首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
南极罗斯海恩克斯堡岛(Inexpressible Island)是中国南极新建考察站重点预选区域。本文利用1988—2012年曼努埃拉自动气象站(AWS Manuela)资料统计分析了该岛的气温、相对湿度、气压和风速风向等要素的特征和变化趋势。结果表明,该岛多年平均气温为-18.5℃,年平均气温有降低趋势;多年平均相对湿度较低,仅为45%,但春夏秋冬各季节的平均湿度均有增加趋势;多年平均气压为979.7hPa,无显著变化趋势;该站点多年平均风速为12.0 m·s-1,风向以WNW为主。干冷的下降风为该岛风场的主要特征,强下降风事件多发生在冬季(49.8%),其风速在25—45 m·s-1之间,冬季单次强下降风事件的平均持续时间达10 h以上。和中山站相比,该站点气温更低、空气更干燥、风速更大,这对该岛的越冬考察活动将带来巨大挑战。  相似文献   

2.
ERA-Interim气温数据在中国区域的适用性评估   总被引:5,自引:0,他引:5  
高路  郝璐 《福建地理》2014,(2):75-81
运用中国756个观测站点的逐月平均气温数据,对比分析了ERA-Interim再分析资料的误差。结果发现:ERA-Interim再分析资料能够很好地反映观测值的年际变化,相关性达到0.955~0.995。ERA-Interim在580个站点的冷偏差或暖偏差小于1℃,占站点总数的76.7%,可信度较高。64个站点的冷偏差或暖偏差大于5℃,可信度较低。ERA-Interim在东部地区的暖偏差多于西部地区,冷偏差的高值主要集中在西部地区的高海拔站点。海拔低于200 m的站点偏差最小,适用性好,多数海拔3 000 m以上的站点呈现较大冷偏差,适用性较差。通过回归分析发现,观测站点与ERA-Interim格点的高度差是导致误差的主要原因,因此通过高程校正能够有效降低误差,提高ERA-Interim适用性。  相似文献   

3.
再分析资料评估对观测资料稀少的青藏高原具有重要意义,是开展青藏高原相关研究的基础。本文分析了2012—2016年观测与ERA-Interim再分析地表温度资料在青藏高原的时空分布差异,同时讨论了产生差异的可能原因。结果表明,两种资料变化趋势基本一致,极值出现月份相同,相关性的空间分布表现为北高南低。ERA-Interim再分析资料对地表温度存在低估,年平均值比观测资料低8.86℃,其中春季绝对误差最大。年平均绝对误差呈北低南高的空间分布形态,且绝对误差极值中心的强度及范围具有明显的季节变化。ERA-Interim与观测地表温度之间的偏差随气象站海拔高度的变化是非单调的,分析认为气象站与所在格点的海拔差是导致偏差出现南北差异的原因之一,而春季青藏高原南部的偏差异常可能与积雪有关。ERA-Interim再分析地表温度资料在青藏高原北部具有较好的适用性,南部受地形影响适用性相对较差。  相似文献   

4.
用吐鲁番站和参考站(托克逊、东坎两站)1974-2014年观测资料,分析城市化对吐鲁番站气候资料的影响发现,地处极干旱区域的吐鲁番站气温、降水量、相对湿度和平均风速与参考站一致性较差,其中,吐鲁番站年平均气温和降水量上升趋势比参考站要大;相对湿度和平均风速下降趋势吐鲁番站比参考站大;由于城市化发展造成吐鲁番市的升温率为0.24℃·(10 a)-1;均一性检测发现,由于城市化的影响,平均气温、相对湿度、降水量、风速分别在1982年和1998年产生了断点。新站与旧站观测资料对比分析发现,由于旧站环境较为湿润而新站环境极为干燥,使新旧站气候资料差异较大。其中,平均气温、最低气温新站比旧站分别高0.9℃和1.5℃;相对湿度新站比旧站低8.1%;年平均风速新站偏大1.4 m·s-1。与6个已经迁过站的平原站资料对比发现,干旱区的吐鲁番站年平均气温、最低气温、相对湿度,新旧站差值及差值标准差比多数站大一倍以上,而迁站前后新旧站年月风向相符率最小,仅为32.29%。  相似文献   

5.
 塔的观测资料,计算了风速、平均风功率密度等参数,利用风能评估方法分析了风能参数、风向频率的变化规律及其特征。结果表明,观测年度10~100 m年平均风速和年平均风功率密度分别在4.0~5.2 m·s-1、83.5~200.2 W·m-2之间,且随高度的升高而增大。测风塔各高度3~25 m·s-1风速的时数在4 560~5 316 h之间,最多风向为偏西北风、次多风向为偏东北风。风能密度主要集中在W—NNW和NNE—NE扇区,累积频率分别达60%和29%。观测年50 m高度风速距平百分率偏小(-5.15%),长年代校正的年平均风功率密度值为192.3 W·m-2,达到了1级(<200 W·m-2)并网型风力发电的风电场等级标准,指示这个区域的风能资源比较丰富。  相似文献   

