首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Gas concentrations and isotopic compositions of water have been measured in hydrothermal waters from 13°N on the East Pacific Rise. In the most Mg-depleted samples ( 5 × 10−3 moles/kg) the gas concentrations are: 3–4.5 × 10−5 cm3 STP/kg helium, 0.62–1.24 cm3 STP/kg CH4, 10.80–16.71 × 10−3 moles/kg CO2. The samples contain large quantities (95–126 cm3/kg) of H2 and some carbon monoxide (0.26–0.36 cm3/kg) which result from reaction with the titanium sampling bottles. δ13C in methane and CO2 (−16.6 to −19.5 and −4.1 to −5.5 respectively) indicate temperatures between 475 and 550°C, whereas δ13CCO is compatible with formation by reduction of CO2 on Ti at 350°C close to the sampling temperature.3He/4He are very homogeneous at (7.5 ± 0.1)RA(3He/4He = 1.0 × 10−5) and very similar to already published data as well as CH4/3He ratios between 1.4 and 2.1 × 106.18O and D in water show enrichments from 0.39 to 0.69‰ and from 0.62 to 1.49‰ respectively. These values correspond to W/R ratios of 0.4–7. The distinct18O enrichments indicate that the isotopic composition of the oceans is not completely buffered by the hydrothermal circulations. The3He-enthalpy relationship is discussed in terms of both hydrothermal heat flux and3He mantle flux.  相似文献   

2.
Isotopic compositions were determined for hydrothermal quartz, calcite, and siderite from core samples of the Newberry 2 drill hole, Oregon. The δ15O values for these minerals decrease with increasing temperatures. The values indicate that these hydrothermal minerals precipitated in isotopic equilibrium with water currently present in the reservoirs. The δ18O values of quartz and calcite from the andesite and basalt flows (700–932 m) have isotopic values which require that the equilibrated water δ18O values increase slightly (− 11.3 to −9.2‰) with increasing measured temperatures (150–265°C). The lithic tuffs and brecciated lava flows (300–700 m) contain widespread siderite. Calculated oxygen isotopic compositions of waters in equilibrium with siderite generally increase with increasing temperatures (76–100°C). The δ18O values of siderite probably result from precipitation in water produced by mixing various amounts of the deep hydrothermal water (− 10.5 ‰) with meteoric water (− 15.5 ‰) recharged within the caldera. The δ13C values of calcite and siderite decrease with increasing temperatures and show that these minerals precipitated in isotopic equilibrium with CO2 of about −8 ‰.The δ18O values of weakly altered (<5% alteration of plagioclase) whole-rock samples decrease with increasing temperatures above 100°C, indicating that exchange between water and rock is kinetically controlled. The water/rock mass ratios decrease with decreasing temperatures. The δ18O values of rocks from the bottom of Newberry 2 show about 40% isotopic exchange with the reservoir water.The calculated δ18O and δD values of bottom hole water determined from the fluid produced during the 20 hour flow test are −10.2 and −109‰, respectively. The δD value of the hydrothermal water indicates recharge from outside the caldera.  相似文献   

3.
Sulfur isotope effects during the SO2 disproportionation reaction to form elemental sulfur (3SO2+3H2O→2HSO4+S+2H+) at 200–330°C and saturated water vapor pressures were experimentally determined. Initially, a large kinetic isotopic fractionation takes place between HSO4 and S, followed by a slow approach to equilibrium. The equilibrium fractionation factors, estimated from the longest run results, are expressed by 1000 ln αHSO4S=6.21×106/T2+3.62. The rates at which the initial kinetic fractionation factors approach the equilibrium ones were evaluated at the experimental conditions.δ34S values of HSO4 and elemental sulfur were examined for active crater lakes including Noboribetsu and Niseko, (Hokkaido, Japan), Khloridnoe, Bannoe and Maly Semiachik (Kamchatka), Poás (Costa Rica), Ruapehu (New Zealand) and Kawah Ijen and Keli Mutu (Indonesia). ΔHSO4S values are 28‰ for Keli Mutu, 26‰ for Kawah Ijen, 24‰ for Ruapehu, 23‰ for Poás, 22‰ for Maly Semiachik, 21‰ for Yugama, 13‰ for Bannoe, 9‰ for Niseko, 4‰ for Khloridonoe, and 0‰ for Noboribetsu, in the decreasing order. The SO2 disproportionation reaction in the magmatic hydrothermal system below crater lakes where magmatic gases condense is responsible for high ΔHSO4S values, whereas contribution of HSO4 produced through bacterial oxidation of reduced sulfur becomes progressively dominant for lakes with lower ΔHSO4S values. Currently, Noboribetsu crater lake contains no HSO4 of magmatic origin. A 40-year period observation of δ34SHSO4 and δ34SS values at Yugama indicated that the isotopic variations reflect changes in the supply rate of SO2 to the magmatic hydrothermal system. This implies a possibility of volcano monitoring by continuous observation of δ34SHSO4 values. The δ18O values of HSO4 and lake water from the studied lakes covary, indicating oxygen isotopic equilibration between them. The covariance gives strong evidence that lake water circulates through the sublimnic zone at temperatures of 140±30°C.  相似文献   

