首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluid depletion within a compacting reservoir can lead to significant stress and strain changes and potentially severe geomechanical issues, both inside and outside the reservoir. We extend previous research of time‐lapse seismic interpretation by incorporating synthetic near‐offset and full‐offset common‐midpoint reflection data using anisotropic ray tracing to investigate uncertainties in time‐lapse seismic observations. The time‐lapse seismic simulations use dynamic elasticity models built from hydro‐geomechanical simulation output and a stress‐dependent rock physics model. The reservoir model is a conceptual two‐fault graben reservoir, where we allow the fault fluid‐flow transmissibility to vary from high to low to simulate non‐compartmentalized and compartmentalized reservoirs, respectively. The results indicate time‐lapse seismic amplitude changes and travel‐time shifts can be used to qualitatively identify reservoir compartmentalization. Due to the high repeatability and good quality of the time‐lapse synthetic dataset, the estimated travel‐time shifts and amplitude changes for near‐offset data match the true model subsurface changes with minimal errors. A 1D velocity–strain relation was used to estimate the vertical velocity change for the reservoir bottom interface by applying zero‐offset time shifts from both the near‐offset and full‐offset measurements. For near‐offset data, the estimated P‐wave velocity changes were within 10% of the true value. However, for full‐offset data, time‐lapse attributes are quantitatively reliable using standard time‐lapse seismic methods when an updated velocity model is used rather than the baseline model.  相似文献   

2.
We reformulate the original model of Hatchell and Bourne and Røste, Stovas and Landrø that couples fractional velocity change to subsurface strain via a fundamental constant R. The new model combines elastic compressibility of a dual‐porosity system for a sand–shale mixture with horizontal planes of inter‐granular weakness. The majority of observed R‐factor magnitudes from post‐stack 4D seismic data in both the reservoir and overburden can thus be explained. R is predicted to depend strongly on lithology and also initial strain state. The model is also extended to predict the observed angle‐dependence of time‐lapse time‐shifts from pre‐stack data. An expression for the gradient of time‐shift with incidence angle is obtained in terms of the background VP/VS, and also the ratio of tangential to normal compliances BT/BN representing loss or creation of inter‐granular coupling. If accurately estimated from data, this compliance ratio can be used as an additional parameter to assess the post‐production state of the overburden. It is concluded that whilst R remains the over‐arching parameter controlling the magnitude of time‐shifts measured from 4D seismic data, BT/BN is a subtler parameter that may also prove of future value.  相似文献   

3.
Seismic monitoring of reservoir and overburden performance during subsurface CO2 storage plays a key role in ensuring efficiency and safety. Proper interpretation of monitoring data requires knowledge about the rock physical phenomena occurring in the subsurface formations. This work focuses on rock stiffness and elastic velocity changes of a shale overburden formation caused by both reservoir inflation induced stress changes and leakage of CO2 into the overburden. In laboratory experiments, Pierre shale I core plugs were loaded along the stress path representative for the in situ stress changes experienced by caprock during reservoir inflation. Tests were carried out in a triaxial compaction cell combining three measurement techniques and permitting for determination of (i) ultrasonic velocities, (ii) quasistatic rock deformations, and (iii) dynamic elastic stiffness at seismic frequencies within a single test, which allowed to quantify effects of seismic dispersion. In addition, fluid substitution effects connected with possible CO2 leakage into the caprock formation were modelled by the modified anisotropic Gassmann model. Results of this work indicate that (i) stress sensitivity of Pierre shale I is frequency dependent; (ii) reservoir inflation leads to the increase of the overburden Young's modulus and Poisson's ratio; (iii) in situ stress changes mostly affect the P‐wave velocities; (iv) small leakage of the CO2 into the overburden may lead to the velocity changes, which are comparable with one associated with geomechanical influence; (v) non‐elastic effects increase stress sensitivity of an acoustic waves; (iv) and both geomechanical and fluid substitution effects would create significant time shifts, which should be detectable by time‐lapse seismic.  相似文献   

