temperatures. Typical signature characteristics such as the primary-to-bubble ratio and the bubble time period increased with increasing water temperature. For comparison and in order to check whether this is valid for larger guns, computer modelling of airguns with chamber volumes of 1.6 and 40 cu.in. was performed. In the modelling the same behaviour of the signatures with increasing water temperature can be observed. The increase in the primary-to-bubble ratio and the bubble time period with increasing water temperature can be explained by an increased mass transfer across the bubble wall.  相似文献   

7.
Shale needs to contain a sufficient amount of gas to make it viable for exploitation. The continental heterogeneous shale formation in the Yan-chang (YC) area is investigated by firstly measuring the shale gas content in a laboratory and then investigating use of a theoretical prediction model. Key factors controlling the shale gas content are determined, and a prediction model for free gas content is established according to the equation of gas state and a new petrophysical volume model. Application of the Langmuir volume constant and pressure constant obtained from results of adsorption isotherms is found to be limited because these constants are greatly affected by experimental temperature and pressures. Therefore, using measurements of adsorption isotherms and thermodynamic theory, the influence of temperature, total organic carbon (TOC), and mineralogy on Langmuir volume constants and pressure constants are investigated in detail. A prediction model for the Langmuir pressure constant with a correction of temperatures is then established, and a prediction model for the Langmuir volume constant with correction of temperature, TOC, and quartz contents is also proposed. Using these corrected Langmuir constants, application of the Langmuir model determined using experimental adsorption isotherms is extrapolated to reservoir temperature, pressure, and lithological conditions, and a method for the prediction of shale gas content using well logs is established. Finally, this method is successfully applied to predict the shale gas content of the continental shale formation in the YC area, and practical application is shown to deliver good results with high precision.  相似文献   

8.
A detailed seasonal study of soil vapor intrusion at a cold climate site with average yearly temperature of 1.9 °C was conducted at a house with a crawlspace that overlay a shallow dissolved‐phase petroleum hydrocarbon (gasoline) plume in North Battleford, Saskatchewan, Canada. This research was conducted primarily to assess if winter conditions, including snow/frost cover, and cold soil temperatures, influence aerobic biodegradation of petroleum vapors in soil and the potential for vapor intrusion. Continuous time‐series data for oxygen, pressure differentials, soil temperature, soil moisture, and weather conditions were collected from a high‐resolution monitoring network. Seasonal monitoring of groundwater, soil vapor, crawlspace air, and indoor air was also undertaken. Petroleum hydrocarbon vapor attenuation and biodegradation rates were not significantly reduced during low temperature winter months and there was no evidence for a significant capping effect of snow or frost cover that would limit oxygen ingress from the atmosphere. In the residual light nonaqueous phase liquid (LNAPL) source area adjacent to the house, evidence for biodegradation included rapid attenuation of hydrocarbon vapor concentrations over a vertical interval of approximately 0.9 m, and a corresponding decrease in oxygen to less than 1.5% v/v. In comparison, hydrocarbon vapor concentrations above the dissolved plume and below the house were much lower and decreased sharply within a few tens of centimeters above the groundwater source. Corresponding oxygen concentrations in soil gas were at least 10% v/v. A reactive transport model (MIN3P‐DUSTY) was initially calibrated to data from vertical profiles at the site to obtain biodegradation rates, and then used to simulate the observed soil vapor distribution. The calibrated model indicated that soil vapor transport was dominated by diffusion and aerobic biodegradation, and that crawlspace pressures and soil gas advection had little influence on soil vapor concentrations.  相似文献   