4.
Oxygen self diffusion rates were determined in quartz samples exchanged with18O-enriched CO2 between 745 and 900°C and various pressures, and the diffusion profiles were measured using an ion microprobe. The activation energy (Q) and preexponential factor (D0) at P(CO2) = P(tot) = 100 bar, for diffusion parallel to the c-axis are 159 ( ± 13) kJ/g atom and 2.10 (+0.75/ −0.55) × 10−8 cm2/s. This rate is approximately 100 times slower than that obtained from hydrothermal experiments and 100 times faster than a previous 1-bar quartz-O2 exchange experiment. The oxygen diffusion rate measured at 0.6 bar, 888°C, and at 900°C in vacuum is in agreement with the previous 1-bar exchange experiments with18O2. The effect of higher CO2 pressures is small. At 900°C, the diffusion rate exchanged with CO2 is = 2.35 × 10−15 cm2/s at 100 bar, 2.24 × 10−15 cm2/s at 3.45 kbar and 8.13 × 10−15 cm2/s at 7.2 kbar.There is probably a diffusing species, other than oxygen, that enhances the oxygen diffusion rate in these quartz-CO2 systems, relative to that occurring at very low pressures or in a vacuum. The effect of this diffusing species, however, is not as strong as that associated with H2O. Preserved oxygen isotope fractionations between coexisting minerals in a slowly cooled, high-grade metamorphic terrane will vary depending upon whether a water-rich phase was present or not. Closure temperatures will be approximately 100°C higher in rocks where no water-rich phase was present during cooling. The measured fractionations between coexisting minerals in metamorphic rocks may potentially be used as a sensor of water presence during retrogression.  相似文献   

5.
Here we present the first species-specific study of boron isotopes in the epibenthic foraminifer species Cibicidoides wuellerstorfi. Coretop samples from a water depth profile from 1000 to 4500 m on the northern flank of the Walvis Ridge are 4.4‰ lower than the values expected, based on calculations of the δ11Bborate of ambient seawater. Similar values for this foraminifer species are presented from ODP site 668B at the Sierra Leone Rise, in the equatorial Atlantic. The consistency between data of the same species suggests the offsets are primary, rather than diagenetic. Glacial C. wuellerstorfi from ODP 668B and Walvis Ridge have boron isotope compositions only slightly different to interglacial samples, that is no larger than + 0.10 pH units, or + 23 µmol kg− 1 in [CO32−] above the reconstructed glacial lysocline, and − 0.07 pH units, or − 14 µmol kg− 1 in [CO32−] below. We use these results to suggest that glacial deep water pH in the Atlantic was similar to interglacial pH. The new data resolve the inconsistency between the previously reported high bottom water pH and the lack of significant carbonate preservation of the glacial deep ocean.  相似文献   