6.
利用第33次中国南极科学考察期间获取的中国长城站和智利Feri站以及夏季南极大陆沿岸8个世界气象组织(WMO)基准站探空资料对南极地区的大气垂直结构进行了分析,并结合NCEP和ERA-Interim再分析数据,对南极高纬度大气的表现能力进行了评估。研究发现长城站附近对流层顶的平均高度为9km,对应的温度和平均风速分别为–50℃、21m·s^(-1);对流层中部大气垂直温度递减率为–6.34℃·km^(-1);边界层平均高度为600 m,平均风速为10 m·s^(-1)。当长城站东侧存在气旋或者受极地高压控制时,对流层顶高度较低,大气垂直递减率偏小;相反当长城站西侧受气旋影响时,对流层顶高度偏高,大气垂直递减率偏大。夏季东南极沿岸对流层顶高度普遍高于西部,南极点对流层顶最低,可能与绕极气旋的生消源地存在密切的联系。在对流层顶高度、探空要素的垂直分布特征评估等方面, NCEP再分析数据比ERA-Interim再分析数据更接近观测数据真实值。  相似文献   

7.
南极特拉诺瓦湾下降风特征   总被引:1,自引:0,他引:1       下载免费PDF全文
南极罗斯海特拉诺瓦湾(Terra Nova Bay)是强下降风汇集区之一。采用高分辨率南极中尺度预报系统(Antarctic Mesoscale Prediction System,AMPS)资料和特拉诺瓦湾难言岛Manuela自动气象站实测数据,分析了特拉诺瓦湾及其附近地区的下降风特征。AMPS对难言岛地区风速和气温有较好的模拟能力,但风向比实测值偏西约30°。难言岛地区风速从1月开始迅速增大,4—9月风力平均为8级以上。难言岛夏季1月份的风速变化滞后气温变化约3 h;冬季7月份风向稳定为西至西南。特拉诺瓦湾及其附近地区下降风来自西岸海拔较高的冰盖,其风向的空间分布特征基本几乎不随季节而变化。下降风风速有显著的季节演变特征,11月至次年1月较小,3—9月风速较大。特拉诺瓦湾西岸等几处冰川地带在冬季是强风汇集区,难言岛处于Reeves冰川下降风汇集区中。该汇集区上边界和南北两侧均有清晰的分界线,风速较强区从地面延伸至650—800 m高处,风速最大值距离地面高度约为50—200 m。强下降风气流受难言岛地形阻挡,风速有所减弱,气流越过难言岛之后,风速再次加强。特拉诺瓦湾地区下降风流动过程中近地面气团位势温度变化幅度很小,表明下降风在从内陆高原到沿岸地区的流动是干绝热过程。  相似文献   

8.
根据2008年南极中山站的臭氧气球探空观测和塔层自动气象站数据,以及同时期的再分析资料,分析下降风(Katabatic wind)发生时的普里兹湾沿岸和东南极内陆地区的天气形势、中山站的边界层特征、气象要素的日变化规律。并利用对数风速廓线定律模拟中山站下降风,与实测值进行对比。个例研究表明,在晴朗的夜间或多云的白天,内陆地区冰面辐射冷却,导致气温降低,与普里兹湾沿岸地区的温度梯度大。此时内陆地区受高压控制,成为辐散中心,且高压的位置决定普里兹湾东岸和西岸的下降风强度。中山站的下降风出现在边界层低层,地面风速大,风向主要为东、东北东,导致强不稳定层结、气温和位温迅速降低。对数风廓线定律模拟中山站下降风的能力有限。  相似文献   