9.
Bubble growth in rhyolitic melts: experimental and numerical investigation   总被引:2,自引:0,他引:2  
 Bubble growth controlled by mass transfer of water from hydrated rhyolitic melts at high pressures and temperatures was studied experimentally and simulated numerically. Rhyolitic melts were hydrated at 150 MPa, 780–850  °C to uniform water content of 5.5–5.3 wt%. The pressure was then dropped and held constant at 15–145 MPa. Upon the drop bubbles nucleated and were allowed to grow for various periods of time before final, rapid quenching of the samples. The size and number density of bubbles in the quenched glasses were recorded. Where number densities were low and run duration short, bubble sizes were in accord with the growth model of Scriven (1959) for solitary bubbles. However, most results did not fit this simple model because of interaction between neighboring bubbles. Hence, the growth model of Proussevitch et al. (1993), which accounts for finite separation between bubbles, was further developed and used to simulate bubble growth. The good agreement between experimental data, numerical simulation, and analytical solutions enables accurate and reliable examination of bubble growth from a limited volume of supersaturated melt. At modest supersaturations bubble growth in hydrated silicic melts (3–6 wt% water, viscosity 104–106 Pa·s) is diffusion controlled. Water diffusion is fast enough to maintain steady-state concentration gradient in the melt. Viscous resistance is important only at the very early stage of growth (t<1 s). Under the above conditions growth is nearly parabolic, R2=2Dtρm(C0–Cf)/ρg until the bubble approaches its final size. In melts with low water content, viscosity is higher and maintains pressure gradients in the melt. Growth may be delayed for longer times, comparable to time scales of melt ascent during eruptions. At high levels of supersaturation, advection of hydrated melt towards the growing bubble becomes significant. Our results indicate that equilibrium degassing is a good approximation for modeling vesiculation in melts with high water concentrations (C0>3 wt%) in the region above the nucleation level. When the melt accelerates and water content decreases, equilibrium can no longer be maintained between bubbles and melt. Supersaturation develops in melt pockets away from bubbles and new bubbles may nucleate. Further acceleration and increase in viscosity cause buildup of internal pressure in the bubbles and may eventually lead to fragmentation of the melt. Received: 19 June 1995 / Accepted: 27 December 1995  相似文献   

10.
Experiments were made on 58 sediment samples from four sites(1244,1245,1250 and 1251) of ODP204 at five temperature points(25,35,45,55 and 65℃) to simulate methane production from hydrate-bearing sediments.Simulation results from site 1244 show that the gas components consist mainly of methane and carbon dioxide,and heavy hydrocarbons more than C2+ cannot be detected.This site also gives results,similar to those from the other three,that the methane production is controlled by experimental temperatures,gene...  相似文献   

11.
In this study, a soil vegetation and atmosphere transfer (SVAT) model was linked with a microwave emission model to simulate microwave signatures for different terrain during summertime, when the energy and moisture fluxes at the land surface are strong. The integrated model, land surface process/radiobrightness (LSP/R), was forced with weather and initial conditions observed during a field experiment. It simulated the fluxes and brightness temperatures for bare soil and brome grass in the Northern Great Plains. The model estimates of soil temperature and moisture profiles and terrain brightness temperatures were compared with the observed values. Overall, the LSP model provides realistic estimates of soil moisture and temperature profiles to be used with a microwave model. The maximum mean differences and standard deviations between the modeled and the observed temperatures (canopy and soil) were 2.6 K and 6.8 K, respectively; those for the volumetric soil moisture were 0.9% and 1.5%, respectively. Brightness temperatures at 19 GHz matched well with the observations for bare soil, when a rough surface model was incorporated indicating reduced dielectric sensitivity to soil moisture by surface roughness. The brightness temperatures of the brome grass matched well with the observations indicating that a simple emission model was sufficient to simulate accurate brightness temperatures for grass typical of that region and surface roughness was not a significant issue for grass-covered soil at 19 GHz. Such integrated SVAT-microwave models allow for direct assimilation of microwave observations and can also be used to understand sensitivity of microwave signatures to changes in weather forcings and soil conditions for different terrain types.  相似文献   

12.
Diagenetic research and inclusion observance indicate that there are seven types of inlcusion in the reservoirs in the Qiongdongnan Basin. Based on the fluorescence color, ratio of gas/liquid, formation temperature, salinity and organic component of fluid inclusions, three events of thermal fluid movement were found, and only the second and third events are relative to hydrocarbon migration and accumulation with the temperatures of 140–150°C and 170–190°C., respectively.The mechanism of gas migration in aqueous phase suggests that the discharging site of thermal fluid is the favourable location for natural gas accumulation. Project supported by the Natlonal Natural Science Foundation of China.  相似文献   