6.
Thermal waters hosted by Menderes metamorphic rocks emerge along fault lineaments in the Simav geothermal area. Thermal springs and drilled wells are located in the Eynal, Çitgöl and Na a locations, which are part of the Simav geothermal field. Studies were carried out to obtain the main chemical and physical characteristics of thermal waters. These waters are used for heating of residences and greenhouses and for balneological purposes. Bottom temperatures of the drilled wells reach 163°C with total dissolved solids around 2225 mg/kg. Surface temperatures of thermal springs vary between 51°C and 90°C. All the thermal waters belong to Na–HCO3–SO4 facies. The cold groundwaters are Ca–Mg–HCO3 type. Dissolution of host rock and ion-exchange reactions in the reservoir of the geothermal system shift the Ca–Mg–HCO3 type cold groundwaters to the Na–HCO3–SO4 type thermal waters. Thermal waters are oversaturated at discharge temperatures for aragonite, calcite, quartz, chalcedony, magnesite and dolomite minerals giving rise to a carbonate-rich scale. Gypsum and anhydrite minerals are undersaturated with all of the thermal waters. Boiling during ascent of the thermal fluids produces steam and liquid waters resulting in an increase of the concentrations of the constituents in discharge waters. Steam fraction, y, of the thermal waters of which temperatures are above 100°C is between 0.075 and 0.119. Reservoir pH is much lower than pH measured in the liquid phase separated at atmospheric conditions, since the latter experienced heavy loss of acid gases, mainly CO2. Assessment of the various empirical chemical geothermometers and geochemical modelling suggest that reservoir temperatures vary between 175°C and 200°C.  相似文献   

7.
Secular variations in 13C/12C ratios and chemical compositions of gas samples from October 1986 to July 1992 are reported from a 92–95 °C steam well located about 3 km north of Mt. Mihara, an active volcano on Izu-Oshima Island, Japan. The δ13C value steeply increased from −2.97‰ (relative to PDB carbonate) in December 1986 to −1.15‰ in March 1988 and then gradually decreased to −1.75‰ in July 1992. Over the same period, the CO2 content changed similarly with time, even though the experimental error is relatively large. These variations are consistent with helium isotope changes. Initially rapid and then slow enhancements of 3He/4He ratio, δ13C value and CO2 content are invoked by violent eruptions of Izu-Oshima volcano from 15 November to 18 December 1986. After the eruptive activity, depletion of magmatic gas emission and subsequent mixing with crustal fluids in the hydrothermal system may produce the gradual decreases of 3He/4He ratio, δ13C value and CO2 content. Taking into account the rates of these decreases, we suggest that helium and carbon isotope ratios will return to the situation of before the magmatic eruption within 15 years.  相似文献   

8.
Stable isotope ratios of S, O and Sr have been measured for active vent materials which were first found and sampled in April 1987 from the Mariana backarc spreading axis at 18°N. Chimneys consisted mostly of barite with a lesser proportion of sulfide minerals such as sphalerite, galena, chalcopyrite and pyrite. Theδ34S values of sphalerite and galena taken from several chimneys and various parts of a chimney showed a narrow range from 2.1 to 3.1‰, suggesting uniform conditions of fluid chemistry during chimney growth. The sulfur isotopic results imply a contribution of hydrogen sulfide reduced from seawater sulfate in the deep hydrothermal reaction zone, considering that fresh glasses of the Mariana Trough basalts haveδ34S= −0.6 ± 0.3‰. Sulfur isotopic compositions of hydrogen sulfide in the high temperature vent fluids (δ34S= 3.6–4.8‰) which are higher than those of the sulfide minerals suggest the secondary addition of hydrogen sulfide partially reduced from entrained seawater SO42− at a basal part of the chimneys. This interpretation is consistent with theδ34S values of barite (21–22‰) that are higher than those of seawater sulfate. The residence time of the entrained SO42− was an order of an hour on a basis of oxygen isotopic disequilibrium of barite. Strontium isotopic variations of barite and vent waters indicated that Sr in barite was mostly derived from the Mariana Trough basalts with a slight contribution from Sr in circulating sea-water, and that 10–20% mixing of seawater with ascending hydrothermal fluids induced precipitation of barite at the sea-floor.  相似文献   

