首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Monitoring of altimeter microwave radiometer measurements is necessary in order to identify radiometer drifts or offsets that if uncorrected will introduce systematic errors into ocean height measurements. To examine TOPEX Microwave Radiometer (TMR) and Jason-1 Microwave Radiometer (JMR) behavior, we have used coincident wet zenith delay estimates from Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) geodetic sites near altimeter ground tracks. We derived a TMR path delay drift rate of ?1.1 ± 0.1 mm/yr using GPS data for the period from 1993.0–1999.0 and ?1.2 ± 0.5 mm/yr using VLBI data. Thereafter, the drift appears to have leveled off. Already after 2.3 years (82 cycles) of the Jason-1 mission, it is clear that there have been significant systematic errors in the JMR path delay measurements. From comparison with GPS wet delays, there is an offset of ?5.2 ± 0.6 mm at about cycle 30 and a more abrupt offset of ?11.5 ± 0.8 mm at cycle 69. If we look at the behavior of the JMR coldest brightness temperatures, we see that the offsets near cycle 30 and cycle 69 are mainly caused by corresponding offsets in the 23.8 GHz channel of ?0.49 ± 0.12 K and ?1.18 ± 0.13 K, although there is a small 34.0 GHz offset at cycle 69 of 0.75 ± 0.22 K. Drifts in the 18.0 and 34.0 GHz channels produce a small path delay drift of 0.3 ± 0.5 mm/yr.  相似文献   

2.
The Jason-1 Microwave Radiometer (JMR) provides measurements of the wet troposphere content to correct the altimetric range measurement for the associated path delay. Various techniques are used to monitor the JMR wet troposphere path delays, with measurements of zenith troposphere content from terrestrial GPS sites used as an independent verification technique. Results indicate that an unexpected offset of approximately +4.1 ± 1.2 mm (drier) emerged in the JMR measurements of wet path delay between cycles 28-32 of the Jason-1 mission, and that the measurements may be drifting at a rate of approximately -0.5 mm/year. These anomalies are shown to be caused by a -0.7 K offset in 23.8 GHz brightness temperatures between cycles 28-32, and a 0.16 ± 0.04 and -0.45 ± 0.08 K/year drift in the 18.7 and 34.0 GHz brightness temperatures, respectively. Intercomparison of the 3-Hz JMR brightness temperature measurements show that they have been drifting with respect to each other, and that a dependence on yaw-steering regime is present in these measurements. An offset of 0.5 m/s between cycles 28-32 and a drift of approximately 0.5 m/s/year in the JMR wind speed measurements is also associated with these anomalies in the 1-Hz brightness temperatures. These errors in JMR wind speeds presently have a negligible impact on the retrieved JMR path delays.  相似文献   

3.
The Jason-1 Microwave Radiometer (JMR) provides measurements of the wet troposphere content to correct the altimetric range measurement for the associated path delay. Various techniques are used to monitor the JMR wet troposphere path delays, with measurements of zenith troposphere content from terrestrial GPS sites used as an independent verification technique. Results indicate that an unexpected offset of approximately +4.1 ± 1.2 mm (drier) emerged in the JMR measurements of wet path delay between cycles 28–32 of the Jason-1 mission, and that the measurements may be drifting at a rate of approximately ?0.5 mm/year. These anomalies are shown to be caused by a ?0.7 K offset in 23.8 GHz brightness temperatures between cycles 28–32, and a 0.16 ± 0.04 and ?0.45 ± 0.08 K/year drift in the 18.7 and 34.0 GHz brightness temperatures, respectively. Intercomparison of the 3-Hz JMR brightness temperature measurements show that they have been drifting with respect to each other, and that a dependence on yaw-steering regime is present in these measurements. An offset of 0.5 m/s between cycles 28–32 and a drift of approximately 0.5 m/s/year in the JMR wind speed measurements is also associated with these anomalies in the 1-Hz brightness temperatures. These errors in JMR wind speeds presently have a negligible impact on the retrieved JMR path delays.  相似文献   

