首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
As was shown in [Molodensky, 2004a, 2004b], modern very long base interferometer (VLBI) data on the amplitudes and phases of the Earth’s forced nutation can provide significantly more rigid constraints on possible values of the quality factor of the lower mantle Q μ and on the dynamic flattening of the liquid core e lc as compared with seismic evidence and data on damping of the free oscillations of the Earth. On the other hand, the accuracy of modern tidal gravity data (obtained from twenty-year series of observations with a cryogenic gravimeter) is also very high and these data must be taken into account while estimating the parameters Q μ and e lc . The paper presents comparative estimates of the determination accuracy of the parameters Q μ and the dynamic flattening of the liquid core from VLBI and the aforementioned tidal gravity data.  相似文献   

2.
In the first part of the paper, we obtained the refined estimates for the periods and Q-factors of the fundamental modes and overtones of spherical and toroidal oscillations with periods longer than 3 min from the data on the free oscillations of the Earth, which were excited by the earthquakes with magnitude 9 that occurred in Sumatra, Japan, and the Sea of Okhotsk. In (Molodenskii et al., 2013), we analyzed the limits of the admissible density distributions in the mantle and liquid core of the Earth, using the data on the amplitudes and phases of the forced nutations, as well as the periods and attenuation factors of the fundamental modes of the free spheroidal and toroidal oscillations of the Earth. These studies were conducted with the fixed values of the total mass and total moment of inertia of the Earth and the fixed distributions of the body seismic waves in the mantle and in the core. The solution was obtained by orthogonalizing the kernels of the integral equations that link the residuals of the observed frequencies and attenuation factors of the free oscillations, as well as the amplitudes and phases of the forced nutations, with the sought densities and Q-factors of the mantle and liquid core. Below, we present the solution of the same problem with allowance for the results obtained in the first part of this paper, namely, the new data on the periods and attenuation factors of the fundamental modes of free oscillations of the Earth and on the periods of the first four overtones of the free spheroidal and toroidal oscillations. Despite the involvement of the new data on the overtones, which have not been considered in our calculations, the weighted root mean square deviations of the theoretical predictions from the observed periods and attenuation factors of the free oscillations, as well as the amplitudes and phases of the forced nutations, have significantly decreased. This is due to (1) the noticeable reduction of the real errors in estimating the parameters of the free oscillations described in the first part of the paper and (2) the inclusion of the quantities determining the depth- and frequency dependences of the Q-factor in the mantle in the set of the independently varied parameters.  相似文献   

3.
Ambiguity in the inverse problem of retrieval of the mechanical parameters of the Earth’s shell and core from the set of data on the velocities V p and V S , of longitudinal and transverse seismic body waves, the frequencies f i and quality factors Q i , of free oscillations, and the amplitudes and phases of forced nutation is considered. The numerical experiments show that the inverse problem of simultaneous retrieval of the density profile ρ in the mantle-liquid core system and the mechanical quality factor Q μ of the mantle (if the total mass M and the total mean moment of inertia I of the Earth, and V p and V S are constant at all depths) has most unstable solutions. An example of depth distributions of ρ and Q μ which are alternative to the well-known PREM model is given. In these distributions, the values of M and I and the velocities V p and V S at all depths for the period of oscillations T = 1 s exactly coincide with their counterparts yielded by PREM model (T = 1 s); however, the maximum deviations of the ρ and Q μ profiles from those in the PREM model are about 3% and 40%, respectively; the mass and the moment of inertia of the liquid core are smaller than those for the PREM model by 0.75% and 0.63%, respectively. In this model, the root mean square (rms) deviations of all the measured values of f i and Q i from their values predicted by theory are half to third the corresponding values in the PREM model; the values of Δ for natural frequencies of the fundamental tone and overtones of radial oscillations, the fundamental tones of torsional oscillations, and the fundamental tones of spheroidal oscillations, which are measured with the highest relative accuracy, are smaller by a factor of 30, 6.6, and 2 than those in the PREM model, respectively. Such a large ambiguity in the solution of the inverse problem indicates that the current models of the depth distribution of density have relatively low accuracy, and the models of the depth distribution of the mechanical Q in the mantle are extremely unreliable. It is shown that the ambiguity in the models of depth distribution of density considerably decreases after the new data on the amplitudes and phases of the forced nutation of the Earth are taken into account. Using the same data, one may also refine by several times the recent estimates of the creep function for the lower mantle within a wide interval of periods ranging from a second to a day.  相似文献   