9.
Silica chimneys were discovered in 1985 at 86°W in the rift valley of the Galapagos Spreading Center at 2600 m depth (“Cauliflower Garden”). The inactive chimneys lack any sulfides and consist almost entirely of amorphous silica (up to 96 wt.% SiO2, opal-A); Fe and Mn oxides are minor constituents. Oxygen isotope data show that formation of the silica chimneys took place at temperatures between 32°C (+29.9‰ δ18O) and 42°C (+27.8‰ δ18O).Th/Udating reveals a maximum age of 1440 ± 300y. Amorphous silica solubility relations indicate that the silica chimneys were formed by conductive cooling of pure hydrothermal fluids or by conductive cooling of a fluid/seawater mixture. Assuming equilibrium with quartz at 500 bars, initial fluid temperatures of more than 175°C (i.e., a concentration of > 182 ppm SiO2) were required to achieve sufficient supersaturation for the deposition of amorphous silica at 40°C and 260 bars. If the silica chimneys originate from the same or a similar fluid as higher-temperature ( < 300°C) sulfide-silica precipitates found nearby (i.e., 2.5 km away), then subsurface deposition of sulfides may have occurred.  相似文献   

10.
Surface partial pressure of CO2 (pCO2), temperature, salinity, nutrients, and chlorophyll a were measured in the East China Sea (ECS; 31°30′–34°00′N to 124°00′–127°30′E) in August 2003 (summer), May 2004 (spring), October 2004 (early fall), and November 2005 (fall). The warm and saline Tsushima Warm Current was observed in the eastern part of the survey area during four cruises, and relatively low salinity waters due to outflow from the Changjiang (Yangtze River) were observed over the western part of the survey area. Surface pCO2 ranged from 236 to 445 μatm in spring and summer, and from 326 to 517 μatm in fall. Large pCO2 (values >400 μatm) occurred in the western part of the study area in spring and fall, and in the eastern part in summer. A positive linear correlation existed between surface pCO2 and temperature in the eastern part of the study area, where the Tsushima Warm Current dominates; this correlation suggests that temperature is the major factor controlling surface pCO2 distribution in that area. In the western part of the study area, however, the main controlling factor is different and seasonally complex. There is large transport in this region of Changjiang Diluted Water in summer, causing low salinity and low pCO2 values. The relationship between surface pCO2 and water stability suggests that the amount of mixing and/or upwelling of CO2-rich water might be the important process controlling surface pCO2 levels during spring and fall in this shallow region. Sea–air CO2 flux, based on the application of a Wanninkhof [1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97, 7373–7382] formula for gas transfer velocity and a set of monthly averaged satellite wind data, were −5.04±1.59, −2.52±1.81, 1.71±2.87, and 0.39±0.18 mmol m−2 d−1 in spring, summer, early fall, and fall, respectively, in the northern ECS. The ocean in this study area is therefore a carbon sink in spring and summer, but a weak source or in equilibrium with the atmosphere in fall. If the winter flux value is assumed to have been the mean of autumnal and vernal values, then the northern ECS absorbs about 0.013 Pg C annually. That result suggests that the northern ECS is a net sink for atmospheric CO2, a result consistent with previous studies.  相似文献   

11.
The nitrogen isotope geochemistry of 15 basaltic glasses has been investigated using stepped heating and high sensitivity static vacuum mass spectrometry. At low temperature (< 600°C) the glasses release small amounts of nitrogen with δ15NAIR, averaging −0.3‰, suggesting surficial adsorption of atmospheric nitrogen. At high temperature, usually with a maximum at 1000°C, indigenous nitrogen with a concentration ranging from 0.2 to 2.1 ppm is released. The δ15N values of this high temperature release show a wide range from −4.5‰ to +15.5‰. There is no correlation between N ppm and δ15N, and the samples apparently form 3 groups with distinctive δ15N. Six MORB glasses from the Mid-Atlantic Ridge, East Pacific Rise and Juan de Fuca Ridge define a group with δ15N = +7.5 ± 1.3‰. In contrast two Indian Ocean MORB glasses (Carlsberg Ridge and Gulf of Aden) gave negative δ15N averaging −3.2‰. Glasses from Loihi Seamount have high δ15N averaging +14.0 ± 1.0‰. Comparison of the δ15N data with the mantle models derived from helium and argon isotope studies suggests that the wide range in δ15N may reflect in part heterogeneities in the mantle related to its degassing history. It is possible, however, that magmatic degassing processes have also affected nitrogen isotopic compositions, and the data cannot yet be unambiguously interpreted in terms of source variations.  相似文献   