4.
The Jason microwave radiometer (JMR) provides a crucial correction due to water vapor in the troposphere, and a much smaller correction due to liquid water, to the travel time of the Jason-1 altimeter radar pulse. An error of any size in the radiometer's measurement of wet path delay translates as an error of equal size in the measurement of sea surface height, the ultimate quantity that the altimetric system should yield. The estimate of globally-averaged sea surface height change associated with climate change, requires that uncertainties in the trends in such a global average be accurate to much better than the signal of 1-2 mm/yr. We first compare the JMR observations to those from the TOPEX/Poseidon radiometer (TMR) over approximately six months, since the intent of Jason is to continue the 10-year time series of precision ocean surface topography initiated by T/P. We then assess the stability of the JMR measurement by comparing its wet path delay to those of other orbiting radiometers over 22 months, specifically the Special Sensor Microwave Imager aboard the Defense Meteorological Satellite Program (DMSP-SSM/I) series of satellites, and the Tropical Rainfall Mapping Mission's Microwave Imager (TMI), as well as the European Center for Medium Range Weather Forecasting's (ECMWF) atmospheric numerical model estimate of water vapor. From the combined set, we obtain a robust assessment of the stability of JMR measurements. We find, that JMR is in remarkable agreement with TMR, only 2.5 mm longer, and 6-7 mm standard deviation on their difference in 0.5 degree averages; that JMR has experienced a globally-averaged step-function change, yielding an apparent shortening in wet path delay estimates of 4-5 mm around October 2002 (Jason cycles 28-32); that this step-function is visible only in the 23.8 GHz channel; and that the 34 GHz channel appears to drift at a rate of -0.4K/year. In addition, we find that, while in 2002 there was no evidence of sensitivity to the Jason satellite's attitude (a correlation of the wet path delay with yaw state), in 2003 there are strong (2-3 mm, up to 7 mm globally averaged) changes associated with such yaw state. These JMR issues were all found in the first 22 months of Jason's geophysical data records (GDR) data, and thus they apply to any investigations that use such data without further corrections.  相似文献   

5.
The Jason microwave radiometer (JMR) provides a crucial correction due to water vapor in the troposphere, and a much smaller correction due to liquid water, to the travel time of the Jason-1 altimeter radar pulse. An error of any size in the radiometer's measurement of wet path delay translates as an error of equal size in the measurement of sea surface height, the ultimate quantity that the altimetric system should yield. The estimate of globally-averaged sea surface height change associated with climate change, requires that uncertainties in the trends in such a global average be accurate to much better than the signal of 1–2 mm/yr. We first compare the JMR observations to those from the TOPEX/Poseidon radiometer (TMR) over approximately six months, since the intent of Jason is to continue the 10-year time series of precision ocean surface topography initiated by T/P. We then assess the stability of the JMR measurement by comparing its wet path delay to those of other orbiting radiometers over 22 months, specifically the Special Sensor Microwave Imager aboard the Defense Meteorological Satellite Program (DMSP-SSM/I) series of satellites, and the Tropical Rainfall Mapping Mission's Microwave Imager (TMI), as well as the European Center for Medium Range Weather Forecasting's (ECMWF) atmospheric numerical model estimate of water vapor. From the combined set, we obtain a robust assessment of the stability of JMR measurements. We find, that JMR is in remarkable agreement with TMR, only 2.5 mm longer, and 6–7 mm standard deviation on their difference in 0.5 degree averages; that JMR has experienced a globally-averaged step-function change, yielding an apparent shortening in wet path delay estimates of 4–5 mm around October 2002 (Jason cycles 28–32); that this step-function is visible only in the 23.8 GHz channel; and that the 34 GHz channel appears to drift at a rate of ?0.4K/year. In addition, we find that, while in 2002 there was no evidence of sensitivity to the Jason satellite's attitude (a correlation of the wet path delay with yaw state), in 2003 there are strong (2–3 mm, up to 7 mm globally averaged) changes associated with such yaw state. These JMR issues were all found in the first 22 months of Jason's geophysical data records (GDR) data, and thus they apply to any investigations that use such data without further corrections.  相似文献   

6.
Jason Microwave Radiometer Performance and On-Orbit Calibration   总被引:2,自引:0,他引:2  
Results are presented from the on-orbit calibration of the Jason Microwave Radiometer (JMR). The JMR brightness temperatures (TBs) are calibrated at the hottest and coldest ends of the instrument's dynamic range, using Amazon rain forest and vicarious cold on-Earth theoretical brightness temperature references. The retrieved path delay values are validated using collocated TOPEX Microwave Radiometer and Radiosonde Observation path delay (PD) values. Offsets of 1-4 K in the JMR TBs and 8-12 mm in the JMR PDs, relative to TMR measurements, were initially observed. There were also initial TB offsets of 2 K between the satellite's yaw state. The calibration was adjusted by tuning coefficients in the antenna temperature calibration algorithm and the antenna pattern correction algorithm. The calibrated path delay values are demonstrated to have no significant bias or scale errors with consistent performance in all nonprecipitating weather conditions. The uncertainty of the individual path delay measurements is estimated to be 0.74 cm ± 0.15, which exceeds the mission goal of 1.2 cm RMS.  相似文献   