4.
A modified discrete element method is briefly introduced and used for modelling reservoir geomechanical response during fluid injection and depletion. The modified approach works as a continuum method until some local failure is initiated, after which it behaves like a discrete element method on a polygonal lattice. The method is advantageous for modelling fracture developments in rocks. It is applied here to synthetic models of two reservoirs taken from the North Sea (Gullfaks and Elgin‐Franklin). For Gullfaks, two cases of water injection were modelled, one with low horizontal effective stress and the other with low vertical effective stress. Vertical fractures are developed in the first case, whereas horizontal fractures are developed in the second case. This would not have been seen using traditional methods. Based on 4D seismics data for the Gullfaks field, one may envision that horizontal fractures could have been formed. The Elgin‐Franklin synthetic model is used to study various scenarios of changing stress field around the depleting reservoir. Based on 4D seismics data from this field, one may see changes that could be interpreted in terms of possible fault reactivation.  相似文献   

5.
Hydrocarbon production and fluid injection affect the level of subsurface stress and physical properties of the subsurface, and can cause reservoir‐related issues, such as compaction and subsidence. Monitoring of oil and gas reservoirs is therefore crucial. Time‐lapse seismic is used to monitor reservoirs and provide evidence of saturation and pressure changes within the reservoir. However, relative to background velocities and reflector depths, the time‐lapse changes in velocity and geomechanical properties are typically small between consecutive surveys. These changes can be measured by using apparent displacement between migrated images obtained from recorded data of multiple time‐lapse surveys. Apparent displacement measurements by using the classical cross‐correlation method are poorly resolved. Here, we propose the use of a phase‐correlation method, which has been developed in satellite imaging for sub‐pixel registration of the images, to overcome the limitations of cross‐correlation. Phase correlation provides both vertical and horizontal displacements with a much better resolution. After testing the method on synthetic data, we apply it to a real dataset from the Norne oil field and show that the phase‐correlation method can indeed provide better resolution.  相似文献   

6.
Compaction induced by pore‐pressure decrease inside a reservoir can be monitored by measuring traveltime shifts of reflection events on time‐lapse seismic data. Recently we introduced a perturbation‐based formalism to describe traveltime shifts caused by the 3D stress‐induced velocity field around a compacting reservoir. Application of this method to homogeneous background models showed that the offset variation of traveltime shifts is controlled primarily by the anisotropic velocity perturbations and can provide valuable information about the shear and deviatoric stresses. Here, we model and analyse traveltime shifts for compacting reservoirs whose elastic properties are different from those of the surrounding medium. For such models, the excess stress is influenced primarily by the contrast in the rigidity modulus μ across the reservoir boundaries. Synthetic examples demonstrate that a significant (25% or more) contrast in μ enhances the isotropic velocity perturbations outside the reservoir. Nevertheless, the influence of background heterogeneity is mostly confined to the reservoir and its immediate vicinity and the anisotropic velocity changes are still largely responsible for the offset dependence of traveltime shifts. If the reservoir is stiffer than the host rock, the background heterogeneity reduces anisotropic velocity perturbations inside the reservoir but increases them in the overburden. As a result, in this case, the magnitude of the offset variation of traveltime shifts is generally higher for reflections from interfaces above the reservoir. We also study compaction‐induced stress/strain and traveltime shifts for a stiff reservoir embedded in a softer layered model based on velocity profiles from the Valhall Field in the North Sea. Despite producing discontinuities in strain across medium interfaces, horizontal layering does not substantially alter the overall behaviour of traveltime shifts. The most pronounced offset variation of traveltime shifts is observed for overburden events recorded at common midpoints close to the reservoir edges. On the whole, prestack analysis of traveltime shifts should help better constrain compaction‐induced velocity perturbations in the presence of realistic background heterogeneity.  相似文献   

7.
Time‐lapse seismics is the methodology of choice for remotely monitoring changes in oil/gas reservoir depletion, reservoir stimulation or CO2 sequestration, due to good sensitivity and resolving power at depths up to several kilometres. This method is now routinely applied offshore, however, the use of time‐lapse methodology onshore is relatively rare. The main reason for this is the relatively high cost of commercial seismic acquisition on land. A widespread belief of a relatively poor repeatability of land seismic data prevents rapid growth in the number of land time‐lapse surveys. Considering that CO2 sequestration on land is becoming a necessity, there is a great need to evaluate the feasibility of time‐lapse seismics for monitoring. Therefore, an understanding of the factors influencing repeatability of land seismics and evaluating limitations of the method is crucially important for its application in many CO2 sequestration projects. We analyse several repeated 2D and 3D surveys acquired within the Otway CO2 sequestration pilot project (operated by the Cooperative Research Centre for Greenhouse Technologies, CO2CRC) in Australia, in order to determine the principal limitations of land time‐lapse seismic repeatability and investigate the influence of the main factors affecting it. Our findings are that the intrinsic signal‐to‐noise ratio (S/N, signal to coherent and background noise levels) and the normalized‐root‐mean‐square (NRMS) difference are controlled by the source strength and source type. However, the post‐stack S/N ratio and corresponding NRMS residuals are controlled mainly by the data fold. For very high‐fold data, the source strength and source type are less critical.  相似文献   