12.
The edifice of Mount Rainier, an active stratovolcano, has episodically collapsed leading to major debris flows. The largest debris flows are related to argillically altered rock which leave areas of the edifice prone to failure. The argillic alteration results from the neutralization of acidic magmatic gases that condense in a meteoric water hydrothermal system fed by the melting of a thick mantle of glacial ice. Two craters atop a 2000-year-old cone on the summit of the volcano contain the world's largest volcanic ice-cave system. In the spring of 1997 two active fumaroles (T=62°C) in the caves were sampled for stable isotopic, gas, and geochemical studies.Stable isotope data on fumarole condensates show significant excess deuterium with calculated δD and δ18O values (−234 and −33.2‰, respectively) for the vapor that are consistent with an origin as secondary steam from a shallow water table which has been heated by underlying magmatic–hydrothermal steam. Between 1982 and 1997, δD of the fumarole vapor may have decreased by 30‰.The compositions of fumarole gases vary in time and space but typically consist of air components slightly modified by their solubilities in water and additions of CO2 and CH4. The elevated CO2 contents (δ13CCO2=−11.8±0.7‰), with spikes of over 10,000 ppm, require the episodic addition of magmatic components into the underlying hydrothermal system. Although only traces of H2S were detected in the fumaroles, most notably in a sample which had an air δ13CCO2 signature (−8.8‰), incrustations around a dormant vent containing small amounts of acid sulfate minerals (natroalunite, minamiite, and woodhouseite) indicate higher H2S (or possibly SO2) concentrations in past fumarolic gases.Condensate samples from fumaroles are very dilute, slightly acidic, and enriched in elements observed in the much higher temperature fumaroles at Mount St. Helens (K and Na up to the ppm level; metals such as Al, Pb, Zn Fe and Mn up to the ppb level and volatiles such as Cl, S, and F up to the ppb level).The data indicate that the hydrothermal system in the edifice at Mount Rainier consists of meteoric water reservoirs, which receive gas and steam from an underlying magmatic system. At present the magmatic system is largely flooded by the meteoric water system. However, magmatic components have episodically vented at the surface as witnessed by the mineralogy of incrustations around inactive vents and gas compositions in the active fumaroles. The composition of fumarole gases during magmatic degassing is distinct and, if sustained, could be lethal. The extent to which hydrothermal alteration is currently occurring at depth, and its possible influence on future edifice collapse, may be determined with the aid of on site analyses of fumarole gases and seismic monitoring in the ice caves.  相似文献   

13.
Mantle-derived volatiles in continental crust: the Massif Central of France   总被引:1,自引:0,他引:1  
CO2-rich gases and groundwaters from springs and boreholes originating within the basement of the Massif Central have variable3He/4He ratios with correspondingR/Ra values ranging from 0.8 to 5.5 and 0.3 to 2.8 respectively, indicating the presence of a significant component of mantle helium. Molar concentrations of rare gases in the CO2-rich gases are approximately 5 orders of magnitude greater than in the waters and suggest that a near-surface Henry's Law fractionation has occurred between exsolving CO2 and water.δ13C values of the CO2-rich gases are in the range −4.2 to −6.1‰, i.e. in that range normally attributed to mantle carbon, but which could also represent an average crustal composition and therefore do not discriminate between mantle and crustal sources.C/3He ratios show 4 orders of magnitude variation from 1.4 × 1012 to 5 × 108 and, compared to a mantleC/3He ratio of 109, indicate that either a complex fractionation has occurred between mantle helium and mantle CO2 or more likely that mantle rare gases have been diluted by large quantities of CO2 with an average crustal carbon isotope composition. The regional distribution of3He and C does not show any obvious relationship to age or proximity of volcanic centres or major faults, suggesting that mantle-derived C and He components decoupled from their silicate melt sources at some depth.The results from this area of active fluid circulation suggest that C-isotope data derived from metamorphic terrains should be interpreted with great caution, but that input of some mantle-derived carbon is expected to accompany crustal extension.  相似文献   