13.
Magmas often contain multiple interacting phases of embedded solid and gas inclusions. Multiphase percolation theory provides a means of modeling assemblies of these different classes of magmatic inclusions in a simple, yet powerful way. Like its single phase counterpart, multiphase percolation theory describes the connectivity of discrete inclusion assemblies as a function of phase topology. In addition, multiphase percolation employs basic laws to distinguish separate classes of objects and is characterized by its dependency on the order in which the different phases appear. This paper examines two applications of multiphase percolation theory: the first considers how the presence of bubble inclusions influences yield stress onset and growth in a magma's crystal network; the second examines the effect of bi-modal bubble-size distributions on magma permeability. We find that the presence of bubbles induces crystal clustering, thereby 1) reducing the percolation threshold, or critical crystal volume fraction, ?c, at which the crystals form a space-spanning network providing a minimum yield stress, and 2) resulting in a larger yield stress for a given crystal volume fraction above ?c. This increase in the yield stress of the crystal network may also occur when crystal clusters are formed due to processes other than bubble formation, such as heterogeneous crystallization, synneusis, and heterogeneity due to deformation or flow. Further, we find that bimodal bubble size distributions can significantly affect the permeability of the system beyond the percolation threshold. This study thus demonstrates that larger-scale structures and topologies, as well as the order in which different phases appear, can have significant effects on macroscopic properties in multiphase materials.  相似文献   

14.
Natural gas (NG) is produced whenever organic matter is decomposed in the absence of oxygen. The main constituent of natural gas is methane. In contrast to liquid fuels, methane has a boiling point far below normal ambient temperatures. Even the critical temperature is well below ambient. Therefore natural gas must be stored either as compressed natural gas (CNG) at very high pressures at ambient temperatures, or as liquefied natural gas (LNG) at very low temperatures. The basic safety issues are caused by loss of confinement of either CNG or LNG. In both cases the issues are: global greenhouse effects of natural gas (methane); local fire and explosion hazards; and local asphyxiation hazard due to reduced oxygen content in the atmosphere breathed when air is mixed with methane.  相似文献   

15.
Embroygenesis of the three coregonid forms Blaufelchen, Gangfisch, and Sandfelchen from Lake Constance was observed at five different constant temperatures in a static incubation system. The relationship between temperature and the time to reach 14 developmental stages from fertilization to hatching was established for the three forms. Relative to the total incubation time, pectoral fin flutter and eye movement start earliest in Gangfisch and latest in Blaufelchen. This might allow Gangfisch to tolerate lower oxygen concentrations during the last phase of embryogenesis than Blaufelchen. Developmental rates per day as a function of temperature can be calculated by a power function. A model is presented which permits to predict the time of mass hatching for embryos which are incubated at fluctuating temperatures. The total incubation times for the three coregonids of Lake Constance are short as compared to those of other coregonids. This is interpreted as an adaptation to the specific thermal environment of each coregonid stock which helps to ensure larval survival in the respective habitat.  相似文献   

16.
High-resolution seismic surveys were performed on an underground gas storage of Gaz de France at Gournay-sur-Aronde (Oise) in order to obtain information about gas bubble boundaries within the reservoir. For that purpose, a light seismic source Soursile and spreads with small spacing between geophone groups (10 m) and small geophone group extension (10 m or 20 m) were used. In December 1982, a line recorded on the top of the anticline structure of the gas reservoir provided an estimation of the lateral extension of the bubble based on an amplitude anomaly (dim spot) associated with reservoir seismic horizons. In order to estimate the displacement of the gas bubble within the reservoir, three lines were recorded on the southeastern part of the anticline at different time periods (April 1981 and January 1982) with different volumes of gas in the reservoir. It is assumed that a variation of gas volume introduces a seismic velocity variation and as a result a travel-time variation for the seismic waves that pass through the reservoir. A method based on the residual time shifts observed on reflectors below the reservoir from one survey to the other was developed and implemented. This method permitted a detection of a movement gas bubble boundary between April 1981 and January 1982 which agrees with drill hole data (water level measurements).  相似文献   