7.
In the context of the sea level survey at the mm level, it is necessary all along the lifetime of the altimeter mission to survey the quality of the products from the microwave radiometer. The calibration of the brightness temperatures has been validated using reference brightness temperatures over selected continental areas as well as simulations for a wide range of oceanic and atmospheric situations. The validation of the wet path delay is performed by comparison with radiosonde measurements and pointed out that both the JMR and the TMR estimate wet path delay around 5 mm higher than the one measured by radiosondes. Furthermore, it appeared that the correction of the TMR drift degrades the product with respect to radiosonde measurements. The monitoring of the brightness temperatures since launch shows a mean drift around +0.1 K/year for the 18.7 GHz, -0.6 K/year for the 23.8 GHz channel, and around -0.4 K/year for the 34 GHz channel.  相似文献   

8.
Results are presented from the on-orbit calibration of the Jason Microwave Radiometer (JMR). The JMR brightness temperatures (TBs) are calibrated at the hottest and coldest ends of the instrument's dynamic range, using Amazon rain forest and vicarious cold on-Earth theoretical brightness temperature references. The retrieved path delay values are validated using collocated TOPEX Microwave Radiometer and Radiosonde Observation path delay (PD) values. Offsets of 1–4 K in the JMR TBs and 8–12 mm in the JMR PDs, relative to TMR measurements, were initially observed. There were also initial TB offsets of 2 K between the satellite's yaw state. The calibration was adjusted by tuning coefficients in the antenna temperature calibration algorithm and the antenna pattern correction algorithm. The calibrated path delay values are demonstrated to have no significant bias or scale errors with consistent performance in all nonprecipitating weather conditions. The uncertainty of the individual path delay measurements is estimated to be 0.74 cm ± 0.15, which exceeds the mission goal of 1.2 cm RMS.  相似文献   

9.
E. OBLIGIS  N. TRAN  L. EYMARD 《Marine Geodesy》2013,36(1-2):255-277
In the context of the sea level survey at the mm level, it is necessary all along the lifetime of the altimeter mission to survey the quality of the products from the microwave radiometer. The calibration of the brightness temperatures has been validated using reference brightness temperatures over selected continental areas as well as simulations for a wide range of oceanic and atmospheric situations. The validation of the wet path delay is performed by comparison with radiosonde measurements and pointed out that both the JMR and the TMR estimate wet path delay around 5 mm higher than the one measured by radiosondes. Furthermore, it appeared that the correction of the TMR drift degrades the product with respect to radiosonde measurements. The monitoring of the brightness temperatures since launch shows a mean drift around +0.1 K/year for the 18.7 GHz, ?0.6 K/year for the 23.8 GHz channel, and around ?0.4 K/year for the 34 GHz channel.  相似文献   

10.
Sea-level change studies from altimetric satellites are reliant on range stability of the sea surface heights computed from orbital positioning and geophysically corrected data. One such correction, namely the wet tropospheric delay induced by the highly variable atmospheric water vapor content, is provided by radiometers onboard ERS-2 and TOPEX/Poseidon (T/P). In this study the long-term stability of the ERS-2 microwave radiometer (E2MR) and the T/P microwave radiometer (TMR) are investigated with the observed drift in the brightness temperatures approximated by reference to the coldest temperatures over the oceans. The E2MR stability is characterized by a gain anomaly fall in 1996 and a drift in the 23.8 GHz channel. For the TMR, investigations show that the dominant drift is about 0.2 K/year in the 18 GHz channel over the first 7-8 years but stabilizing and even decreasing slightly thereafter. In contrast, the 21 GHz and 37 GHz channels are comparatively stable. Utilizing correction formulae a modified wet tropospheric range is inferred from “small-change” analysis of the radiometric correction given on the altimetric Geophysical Data Records. The accuracy of this formulism is validated by independent comparison against GPS derived wet tropospheric delays inferred at 14 coastal IGS stations with near continuous data from September 1992 through to the present day. Comparisons between GPS results for ERS-2 and T/P show that the E2MR path delay is 14 mm short. For T/P, the spatial distribution of the wet tropospheric enhancement is further investigated to show that the nonuniformity can equate to a deviation in sea-level height change of about 0.1 mm/year compared with global average sea-level change. Finally, the altimetric range stability of T/P is revisited by comparison against time series from the global network of tide gauges. Analysis shows that the validated TMR drift correction results in a residual trend of -0.27 ± 0.11 mm/yr which is not significant at the 3σ level.  相似文献   