14.
Detailed geochemistry supported by geologic mapping has been used to investigate Sulphur Springs, an acid-sulfate hot spring system that issues from the western flank of the resurgent dome inside Valles Caldera. The most intense activity occurs at the intersection of faults offsetting caldera-fill deposits and post-caldera rhyolites. Three geothermal wells in the area have encountered pressures <1 MPa and temperatures of 200°C at depths of 600 to 1000 m. Hot spring and fumarole fluids may discharge at boiling temperatures with pH 1.0 and SO4 8000 mg/l. These conditions cause argillic alterations throughout a large area.Non-condensible gases consist of roughly 99% CO2 with minor amounts of H2S, H2, and CH4. Empirical gas geothermometry suggests a deep reservoir temperature of 215 to 280°C. Comparison of 13C and 18O between CaCO3 from well cuttings and CO2 from fumarole steam indicates a fractionation temperature between 200 and 300°C by decarbonation of hydrothermally altered Paleozoic limestone and vein calcite in the reservoir rocks. Tritium concentrations obtained from steam condensed in a mudpot and deep reservoir fluids (Baca #13, 278°C) are 2.1 and 1.0 T.U. respectively, suggesting the steam originates from a reservoir whose water is mostly >50 yrs old. Deuterium contents of fumarole steam, deep reservoir fluid, and local meteoric water are practically identical even though 18O contents range through 4‰, thus, precipitation on the resurgent dome of the caldera could recharge the hydrothermal system by slow percolation. From analysis of D and 18O values between fumarol steam and deep reservoir fluid, steam reaches the surface either (1) by vaporizing relatively shallow groundwater at 200°C or (2) by means of a two-stage boiling process through an intermediate level reservoir at roughly 200°C.Although many characteristics of known vapor-dominated geothermal systems are found at Sulphur Springs, fundamental differences exist in temperature and pressure of our postulated vapor-zone. We propose that the reservoir beneath Sulphur Springs is too small or too poorly confined to sustain a “true” vapor-dominated system and that the Sulphur Springs system may be a “dying” vapor-dominated system that has practically boiled itself dry.  相似文献   

15.
Thermal waters of the Ömer–Gecek geothermal field, Turkey, with temperatures ranging from 32 to 92°C vary in chemical composition and TDS contents. They are generally enriched in Na–Cl–HCO3 and suggest deep water circulation. Silica and cation geothermometers applied to the Ömer–Gecek thermal waters yield reservoir temperatures of 75–155°C. The enthalpy–chloride mixing model, which approximates a reservoir temperature of 125°C for the Ömer–Gecek field, accounts for the diversity in the chemical composition and temperature of the waters by a combination of processes including boiling and conductive cooling of deep thermal water and mixing of the deep thermal water with cold water. It is also determined that the solubility of silica in most of the waters is controlled by the chalcedony phase. Equilibrium states of the Ömer–Gecek thermal waters studied by means of the Na–K–Mg triangular diagram, Na–K–Mg–Ca diagram, K–Mg–Ca geoindicator diagram, activity diagrams in the systems composed of Na2O–CaO–K2O–Al2O3–SiO2–CO2–H2O phases, log SI diagrams, and finally the alteration mineralogy indicate that most of the spring and low-temperature well waters in the area can be classified as shallow or mixed waters which are likely to be equilibrated with calcite, chalcedony and kaolinite at predicted temperature ranges similar to those calculated from the chemical geothermometers. It was also observed that mineral equilibrium in the Ömer–Gecek waters is largely controlled by CO2 concentrations.  相似文献   

16.
The carbon isotopic composition of diagenetic dolomite and calcite in some sediments of the Gulf of Mexico varies between “normal-marine” (δ13C ca. 0‰) and −14.6‰ which suggests that biogenic CO2 contributed to the carbonate formation. The δ13O values of dolomite and coexisting calcite are very similar but variable down-core.Dolomite and calcite precipitated early from pore water where SO42− was not reduced. However, during (and after?) SO42− reduction dolomite and calcite still formed and there are at least two generations of carbonate minerals present.  相似文献   