9.
天山山区是新疆主要河流的发源地,对该区域再分析气温数据进行适应性分析具有重要的研究意义,气温观测数据由于受到太阳辐射、海拔、大气环流和传感器角度等因素的影响,导致诸多误差;在其应用之前需要验证,尤其在海拔差异较大的天山山区。为验证ERA-Interim和GHCN-CAM两种再分析气温数据在天山山区的适应性,本文在数据预处理的基础上,利用45个气象站点日平均气温数据分别计算偏差(BIAS)、相关系数(R)、均方根误差(RMSE)等统计指标,并从不同海拔、偏差的空间分布上对天山山区1984—2016年ERA-Interim和GHCN-CAM逐月平均气温数据进行了适应性分析。结果表明:(1) GHCN-CAM(R=0. 94; BIAS=0. 55℃; RMSE=4. 08℃)气温值在天山山区的适应性强于ERA(R=0. 95; BIAS=2. 35℃; RMSE=4. 21℃)。(2)在气温的年内变化上,两种再分析数据值均低于观测值,表现为低估。(3)在季节尺度上,冬季(12月、1月和2月)表现为冷偏差,其他季节暖偏差。春秋两季模拟精度比夏冬两季高。(4)在1500~2000 m地区气温的模拟最好。从偏差的空间分布来看,天山中部、东部的再分析数据比天山南、北部能更好的反映气温的空间分布特征。山区地形复杂度和气象站点的不均匀是影响再分析数据精度的主要因素。  相似文献   

10.
谢泽林  王召民 《极地研究》2017,29(3):368-377
通过分析再分析资料与站点观测资料的差异评估了普里兹湾区域5 套再分析资料的风速、风向以及 温度产品。这5 套再分析资料包括欧洲中心再分析资料(ERA-I)、日本25 年再分析资料(JRA-25)、日本55 年再分析资料(JRA-55)、美国国家环境预报中心再分析资料(CFSR)和美国国家航空航天局再分析资料 (MERRA)。采用的观测资料来自两个人工观测站和三个自动气象站。月平均和季节差异分析结果表明, Mawson 站点再分析资料的风速一般小于站点风速, 其他站点再分析资料一般风速过大, 所有的站点风向与 再分析资料风向差异不大, 再分析资料的2 m 温度总体低于人工观测站的温度, 自动站和再分析资料的差 异则没有一致的差异特征。通过6 h 风速资料对比, 发现当Mawson 站点风速低于5 m·s–1 时, 再分析资料偏 高, 当站点风速高于15 m·s–1 时, 再分析资料偏低, 且该站点记录的极端强风次数远多于再分析资料。  相似文献   

11.
本文介绍了中国第3座南极常年考察站新站址候选地——罗斯海难言岛的基本信息。通过对设在其上的自动气象站的观测数据分析表明,近地面风场主要由下降风控制,西-西北风是6级以上大风的主要风向,最大风力可达12级以上,1月、11月、12月是平均风力较小的三个月份。通过分析基于CFSR海冰资料的Polar-WRF模式模拟结果发现:Polar-WRF模式能模拟出和实测资料十分一致的下降风风场,分辨率越高越能更好的模拟出下降风的特点。难言岛附近强劲的西-西北向下降风是地形强迫的结果;来自Reeves冰川的气流是下降风的主要来源。大风的水平分布范围约为50 km。海拔1 400—300 m为下降风的加速关键区,风速最大的地方在海拔300 m高度的陡坡附近,下降风在抵达难言岛时,由于地面摩擦作用,风力已经有一定的衰减。模拟风场可以对观测资料做出有益的补充。  相似文献   

12.
杨清华  尹涛  张林  姜德忠 《极地研究》2007,19(4):295-304
采用中山站和LGB69、EAGLE、DOME-A 3个南极内陆自动气象站的气象资料,分析了东南极中山站-DOME-A沿线风要素的分布特征。结果表明地处南极下降风下游的沿海陡坡区风力最强,越向内陆,风力越小;DOME-A地处内陆冰穹,没有下降风;而近沿海区由于受地形的影响,下降风十分明显,其风向以东北风为主,且大多发生在夏季夜间。  相似文献   

13.
张婷  张杰  杨俊钢 《极地研究》2014,26(4):481-486
利用2012年全年的ASCAT散射计风场数据,对55°S以南的南极周边海域海面风场开展了时空分布特性统计分析。结果表明:对于南极周边海域,7月平均风速最大,为12 m·s-1,12月平均风速最小,为8 m·s-1,冬季大于夏季;该区域平均风速主要在9—12 m·s-1之间,全年出现的天数280天,约占全年的77%;风速10 m·s-1所占比例也是冬季大于夏季。从全年来看,南极周边海域在冬季(4—6月)和春季(7—9月)风速普遍较大。该区域0°W—60°W海域内风速明显比其他海域要小。  相似文献   