8.
Sea‐bed diffractions are frequently observed for several of the fields in the Norwegian Sea and the Barents Sea. This is a challenge in time lapse seismic analysis, since diffracted multiples are difficult to remove by processing and therefore is a major source of poor time lapse data quality. In this work we test if the diffractions can be used for enhanced 4D interpretation. By analysing the time‐shift of the sea‐bed diffraction hyperbola between the base and monitor it is tested if changes in water velocity and tides can be estimated. Two models using time lapse diffraction analysis are tested: the first one simply adds time‐shifts for the two branches of the diffraction hyperbola and this average time‐shift is then used to estimate the water velocity change. The other method uses an inversion method based on the diffraction equation for a point diffractor to estimate the velocity change. In‐line common‐midpoint shifts are estimated by subtracting the time‐shifts of both hyperbola branches followed by direct inversion. The diffraction based time‐shifts are compared to time‐shifts estimated by standard cross‐correlation of the sea‐bed reflection. The averaging method gives slightly higher uncertainties, while the inversion using an exact traveltime equation gives similar uncertainties compared to the sea‐bed reflection method.  相似文献   

9.
Legacy streamer data and newer 3D ocean‐bottom‐cable data are cross‐matched and analysed for time‐lapse analysis of geomechanical changes due to production in the Valhall Field. The issues relating to time‐lapse analysis using two such distinctly different data sets are addressed to provide an optimal cross‐matching workflow that includes 3D warping. Additionally an assessment of the differences between the imaging using single‐azimuth streamer and multi‐azimuth ocean‐bottom‐cable data is provided. The 3D warping utilized in the cross‐matching procedure is sensitive to acquisition and processing differences but is also found to provide valuable insight into the geometrical changes that occur in the subsurface due to production. As such, this work also provides a demonstration of the use of high‐resolution 3D interpreted warping to resolve the 3D heterogeneity of the compaction and subsidence. This is an important tool for Valhall, and possibly other fields, where compaction and subsidence (and monitoring thereof) are key factors in the reservoir management since the predominant observed production‐induced changes are compaction of the soft, high‐porosity chalk reservoir, due to pore‐pressure reduction, and the resultant overburden subsidence. Such reservoir compaction could have significant implications for production by changing permeabilities and production rates. Furthermore the subsidence effects could impact upon subsea installations and well‐bore stability. Geomechanical studies that have previously been used to model such subsidence and compaction are only constrained by observed surface displacements and measured reservoir pressure changes, with the geological overburden being largely neglected. The approaches suggested herein provide the potential for monitoring and assessment in three dimensions, including the probable heterogeneity and shearing, that is needed for full understanding of reservoir compaction and the resultant effects on the overburden to, for example, mitigate well‐bore failures.  相似文献   

10.
Pressure drops associated with reservoir production generate excess stress and strain that cause travel‐time shifts of reflected waves. Here, we invert time shifts of P‐, S‐, and PS‐waves measured between baseline and monitor surveys for pressure reduction and reservoir length. The inversion results can be used to estimate compaction‐induced stress and strain changes around the reservoir. We implement a hybrid inversion algorithm that incorporates elements of gradient, global/genetic, and nearest neighbour methods and permits exploration of the parameter space while simultaneously following local misfit gradients. Our synthetic examples indicate that optimal estimates of reservoir pressure from P‐wave data can be obtained using the reflections from the reservoir top. For S‐waves, time shifts from the top of the reservoir can be accurately inverted for pressure if the noise level is low. However, if noise contamination is significant, it is preferable to use S‐wave data (or combined shifts of all three modes) from reflectors beneath the reservoir. Joint wave type inversions demonstrate improvements over any single pure mode. Reservoir length can be estimated using the time shifts of any mode from the reservoir top or deeper reflectors. We also evaluate the differences between the actual strain field and those corresponding to the best‐case inversion results obtained using P‐ and S‐wave data. Another series of tests addresses the inversion of the time shifts for the pressure drops in two‐compartment reservoirs, as well as for the associated strain field. Numerical testing shows that a potentially serious source of error in the inversion is a distortion in the strain‐sensitivity coefficients, which govern the magnitude of stiffness changes. This feasibility study suggests which wave types and reflector locations may provide the most accurate estimates of reservoir parameters from compaction‐induced time shifts.  相似文献   