17.
Carbon dioxide dissolved in both synthetic Ca±Mg-bearing silicate glasses and natural basaltic glasses has been characterized using infrared spectroscopy. CO2 is inferred to be dissolved in these glasses as distorted Ca or Mg carbonate ionic complexes that result in unique infrared absorption bands at 1515 cm−1 and 1435 cm−1. This speciation contrasts with the case of CO2-bearing sodium aluminosilicate glasses, which contain both dissolved molecular CO2 and dissolved Na-carbonate ionic-complexes. The difference in speciation in Ca±Mg-bearing melts may result in part from a higher activity of oxygens that react with CO2 molecules to produce carbonate.Dissolved CO2 contents of natural basaltic glasses can be determined from the intensities of the carbonate absorption bands at 1515 cm−1 and 1435 cm−1. The uncertainty of the method is estimated to be ± 15% of the amount present. The infrared technique is a powerful tool for the measurement of dissolved CO2 contents in natural basaltic glasses since it is non-destructive, can be aimed at regions of glass a few tens of microns in size, and can discriminate between dissolved carbonate and carbon present as carbonate alteration, contained in fluid inclusions, or adsorbed on the glass.A set of submarine basaltic glasses dredged from a variety of locations contain 0–400 ppm dissolved CO2, measured using the infrared technique. These concentrations are lower than most previous reports for similar basaltic glasses. No general relationship is observed between dissolved CO2 content and depth of magmatic eruption, although some correlation might be present in restricted geographic locales.  相似文献   

18.
Noncondensible gases from hot springs, fumaroles, and deep wells within the Valles caldera geothermal system (210–300°C) consist of roughly 98.5 mol% CO2, 0.5 mol% H2S, and 1 mol% other components. 3He/4He ratios indicate a deep magmatic source (R/Ra up to 6) whereas δ13C–CO2 values (−3 to −5‰) do not discriminate between a mantle/magmatic source and a source from subjacent, hydrothermally altered Paleozoic carbonate rocks. Regional gases from sites within a 50-km radius beyond Valles caldera are relatively enriched in CO2 and He, but depleted in H2S compared to Valles gases. Regional gases have R/Ra values ≤1.2 due to more interaction with the crust and/or less contribution from the mantle. Carbon sources for regional CO2 are varied. During 1982–1998, repeat analyses of gases from intracaldera sites at Sulphur Springs showed relatively constant CH4, H2, and H2S contents. The only exception was gas from Footbath Spring (1987–1993), which experienced increases in these three components during drilling and testing of scientific wells VC-2a and VC-2b. Present-day Valles gases contain substantially less N2 than fluid inclusion gases trapped in deep, early-stage, post-caldera vein minerals. This suggests that the long-lived Valles hydrothermal system (ca. 1 Myr) has depleted subsurface Paleozoic sedimentary rocks of nitrogen. When compared with gases from many other geothermal systems, Valles caldera gases are relatively enriched in He but depleted in CH4, N2 and Ar. In this respect, Valles gases resemble end-member hydrothermal and magmatic gases discharged at hot spots (Galapagos, Kilauea, and Yellowstone).  相似文献   