4.
The amplitudes and phases of forced nutation and diurnal earth tides depend significantly on the moment of forces between the liquid core and mantle of the Earth, resulting from the differential rotation of the core. The solution to the dynamic problem of rotation of an imperfectly elastic mantle with an imperfectly liquid core and an ocean indicates that the predominant role is played by the so-called core-mantle inertial coupling (related to the effect of hydrodynamic pressure in the liquid core on the ellipsoidal core-mantle boundary). The magnitude of this coupling depends significantly not only on the dynamic flattening of the liquid core but also on the elastic and inelastic properties of the mantle, as well as on the amplitudes and phases of oceanic tides. In this paper, the effects of oceanic tides on the magnitude of inertial coupling between the liquid core and the mantle and on the period and damping decrement of free nearly diurnal nutation are estimated.  相似文献   

5.
We analyze the present-day data on the periods of free oscillations and amplitudes of the forced nutations of the Earth for evaluating the admissible range of the mass and moment of inertia for the liquid core. The initial model for this study is taken in the form of the model distribution of density and mechanical Q parameters of the mantle suggested in (Molodenskii, 2010; 2011a; 2011b). This model was constructed by the steepest descent method in the space of 64 parameters, which determine the distribution of density and parameters of mechanical Q in the mantle, liquid outer core, and solid inner core of the Earth. We assumed the Q parameter of the mantle and inner solid core to be constant and sought for the density variations for the simplest two-parameter model of the piecewise-linear functions with the jumps on the boundary between the liquid core and the mantle and at the olivine-spinel phase transition at a depth of 670 km in the mantle. After this, the computations were repeated for the other distributions of Q (which were also assumed to be unchanged) that correspond to their limiting admissible values. Using this approach, we managed to find the most probable values of the mass and moment of inertia of the liquid core and determine the admissible range of their values. According to our estimates, the ratios of the mass and moments of inertia of the liquid core to the mass and moment of inertia of the whole Earth fall in the intervals 0.317996 ± 0.00065 and 0.110319 ± 0.00022, respectively. These values are lower than the corresponding values for the PREM model (0.322757 and 0.112297) by (1.48 ± 0.30)% and (1.76 ± 0.35)%, respectively. The interpretation of these results requires the revision and thorough analysis of the data on the admissible temperature range of the liquid core and (or) its chemical composition.  相似文献   

6.
The models of the mechanical Q factor of the inner solid core of the Earth are reconstructed from the amplitudes and phases of forced nutation and the periods and damping constants of the high-order overtones of free radial modes. The admissible range of the Q-factor in the solid core is estimated and the stability of the obtained distributions is analyzed. The real accuracy of the obtained model distributions is estimated on the basis of the previous conclusions concerning the uncertainty in the solution of the inverse problem of reconstructing the internal structure of the Earth in the low-frequency range.  相似文献   

7.
We model the internal structure of the Moon, initially homogeneous and later differentiated due to partial melting. The chemical composition and the internal structure of the Moon are retrieved by the Monte-Carlo inversion of the gravity (the mass and the moment of inertia), seismic (compressional and shear velocities), and petrological (balance equations) data. For the computation of phase equilibrium relations and physical properties, we have used a method of minimization of the Gibbs free energy combined with a Mie-Gr@uneisen equation of state within the CaO-FeO-MgO-Al2O3-SiO2 system. The lunar models with a different degree of constraints on the solution are considered. For all models, the geophysically and geochemically permissible ranges of seismic velocities and concentrations in three mantle zones and the sizes of Fe-10%S core are estimated. The lunar mantle is chemically stratified; different mantle zones, where orthopyroxene is the dominant phase, have different concentrations of FeO, Al2O3, and CaO. The silicate portion of the Moon (crust + mantle) may contain 3.5–5.5% Al2O3 and 10.5–12.5% FeO. The chemical boundary between the middle and the lower mantle lies at a depth of 620–750 km. The lunar models with and without a chemical boundary at a depth of 250–300 km are both possible. The main parameters of the crust, the mantle, and the core of the Moon are estimated. At the depths of the lower mantle, the P and S velocities range from 7.88 to 8.10 km/s and from 4.40 to 4.55 km/s, respectively. The radius of a Fe-10%S core is 340 ± 30 km.  相似文献   