17.
A Model for Deepwater Oil/Gas Blowouts   总被引:1,自引:0,他引:1  
When gas is released in deepwater, the high pressure and low temperature can convert the gases into hydrates, which are buoyant. As these hydrates travel upwards they will encounter regions of lower pressure and can decompose into free gas. The presence or absence of hydrates has a significant impact on the behaviour of the jet/plume due to the alteration of the buoyancy. The free gas may dissolve in water. This paper describes a computer model developed to simulate the behaviour of oil and gas released from deepwater locations in the ocean. The model integrates the hydrodynamics and thermodynamics of the jet/plume with kinetics and thermodynamics of hydrate formation/decomposition. Model formulation and comparison of results with laboratory data for hydrates is presented. Scenario simulations show the behaviour of oil/gas under different deepwater conditions.  相似文献   

18.
An experimental facility has been developed to investigate magma-water interaction (MWI). The facility operates in a high-pressure and high-temperature environment, with temperatures up to 1,200°C and pressures up to 200 MPa. Cylindrical sample-holders (20 by 180 mm in size) are heated conductively to yield a three phase (melt, crystals and gas) system, and then water (or other fluid) is injected into the sample through a capillary tube (diameter 0.5 mm, length ca. 1,000 mm) under controlled conditions. Pressure, volume and temperature changes are continuously recorded during every phase of the experiments. To test this facility, MWI is studied at subliquidus temperatures (800 and 900°C) and pressure (8 MPa), using a leucite tephrite sample with two different initial grain sizes. Because of the grain-size dependence of sintering, the two starting materials produce magmas with different textures at the same temperature: porous magma for large initial grain sizes and dense magma for small initial grain sizes. In these experiments 1.5 g of water at room temperature is injected into 6.0 g of partially molten sample at velocities ranging from 1 to 3 m/s. We find that the extent of fragmentation and transport caused by MWI are mainly controlled by the texture of the interacting sample with explosive interaction occurring only for porous magmas.  相似文献   

19.
Analytical Model for Contaminant Mass Removal by Air Sparging   总被引:2,自引:0,他引:2  
An analytical model was developed lo predict the removal of volatile organic compounds (VOCs) from ground water by air sparging (AS). The model treats the air sparging zone as a completely mixed reactor subject to the removal of dissolved contaminants by volatilization, advection, and first-order decay Nonequilibrium desorption is approximated as a first-order mass transfer process. The model reproduces the tailing and rebound behavior often observed at AS sites, and would normally require the estimation of three site-specific parameters. Dimensional analysis demonstrates that predicted tailing can be interpreted in terms of kinetic desorption or diffusion of aqueous phase contaminants into discrete air channels. Related work is ongoing to test the model against field data.  相似文献   

20.
福泉滑坡具有顺倾上硬下软的结构特征,采用颗粒流离散元模拟采动滑坡的变形破坏全过程,研究福泉滑坡在露天开采条件下变形破坏的地质力学模式。基于颗粒流离散元程序,引入平行粘结模型,通过参数标定确定细观参数与宏观力学性质的关系,据此建立斜坡模型,模拟斜坡采动过程中的变形破坏全过程,确定该类采动滑坡形成的地质力学模式;研究滑坡滑动过程中的速度和能量变化以及堆积特征。研究表明:斜坡采动过程中,潜在滑面顺层滑移,后缘拉裂,裂纹从下往上向软弱面拓展,前缘坡脚处岩体形成锁固段,斜坡出现由前缘至后缘缘递减的蠕滑变形,随着斜坡进一步采动,锁固段发生剪切破坏,前缘坡体启动,中后部裂缝贯通—滑移,斜坡整体失稳破坏,形成牵引式采动滑坡,该类滑坡形成的地质力学模式可分为:滑移—拉裂—剪断3个阶段;对滑坡运动过程的模拟可知,采坑积水是小坝组受灾的关键转化因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号