11.
We present an approach that creates the possibility of reservoir monitoring on a quasi‐continuous basis using surface seismic data. Current strategies and logistics for seismic data acquisition impose restrictions on the calendar‐time temporal resolution obtainable for a given surface‐seismic time‐lapse monitoring program. One factor that restricts the implementation of a quasi‐continuous monitoring program using conventional strategies is the time it takes to acquire a complete survey. Here quasi‐continuous monitoring describes the process of reservoir monitoring at short‐time intervals. Our approach circumvents the restriction by requiring only a subset of complete survey data each time an image of the reservoir is needed using surface seismic data. Ideally, the time interval between survey subset acquisitions should be short so that changes in the reservoir properties are small. The accumulated data acquired are used to estimate the unavailable data at the monitor survey time and the combined recorded and estimated data are used to produce an image of the subsurface for monitoring. We will illustrate the effectiveness of our approach using 2D and 3D synthetic seismic data and 3D field seismic data. We will explain the benefits and drawbacks of the proposed approach.  相似文献   

12.
This article addresses the question whether time‐lapse seismic reflection techniques can be used to follow and quantify the effects of solution salt mining. Specifically, the production of magnesium salts as mined in the north of the Netherlands is considered. The use of seismic time‐lapse techniques to follow such a production has not previously been investigated. For hydrocarbon production and CO2 storage, time‐lapse seismics are used to look at reservoir changes mainly caused by pressure and saturation changes in large reservoirs, while for solution mining salt is produced from caverns with a limited lateral extent, with much smaller production volumes and a fluid (brine) replacing a solid (magnesium salt). In our approach we start from the present situation of the mine and then study three different production scenarios, representing salt production both in vertical and lateral directions of the mine. The present situation and future scenarios have been transformed into subsurface models that were input to an elastic finite‐difference scheme to create synthetic seismic data. These data have been analysed and processed up to migrated seismic images, such that time‐lapse analyses of intermediate and final results could be done. From the analyses, it is found that both vertical and lateral production is visible well above the detection threshold in difference data, both at pre‐imaging and post‐imaging stages. In quantitative terms, an additional production of the mine of 6 m causes time‐shifts in the order of 2 ms (pre‐imaging) and 4 ms (post‐imaging) and amplitude changes of above 20% in the imaged sections. A laterally oriented production causes even larger amplitude changes at the edge of the cavern due to replacement of solid magnesium salt with brine introducing a large seismic contrast. Overall, our pre‐imaging and post‐imaging time‐lapse analysis indicates that the effects of solution salt mining can be observed and quantified on seismic data. The effects seem large enough to be observable in real seismic data containing noise.  相似文献   

13.
In the Norwegian North Sea, the Sleipner field produces gas with a high CO2 content. For environmental reasons, since 1996, more than 11 Mt of this carbon dioxide (CO2) have been injected in the Utsira Sand saline aquifer located above the hydrocarbon reservoir. A series of seven 3D seismic surveys were recorded to monitor the CO2 plume evolution. With this case study, time‐lapse seismics have been shown to be successful in mapping the spread of CO2 over the past decade and to ensure the integrity of the overburden. Stratigraphic inversion of seismic data is currently used in the petroleum industry for quantitative reservoir characterization and enhanced oil recovery. Now it may also be used to evaluate the expansion of a CO2 plume in an underground reservoir. The aim of this study is to estimate the P‐wave impedances via a Bayesian model‐based stratigraphic inversion. We have focused our study on the 1994 vintage before CO2 injection and the 2006 vintage carried out after a CO2 injection of 8.4 Mt. In spite of some difficulties due to the lack of time‐lapse well log data on the interest area, the full application of our inversion workflow allowed us to obtain, for the first time to our knowledge, 3D impedance cubes including the Utsira Sand. These results can be used to better characterize the spreading of CO2 in a reservoir. With the post‐stack inversion workflow applied to CO2 storage, we point out the importance of the a priori model and the issue to obtain coherent results between sequential inversions of different seismic vintages. The stacking velocity workflow that yields the migration model and the a priori model, specific to each vintage, can induce a slight inconsistency in the results.  相似文献   