8.
The results of solving the inverse problem of forced nutations and free oscillations of the Earth by decomposing the Q-factor and small depth variations in density in a system of orthogonal functions are considered. These functions are determined by orthogonalization of the functional derivatives of the observed parameters with respect to the depth distributions of the sought parameters (assuming there are no distributions of the velocities of body seismic waves V p and V S with depth and unchanged total mass M and inertia moments I of the Earth). The examples are presented to illustrate the numerical solution of the inverse problem on finding the density distributions in the mantle and core of the Earth using orthogonalization of the integral constraints for the probable depth distributions of density describing the conditions of unchanged M and I, as well as the constraints posed by the data on the periods of the free low-order oscillations of the Earth.  相似文献   

9.
We discuss the problem of the ambiguity of gravity inversion, i.e., finding the depth distribution of density and the depth and frequency dependences of the Q-factor from the entire set of the present-day seismic and astrometric data on the travel times of seismic waves, the periods and attenuation factors of the free oscillations of the Earth, as well as the amplitudes and phases of the forced nutations. In the first part of the paper, we present the new and more accurate determinations of the periods and Q-factors for the fundamental tones and overtones of the spheroidal and toroidal oscillations of the Earth, which have periods longer than 3 min. These determinations are based on analyzing the signals from the Sumatra, Tohoku, and Okhotsk earthquakes of magnitude 9, which were recorded by the stations of the Global Seismographic Network (GSN) in Obninsk and Kazakhstan. It is shown that, although the Okhotsk earthquake had a lower magnitude than the other quakes analyzed (since its seismic source was extremely deep (about 600 km)), the amplitudes of the overtones excited by this event are significantly higher than the amplitudes of the overtones caused by the Sumatra and Tohoku events of magnitude 9. Moreover, the amplitudes of the overtones from the Okhotsk earthquake exceed the amplitudes of the overtones of the free oscillations caused by the other seismic events of magnitude 9 that occurred in the second half of the 20th century. Due to this, the data on the Okhotsk Sea earthquake are of utmost importance for the solution of the inverse problems of reconstructing the vertical profiles of Q-factor in the ultra-low frequency (ULF) range and for reconstructing the vertical distribution of density. Based on the new empirical data, we obtained new and more accurate estimates for the periods and attenuation factors of the free oscillations of the Earth.  相似文献   

10.
The Earth's free core nutation (FCN) is a retrograde eigenrnode which is attributed to the interaction between the solid mantle and the liquid core of the rotational elliptical Earth. This mode appears as an eigenmode of nearly diurnal free wobble (NDFW) in a terrestrial reference frame with a period of about one day (XU et al, 2001). Therefore, the NDFW will lead to an obvious resonance enhancement in the diurnal tidal gravity observations, especially those of the tidal waves with frequencies closed to its eigenfrequency such as P1, K1, ψ1 and Ф1. The FCN resonance parameters can be retrieved accurately by high-precision tidal gravity observations, especially those recorded with the superconducting gravimeters (SG). The Global Geodynamics Project (GGP) organized by IUGG took it as an important content for determining the FCN resonance parameters by using gravity data. However, the results are affected by many factors such as station location, background noise, the selection of the tide-generating potential tables, ocean tide models, data processing techniques and so on. In our study, the FCN parameters will be retrieved by using the SG observations at Wuhan, and the effects of the choices of various tide-generating potential tables, oceanic models and weight functions on the estimation of the FCN parameters will be discussed in detail,  相似文献   

11.
New, unique information on the inertial and dissipative coupling of the liquid core and the mantle has been retrieved from modern high-precision (radiointerferometer and GPS) data on tidal variations in the rotation velocity and nutation of the Earth. Comparison of theoretical and observed data provided new estimates for the dynamic flattening of the outer liquid and the inner solid cores, mantle quality factor, viscosity of the liquid core, and electromagnetic coupling of the liquid core and the mantle [Molodensky, 2004, 2006]. As was shown in the first part of the paper [Molodensky, 2008] (further referred to as [I]), generation of eddy flows in Proudman-Taylor columns, whose orientation is controlled by the topography of the liquid core-mantle boundary, should be taken into account for correct estimation of the inertial coupling (see formulas (8) and (34) in [I]). The range of periods within which this effect plays a significant role is determined by the decay time of these flows. This time is estimated in the paper for the case where dissipation is related to viscous friction at the core-mantle boundary or with the electromagnetic coupling of the liquid core and the mantle. Because of significant uncertainties in modern data on the viscosity of the liquid core, the magnetic field intensity at the core-mantle boundary, and the electrical conductivity of the lower mantle, the dissipative coupling of the liquid core and the mantle cannot be calculated as yet. However, as shown in the paper, the decay time of eddy flows is connected with the attenuation time of subdiurnal free nutation and with the liquid core viscosity. This enables the estimation of the frequency dependence of the dissipative coupling in a fairly wide range. It is shown that the range of periods for which relations (8) and (34) in [I] are valid encompasses the best-studied length-of-day variations and, therefore, these relations are applicable to analysis of the majority of modern data.  相似文献   