19.
Thermal springs of the Boundary Creek hydrothermal system in the southwestern part of Yellowstone Park outside the caldera boundary vary in chemical and isotopic composition, and temperature. The diversity may be accounted for by a combination of processes including boiling of a deep thermal water, mixing of the deep thermal water with cool meteoric water and/or with condensed steam or steam-heated meteoric water, and chemical reactions with surrounding rocks. Dissolved-silica, Na+, K+ and Ca2+ contents of the thermal springs could result from a thermal fluid with a temperature of 200 ± 20°C. Chloride-enthalpy and silica-enthalpy mixing models suggest mixing of 230°C, 220 mg/l Cl thermal water with cool, low-Cl components. A 350 to 390°C component with Cl ≥ 300 mg/l is possibly present in thermal springs inside the caldera but is not required to fit observed spring chemical and isotopic compositions. Irreversible mass transfer models in which a low-temperature water reacts with volcanic glass as it percolates downward and warms, can account for observed pH and dissolved-silica, K+, Na+, Ca2+ and Mg2+ concentrations, but produces insufficient Cl or F for measured concentrations in the warm springs. The ratio of aNa/aH, and Cl are best accounted for in mixing models. The water-rock interaction model fits compositions of acid-sulfate waters observed at Summit Lake and of low-Cl waters involved in mixing.The cold waters collected from southwestern Yellowstone Park have δD values ranging from −118 to −145 per mil and δ18O values of −15.9 to −19.4 per mil. Two samples from nearby Island Park have δD values of −112 and −114 per mil and δ18O values of −15.1 and −15.3 per mil. All samples of thermal water plot significantly to the right of the meteoric water line. The low Cl and variable δD values of the thermal waters indicate isotopic compositions are derived by extensive dilution with cold meteoric water and by steam separation on ascent to the surface. Many of the hot springs with higher δD values may contain in addition a significant amount of high-D, low-Cl, acid-sulfate or steam-heated meteoric water. Mixing models, Cl content and isotopic compositions of thermal springs suggest that 30% or less of a deep thermal component is present. For example, the highest-temperature springs from Three Rivers, Silver Scarf and Upper Boundary Creek thermal areas contain up to 70% cool meteoric water and 30% hot water components, springs at Summit Lake and Middle Boundary Creek spring 57 are acid-sulfate or steam-heated meteoric water; springs 27 and 48 from Middle Boundary Creek and 49 from Mountain Ash contain in excess of 50% acid-sulfate water; and Three Rivers spring 46 and Phillips could result from mixing hot water with 55% cool meteoric water followed by mixing of acid-sulfate water. Extensive dilution by cool meteoric water increases the uncertainties in quantity and nature of the deep meteoric, thermal component.  相似文献   

20.
Sediment traps were deployed in the Gulf of Papua in June–July 1997, to determine fluxes of organic matter and inorganic elements from the photic zone to deeper waters at the base of the continental slope and in the northern Coral Sea. Three stations, ranging from 900 to 1500 m depth, had “shallow” traps at 300 m below the water surface and “deep” traps set 100 m above the bottom. Infiltrex II water samplers collected particulate and dissolved organic matter from the Fly, Purari and Kikori rivers, and near-surface water from the shelf of the Gulf of Papua. Samples were analysed for molecular organic biomarkers to estimate the sources of organic carbon and its cycling processes.Dry weight fluxes from the shallow traps ranged from 115 to 181 mg m−2 day−1 and particulate organic carbon (POC) fluxes ranged from 1.2 to 1.9 mM OC m−2 d−1 with molar organic carbon to particulate nitrogen ratios (C/N) ranging from 6.0 to 6.5. Fluxes in deep traps were likely influenced by both early diagenesis and entrapment of resuspended shelf sediments. Dry weight fluxes in deep traps ranged from 106 to 574 mg m−2 day−1 and POC fluxes ranged from 0.6 to 1.5 mM OC m−2 d−1, with C/N ratios ranging from 8.5 to 10.8. 13C/12C ratios were −20.2‰ to −21.7‰ in all trap samples, indicating that most of the settling POC was “marine-derived”. Shallow traps had δ15N values of 6.3‰ to 7.2‰ while the values in deep traps were 4.9–5.0‰, indicating the N-rich near-surface OC was less degraded than that in the deep traps. The biogenic lipids consisted of hydrocarbon, sterol and fatty acid biomarkers indicative of marine zooplankton, phytoplankton and bacteria. Sterol markers for diatoms and dinoflagellates were abundant in the water samples. Highly branched isoprenoid alkenes, usually attributable to diatoms, were also detected in both water and shallow traps. Traces of C26–C34 n-alcohols indicative of land–plant biomarkers, were found in river water samples and in the shallow sediment traps. A large unresolved complex mixture (UCM) of hydrocarbons, and a uniform distribution of n-alkanes, indicative of petroleum hydrocarbons, were also detected in the traps. Hopane and sterane biomarkers detected in the trap oil were characteristic of a marine carbonate source, and the aromatic hydrocarbon composition distinguished at least two different oil signatures.We concluded that mass and POC fluxes were similar to those reported for other continental shelves and marginal oceans in tropical and subtropical regions. There was a dramatic decrease in POC as particles sank, due to zooplankton repackaging and photochemical and bacterial decomposition. Carbon isotopic and biomarker patterns showed most of the POC in the sediment traps was marine-sourced with only traces of terrestrial input. There was a significant flux of petroleum, which may signal the existence of natural petroleum seeps in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号