14.
For a 4D seismic operation to be successful, it is important to know what kind of 4D signal we expect to observe, as well as its magnitude. Normally, in a 4D feasibility study, we use rock physics models to quantify the effect of fluid or pressure changes within the reservoir and calculate the corresponding effects to the seismogram. However, to find if the predicted changes are actually observable at a given field, a dedicated calibration procedure might give valuable insight. One such procedure for marine seismics is to gradually change the source strength by varying the firing pressure in order to detect the sensitivity threshold for a given subsurface reflection. This procedure would be practical and feasible if the change of the source signature changes linearly with the source pressure. However, non‐linear effects will lead to minor changes in the later arrivals of the source signature, the so‐called bubble. By investigating these introduced errors for a reasonable air‐gun array we conclude that the method is still feasible since we find it possible to control and diminish the impact of the introduced errors.  相似文献   

15.
Time‐lapse refraction can provide complementary seismic solutions for monitoring subtle subsurface changes that are challenging for conventional P‐wave reflection methods. The utilization of refraction time lapse has lagged behind in the past partly due to the lack of robust techniques that allow extracting easy‐to‐interpret reservoir information. However, with the recent emergence of the full‐waveform inversion technique as a more standard tool, we find it to be a promising platform for incorporating head waves and diving waves into the time‐lapse framework. Here we investigate the sensitivity of 2D acoustic, time‐domain, full‐waveform inversion for monitoring a shallow, weak velocity change (?30 m/s, or ?1.6%). The sensitivity tests are designed to address questions related to the feasibility and accuracy of full‐waveform inversion results for monitoring the field case of an underground gas blowout that occurred in the North Sea. The blowout caused the gas to migrate both vertically and horizontally into several shallow sand layers. Some of the shallow gas anomalies were not clearly detected by conventional 4D reflection methods (i.e., time shifts and amplitude difference) due to low 4D signal‐to‐noise ratio and weak velocity change. On the other hand, full‐waveform inversion sensitivity analysis showed that it is possible to detect the weak velocity change with the non‐optimal seismic input. Detectability was qualitative with variable degrees of accuracy depending on different inversion parameters. We inverted, the real 2D seismic data from the North Sea with a greater emphasis on refracted and diving waves’ energy (i.e., most of the reflected energy was removed for the shallow zone of interest after removing traces with offset less than 300 m). The full‐waveform inversion results provided more superior detectability compared with the conventional 4D stacked reflection difference method for a weak shallow gas anomaly (320 m deep).  相似文献   

16.
It is important to include the viscous effect in seismic numerical modelling and seismic migration due to the ubiquitous viscosity in an actual subsurface medium. Prestack reverse‐time migration (RTM) is currently one of the most accurate methods for seismic imaging. One of the key steps of RTM is wavefield forward and backward extrapolation and how to solve the wave equation fast and accurately is the essence of this process. In this paper, we apply the time‐space domain dispersion‐relation‐based finite‐difference (FD) method for visco‐acoustic wave numerical modelling. Dispersion analysis and numerical modelling results demonstrate that the time‐space domain FD method has great accuracy and can effectively suppress numerical dispersion. Also, we use the time‐space domain FD method to solve the visco‐acoustic wave equation in wavefield extrapolation of RTM and apply the source‐normalized cross‐correlation imaging condition in migration. Improved imaging has been obtained in both synthetic and real data tests. The migration result of the visco‐acoustic wave RTM is clearer and more accurate than that of acoustic wave RTM. In addition, in the process of wavefield forward and backward extrapolation, we adopt adaptive variable‐length spatial operators to compute spatial derivatives to significantly decrease computing costs without reducing the accuracy of the numerical solution.  相似文献   