12.
All the finite strain equations that we are aware of that are worth considering in connection with the interior of the Earth are given, with the assumptions on which they are based and corresponding relationships for incompressibility and its pressure derivatives in terms of density. In several cases, equations which have been presented as new or independent are shown to be particular examples of more general equations that are already familiar. Relationships for deriving finite strain equations from atomic potential functions or vice versa are given and, in particular it is pointed out that the Birch-Murnaghan formulation implies a sum of power law potentials with even powers. All the equations that survive simple plausibility tests are fitted to the lower mantle and outer core data for the PEM earth model. For this purpose the model data are extrapolated to zero temperature, using the Mie-Grüneisen equation to subtract the thermal pressure (at fixed density) and the pressure derivative of this equation to substract the thermal component of incompressibility. Fitting of finite strain equations to such zero temperature data is less ambiguous than fitting raw earth model data and leads immediately to estimates of the low temperature zero pressure parameters of earth materials. On this basis, using the best fitting equations and constraining core temperature to give an extrapolated incompressibilityK 0=1.6×1011Pa, compatible with a plausible iron alloy, the following numerical data are obtained: Core-mantle boundary temperature 3770 K Zero pressure, zero temperature densities: lower mantle 4190 kg m–3 outer core (solidified) 7500 kg m–3 Zero pressure, zero temperature incompressibility of the lower mantle 2.36×1011PaHowever, an inconsistency is apparent betweenP() andK() data, indicating that, even in the PEM model, in which the lower mantle is represented by a single set of parameters, it is not perfectly homogeneous with respect to composition and phase.  相似文献   

13.
We have estimated the parameters of fluid core resonance (FCR) due to the nearly diurnal free wobble of the Earth's core based on the superconducting gravimeter (SG) data obtained at the following four observation sites; Esashi and Matsushiro in Japan, Canberra in Australia and Membach in Belgium. By fitting the tidal admittances normalized with the O1 wave at each site to a model of the damped harmonic oscillator, we obtained values of 429.66 ± 1.43 sidereal days, 9350–10,835, −4.828E−4 ± 3.4E−6, −3.0E−5 ± 4.5E−6 for the eigenperiod, the Q-value and the real and imaginary parts of the resonance strength, respectively. Our values obtained from only using the gravity data are very consistent with those inferred from the VLBI nutation data. Our study strongly indicates that the systematic difference between two estimations from the gravity and the nutation in particular for the Q-value, which has been shown in previous works, is mainly caused by the inaccurate correction for the ocean tide effects. The error in the ocean tide correction is discussed based on the comparison among four global ocean tide models; Schwiderski model (1980), NAO.99b (Matsumoto et al., 2000), CSR4.0 (Eanes and Bettadpur, 1994) and GOT99.2b (Ray, 1999).  相似文献   

14.
By stacking high-precision tidal gravity observations obtained with superconducting gravimeters at six stations in China, Japan, Belgium, France, Germany and Finland, the local systematical discrepancies in the parameter fitting, caused by atmospheric, oceanic tidal loading and the other local environmental perturbations, are eliminated effectively. As a result, the resonance parameters of the Earth’s free core nutation are accurately determined. In this study, the eigenperiod of free core nutation is given as 429.0 sidereal days, which is in agreement with those published in the previous studies. It is about 30 sidereal days less than those calculated in theoretical models (about 460 sidereal days), which confirms the real ellipticity of the fluid core of the Earth to be about 5% larger than the one expected in assumption of hydrostatic equilibrium. The quality factor (Q value) of free core nutation is given as about 9543, which, compared with those determined before based on the body tide observations, is much larger, but more close to those obtained using the VLBI observations. The complex resonance strength is also determined as (−6.10×10−4, −0.01 ×10−4)°/h, which can principally describe the deformation characteristics of an anelastic mantle.  相似文献   