14.
利用中亚1979-2011年间162个观测站点月降水数据(OBS),以平均偏差(MBE)、相关系数(R)、平均绝对误差(MAE)和均方根误差(RMSE)对CFSR、ERA-Interim和MERRA气象再分析降水数据在中亚地区的适用性进行评估。结果表明:(1)3套数据的模拟效果存在明显差异。其中MERRA的模拟精度最高(R=0.71),ERA-Interim次之(R=0.53),CFSR最低(R=0.50);体现出3套数据不同的同化方案和数据源导致模拟效果的不同;(2)降水的年内变化上,3套再分析数据之间具有较好的一致性,但对[OBS]均表现出高估,并且对强降水月份(3,4月)高估幅度最大;(3)3套数据对海拔500~1 000 m地区的降水模拟精度最好,超过1 000 m后,随海拔升高模拟精度下降。以上规律可为3套数据的订正及其在中亚地区气候变化研究中的应用提供科学依据。  相似文献   

15.
基于我国风蚀区239个气象站点逐时风速数据,采用谐波分析方法分析我国风蚀区风速日变率特征。结果表明:85.3%的站点有且只有第一个谐波通过F检验,日变率以24 h为周期;14.2%的站点第一和二个谐波通过检验,日变率以24 h为主周期,以12 h为副周期;西藏墨竹工卡站第一和三个谐波通过检验。日平均风速变化范围为0.96~8.36 m·s-1,均值为2.42 m·s-1;风速>3 m·s-1站点集中分布在内蒙古北部高原、青藏高原地形平坦的高原区、甘肃河西走廊及新疆东北部。季节风速表现出春季 > 冬季 > 夏季 > 秋季的特征;第一个谐波振幅变化范围为0.28~3.28 m·s-1;相位变化范围为-1.55~4.67,集中在3.21~4.67,表明大部分站点在午后风速值达到最大。研究可为逐时风速的随机模拟提供基础,进而为风蚀区风蚀量估算提供更好的数据支撑。  相似文献   

16.
利用东南极Panda-1站2011年2月至2012年1月期间的辐射观测资料,检验了四种再分析资料在该地区的适用性。结果表明:对各辐射分量ERA interim在Panda-1地区的适用性都明显好于其他三种再分析资料,这主要归因于其四维变分(4D-VAR)数据同化系统的应用、新的云预报方程和改进的参数化方案以及同化了更多的卫星资料雷达等非常规探测资料。对于向下短波辐射,NCEP-1与实测值之间偏差最大(18.7 W·m-2),可能原因是模式对大气透明度的高估和对云量的低估。对反射率模拟的偏差直接导致了各模式对净短波辐射模拟偏差。NCEP-1与JCDAS都低估了Panda-1地区的地表反射率,模式中,地表吸收了更多的向下短波辐射,最终导致对净短波辐射模拟偏高。对向下长波辐射,四种再分析资料都存在不同程度的低估,冬季偏差大于夏季,其中NCEP-1与NCEP-2偏差最大(分别为-62.6 W·m-2和-37.3 W·m-2)。四种再分析资料均不能很好地反映Panda-1地区净辐射的年变化情况,一般而言,夏季偏差小,冬季偏差大。虽然再分析资料存在明显的缺陷和不足,在广袤的东南极高原地区,观测站点稀少,实测资料无法满足需要,再分析资料仍不失为研究东南极地区气候的一种有效工具。  相似文献   

17.
1971-2013年环渤海地区风速的时空特征   总被引:2,自引:1,他引:1  
曹永旺  延军平 《中国沙漠》2015,35(5):1320-1329
基于环渤海地区60个站点1971-2013年日序列最大风速数据,采用线性倾向估计、Mann-kendall检验、反距离加权插值、小波分析等方法,分析了近年来环渤海地区风速的年、季节的变化趋势及其空间分异等特征。结果表明:(1)环渤海地区年均最大风速为6.35 m·s-1,并以0.423 m·s-1的年代变化速率呈显著的下降趋势。区内除承德、丰宁和阜新站点呈略微上升趋势,其余站点均呈下降趋势,整体上表现为南部下降幅度高而北部下降幅度低。四季最大风速也均呈显著的下降趋势,冬、春季的最大风速对全年趋势演变贡献率较大。(2)偏北风(尤其是北西北风)和偏南风(尤其是南西南风)是本区的主要风向。春、夏两季以偏南风为主要风向,秋、冬两季则以偏北风为主要风向。(3)环渤海地区最大风速减少的主要原因是各站点日最大风速为5级及以上的发生频率分别以0.912、0.671、0.271、0.076 d·a-1的速率呈下降趋势;大风频率也以1.019 d.a-1的速率呈下降趋势。冬半年是本区大风日数相对较多的时段,春季尤甚。(4)本区多数地区属大风较少区和较多区,其中大风较多区的站点最多(31个),而大风频发区的站点最少(仅4个)。位于大风较少区的站点数增长迅速,而大风较多区、多发区和频发区的站点数则均呈现下降趋势。最大风速与大风日数均具有25~30 a的显著振荡周期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号