17.
Fluid-flow simulators used in the oil industry model the movement of fluids through a porous reservoir rock. These simulators either ignore coupling between the flow and concurring deformation of the solid rock frame or take it into account approximately, in the so-called loose or staggered-in-time mode. In contrast to existing simulators, the one we describe here fully couples two-phase (oil and water) flow to subsurface deformation and simultaneously accounts for all relevant physical phenomena. As such, our flow simulator inherently links time-dependent fluid pressures, saturations, permeabilities and flow velocities to stresses in the whole subsurface. These stresses relate to strains through the non-linear theory of elasticity, allowing us to model time-lapse changes in seismic velocities and anisotropy. The velocity variations manifest themselves in time shifts and reflection amplitudes that are conventionally measured from 4D seismic data. Changes in anisotropy produce time-dependent shear-wave splitting that can be used for monitoring the horizontal stresses.  相似文献   

18.
Of particular concern in the monitoring of gas injection for the purposes of storage, disposal or improved oil recovery is the exact spatial distribution of the gas volumes in the subsurface. In principle this requirement is addressed by the use of 4D seismic data, although it is recognized that the seismic response still largely provides a qualitative estimate of moved subsurface fluids. Exact quantitative evaluation of fluid distributions and associated saturations remains a challenge to be solved. Here, an attempt has been made to produce mapped quantitative estimates of the gas volume injected into a clastic reservoir. Despite good results using three accurately repeated seismic surveys, time‐delay and amplitude attributes reveal fine‐scale differences though large‐scale agreement in the estimated fluid movement. These differences indicate disparities in the nature of the two attributes themselves, which can be explained by several possible causes. Of most impact are the effects of processing and migration, wave interference effects and noise from non‐repeatability of the seismic surveys. This subject highlights the need for a more careful consideration in 4D acquisition, amplitude processing and use of true amplitude preserving attributes in quantitative interpretation.  相似文献   

19.
Interferometric redatuming is a data‐driven method to transform seismic responses with sources at one level and receivers at a deeper level into virtual reflection data with both sources and receivers at the deeper level. Although this method has traditionally been applied by cross‐correlation, accurate redatuming through a heterogeneous overburden requires solving a multidimensional deconvolution problem. Input data can be obtained either by direct observation (for instance in a horizontal borehole), by modelling or by a novel iterative scheme that is currently being developed. The output of interferometric redatuming can be used for imaging below the redatuming level, resulting in a so‐called interferometric image. Internal multiples from above the redatuming level are eliminated during this process. In the past, we introduced point‐spread functions for interferometric redatuming by cross‐correlation. These point‐spread functions quantify distortions in the redatumed data, caused by internal multiple reflections in the overburden. In this paper, we define point‐spread functions for interferometric imaging to quantify these distortions in the image domain. These point‐spread functions are similar to conventional resolution functions for seismic migration but they contain additional information on the internal multiples in the overburden and they are partly data‐driven. We show how these point‐spread functions can be visualized to diagnose image defocusing and artefacts. Finally, we illustrate how point‐spread functions can also be defined for interferometric imaging with passive noise sources in the subsurface or with simultaneous‐source acquisition at the surface.  相似文献   

20.
Despite the use of CDP and digital methods the Zechstein base is still the deepest horizon in the vast salt-dome basin of Central Europe for which continuous information can be obtained by reflection seismics. Thus in North-western Germany, in addition to reflection seismics, the refraction seismic method has been increasingly used for a reliable survey of deeper horizons. The first part of the paper deals with the investigation of the various possibilities and limitations of refraction seismics with regard to the investigation of Pre-Zechstein layers in a basin with a tectonically very complicated overburden. The recording techniques specially developed for continuous profiling of the desired refraction seismic arrivals and the data processing methods are described. The main problems of interpretation are then discussed, in particular with regard to depth representation. The advantages and disadvantages of the various methods, e.g. Gardner's, Hales' and Wyrobek's, and of the wave-front method, are compared. On account of the tectonically complicated overburden Thornburgh's wave-front method proved to be the most useful. In a further section the various possibilities for velocity determinations are mentioned, e.g. Wyrobek's determination of the overburden velocity, for which the wave-front method automatically furnishes the necessary corrections to a deep datum. Finally, some examples are given for the results obtained, including some incidental information on the deeper crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号