15.
Indirect observations and theoretical predictions for the period of the free core nutation (FCN) differ by anywhere from 15 to 30 days, and various effects have been invoked in attempts to explain this difference. The favored explanation remains as much as 5% departure in the flattening of the core-mantle boundary (CMB) from that of its hydrostatic reference figure. This 5% ‘extra-flattening’ of the CMB is not seen at the Earth's surface, where the difference is only about 0.5%. In contrast to the a posteriori model adjustments used to determine this up to 5% value, and the kinematic results available from viscous flow modeling using the seismically determined lateral heterogeneity in density data, we consider this problem from the perspective of a forward-modeling dynamical study. More specifically, we investigate the related problem of flow-induced surface and CMB topography, arising from convection in the mantle. As such, we have completed a comparative and systematic study of relative surface and CMB topography resulting from numerical models of mantle convection. When effects resulting from boundary curvature are isolated, it appears that the magnitude of CMB topography produced is insufficient in producing a significant extra-flattening of the CMB. However, results concerning effects solely resulting from a depth-dependent mantle viscosity profile, indicate that this factor may indeed lead to enhanced topography at the CMB of the magnitude required to produce the extra-flattening there.  相似文献   

16.
Intra-seasonal oscillations (ISO) are observed in the zonal-mean of mesospheric wind and temperature measurements—and the numerical spectral model (NSM) generates such oscillations. Relatively large temperature ISO are evident also in stratospheric CPC (NCEP) data at high latitudes, where the NSM produces amplitudes around 3 K at 30 km. Analyzing the NCEP data for the years 1996–2006, we find in Fourier spectra signatures of oscillations with periods between 1.7 and 3 months. With statistical confidence levels exceeding 70%, the spectral features are induced by nonlinear interactions involving the annual and semi-annual variations. The synthesized data show for the 10-year average that the temperature ISO peak in winter, having amplitudes close to 4 K. The synthesized complete spectrum for periods around 2 months produces oscillations, varying from year to year, which can reach peak amplitudes of 15 and 5 K respectively at northern and southern polar latitudes.  相似文献   

17.
Parametrically simple earth models consistent with geophysical data   总被引:1,自引:0,他引:1  
We present a set of three parametric earth models (PEM) in which radial variations of the density and velocities are represented by piecewise continuous analytical functions of radius (polynomials of order not higher than the third). While all three models are identical below a depth of 420 km, models PEM-O and PEM-C are designed to reflect the different properties of the oceanic and continental upper mantles, respectively. The third model PEM-A is a representation of an average earth.The data used in inversion consist of observations of eigenperiods for 1064 normal modes, 246 travel times of body waves for five different phases and regional surface-wave dispersion data extending to periods as short as 20 seconds. Agreement of the functionals derived for the PEM models with the appropriate observations is satisfactory. In particular, the fit of free-oscillation data is comparable to that obtained in inversion studies in which constraints imposed on the smoothness of structure were not as severe as in our study.Our density distribution for all depths greater than 670 km is consistent with the Adams-Williamson equation to within 0.2% maximum deviation, and these minute departures result only from the limitations imposed by the parametric simplicity of our models. We also show that the velocities in the lower mantle are consistent with the complete third-order finite-strain theory to within 0.2% for VP and 0.4% for VS (r.m.s. relative deviations). The derived pressure derivatives of the velocities are very similar to those obtained for corundum structures in laboratory experiments.We conclude that any departures from homogeneity and adiabaticity within the inner core, outer core or lower mantle must be very small, and that introduction of such deviations is not necessary on the basis of the available observational evidence.  相似文献   

18.
The Free Core Nutation (FCN) is an important eigenmode which affects both Earth rotation and body tide. The FCN parameters, the resonance period and the quality factor are important for understanding the dynamics of the Earth at nearly diurnal periods. Those parameters are usually estimated either from the Very Long Baseline Interferometry (VLBI) observations of nutation, or from the tidal gravity measurements. In this paper we investigate the determination of the FCN parameters from gravity records covering a period of more than three years, collected with the use of a LaCoste&Romberg Earth Tide no. 26 gravimeter, located at Józefos?aw observatory near Warsaw. From the resonant enhancements of gravimetric factors and phases of diurnal tidal gravity waves, we could infer the FCN period to be equal to 430 sidereal days. This result is in very good agreement with previous gravimetric and VLBI nutation results, confirming the discrepancy in the dynamic flattening of the outer liquid core from its theoretical value based on the hydrostatic equilibrium assumption. The estimated FCN quality factor (Q ≈ 1300) is considerably smaller than the VLBI nutation result, which confirms that the local gravity measurements are more sensitive than VLBI global analyses to site-dependent phenomena (such as atmospheric and indirect ocean tidal effects). We also investigated the importance of gravimetric corrections in the FCN analysis, including numerical tests and simulations. This allowed us to estimate the uncertainty of FCN parameters due to improper or incomplete set of environmental corrections. We took also into account the impact of gravimetric factor errors and tidal wave selection on estimated FCN parameters. We demonstrated that despite relatively noisy measurements due to unfavorable gravimeter location, we were able to obtain very good results in case when proper correction and tidal wave selection were applied.  相似文献   

19.
We analyze the anelasticity of the earth using group delays of P-body waves of deep (>200 km) events in the period range 4–32 s for epicentral distances of 5–85 degrees. We show that Time Frequency Analysis (TFA), which is usually applied to very dispersive surface waves, can be applied to the much less dispersive P-body waves to measure frequency-dependent group delays with respect to arrival times predicted from the CMT centroid location and PREM reference model. We find that the measured dispersion is due to: (1) anelasticity (described by the P-wave quality factor Q p ), (2) ambient noise, which results in randomly distributed noise in the dispersion measurements, (3) interference with other phases (triplications, crustal reverberations, conversions at deep mantle boundaries), for which the total dispersion depends on the amplitude and time separation between the different phases, and (4) the source time function, which is dispersive when the wavelet is asymmetrical or contains subevents. These mechanisms yield dispersion ranging in the order of one to 10 seconds with anelasticity responsible for the more modest dispersion. We select 150 seismograms which all have small coda amplitudes extending to ten percent of the main arrival, minimizing the effect of interference. The main P waves have short durations, minimizing effects of the source. We construct a two-layer model of Q p with an interface at 660 km depth and take Q p constant with period. Our data set is too small to solve for a possible frequency dependence of Q p . The upper mantle Q 1 is 476 [299–1176] and the lower mantle Q 2 is 794 [633–1064] (the bracketed numbers indicate the 68 percent confidence range of Q p –1). These values are in-between the AK135 model (Kennett et al., 1995) and the PREM model (Dziewonski and Anderson, 1981) for the lower mantle and confirm results of Warren and Shearer (2000) that the upper mantle is less attenuating than PREM and AK135.  相似文献   

20.
The differential axial and equatorial rotations of both cores associated with the Quaternary glacial cycles were evaluated based on a realistic earth model in density and elastic structures. The rheological model is composed of compressible Maxwell viscoelastic mantle, inviscid outer core and incompressible Maxwell viscoelastic inner core. The present study is, however, preliminary because I assume a rigid rotation for the fluid outer core. In models with no frictional torques at the boundaries of the outer core, the maximum magnitude of the predicted axial rotations of the outer and inner cores amounts to ∼2° year−1 and ∼1° year−1, respectively, but that for the secular equatorial rotations of both cores is ∼0.0001° at most. However, oscillating parts with a period of ∼225 years are predicted in the equatorial rotations for both cores. Then, I evaluated the differential rotations by adopting a time-dependent electromagnetic (EM) torque as a possible coupling mechanism at the core-mantle boundary (CMB) and inner core boundary (ICB). In a realistic radial magnetic field at the CMB estimated from surface magnetic field, the axial and equatorial rotations couple through frictional torques at the CMB, although these rotations decouple for dipole magnetic field model. The differential rotations were evaluated for conductivity models with a conductance of 108 S of the lowermost mantle inferred from studies of nutation and precession of the Earth and decadal variations of length of day (LOD). The secular parts of equatorial rotations are less sensitive to these parameters, but the magnitude for the axial rotations is much smaller than for frictionless model. These models, however, produce oscillating parts in the equatorial rotations of both cores and also in the axial rotations of the whole Earth and outer and inner cores. These oscillations are sensitive to both the magnitude of radial magnetic field at the CMB and the conductivity structure. No sharp isolated spectral peaks are predicted for models with a thin conductive layer (∼200 m) at the bottom of the mantle. In models with a conductive layer of ∼100 km thickness, however, sharp spectral peaks are predicted at periods of ∼225 and ∼25 years for equatorial and axial rotations, respectively, although these depend on the strength of radial magnetic field at the CMB. While the present study is preliminary in modelling the fluid outer core and coupling mechanism at the CMB, the predicted axial rotations of the whole Earth may be important in explaining the observed LOD through interaction between the equatorial and axial rotations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号