11.
The double geodetic Corsica site, which includes Ajaccio-Aspretto and Cape Senetosa (40 km south Ajaccio) in the western Mediterranean area, has been chosen to permit the absolute calibration of radar altimeters. It has been developed since 1998 at Cape Senetosa and, in addition to the use of classical tide gauges, a GPS buoy is deployed every 10 days under the satellites ground track (10 km off shore) since 2000. The 2002 absolute calibration campaign made from January to September in Corsica revealed the necessity of deploying different geodetic techniques on a dedicated site to reach an accuracy level of a few mm: in particular, the French Transportable Laser Ranging System (FTLRS) for accurate orbit determination, and various geodetic equipment as well as a local marine geoid, for monitoring the local sea level and mean sea level. TOPEX/Poseidon altimeter calibration has been performed from cycle 208 to 365 using M-GDR products, whereas Jason-1 altimeter calibration used cycles from 1 to 45 using I-GDR products. For Jason-1, improved estimates of sea-state bias and columnar atmospheric wet path delay as well as the most precise orbits available have been used. The goal of this article is to give synthetic results of the analysis of the different error sources for the tandem phase and for the whole studied period, as geophysical corrections, orbits and reference frame, sea level, and finally altimeter biases. Results are at the millimeter level when considering one year of continuous monitoring; they show a great consistency between both satellites with biases of 6 ± 3 mm (ALT-B) and 120 ± 7 mm, respectively, for TOPEX/Poseidon and Jason-1.  相似文献   

12.
The location of the GAVDOS facility is under a crossing point of the original ground-tracks of TOPEX/Poseidon and the present ones for Jason-1, and adjacent to an ENVISAT pass, about 50 km south of Crete, Greece. Ground observations and altimetry comparisons over cycles 70 to 90, indicate that a preliminary estimate of the absolute measurement bias for the Jason-1 altimeter is 144.7 ± 15 mm. Comparison of Jason microwave radiometer data from cycles 37 and 62, with locally collected water vapor radiometer and solar spectrometer observations indicate a 1-2 mm agreement.  相似文献   

13.
An absolute calibration of the TOPEX/Poseidon (T/P) and Jason-1 altimeters has been undertaken during the dedicated calibration phase of the Jason-1 mission, in Bass Strait, Australia. The present study incorporates several improvements to the earlier calibration methodology used for Bass Strait, namely the use of GPS buoys and the determination of absolute bias in a purely geometrical sense, without the necessity of estimating a marine geoid. This article focuses on technical issues surrounding the GPS buoy methodology for use in altimeter calibration studies. We present absolute bias estimates computed solely from the GPS buoy deployments and derive formal uncertainty estimates for bias calculation from a single overflight at the 40-45 mm level. Estimates of the absolute bias derived from the GPS buoys is -10 ± 19 mm for T/P and +147 ± 21 mm for Jason-1 (MOE orbit) and +131 ± 21 mm for Jason-1 (GPS orbit). Considering the estimated error budget, our bias values are equivalent to other determinations from the dedicated NASA and CNES calibration sites.  相似文献   

14.
Jason, the successor to the TOPEX/POSEIDON (T/P) mission, has been designed to continue seamlessly the decade-long altimetric sea level record initiated by T/P. Intersatellite calibration has determined the relative bias to an accuracy of 1.6 mm rms. Tide gauge calibration of the T/P record during its original mission shows a drift of -0.1 ± 0.4 mm/year. The tide gauge calibration of 20 months of nominal Jason data indicates a drift of -5.7 ± 1.0 mm/year, which may be attributable to errors in the orbit ephemeris and the Jason Microwave Radiometer. The analysis of T/P and Jason altimeter data over the past decade has resulted in a determination of global mean sea level change of +2.8 ± 0.4 mm/year.  相似文献   

15.
TOPEX/Poseidon and Jason-1: Absolute Calibration in Bass Strait, Australia   总被引:2,自引:0,他引:2  
Updated absolute calibration results from Bass Strait, Australia, are presented for the TOPEX/Poseidon (T/P) and Jason-1 altimeter missions. Data from an oceanographic mooring array and coastal tide gauge have been used in addition to the previously described episodic GPS buoy deployments. The results represent a significant improvement in absolute bias estimates for the Bass Strait site. The extended methodology has allowed comparison between the altimeter and in situ data on a cycle-by-cycle basis over the duration of the dedicated calibration phase (formation flight period) of the Jason-1 mission. In addition, it has allowed absolute bias results to be extended to include all cycles since the T/P launch, and all Jason-1 data up to cycle 60. Updated estimates and formal 1-sigma uncertainties of the absolute bias computed throughout the formation flight period are 0 ± 14 mm for T/P and +152 + 13 mm for Jason-1 (for the GDR POE orbits). When JPL GPS orbits are used for cycles 1 to 60, the Jason-1 bias estimate is 131 mm, virtually identical to the NASA estimate from the Harvest Platform off California calculated with the GPS orbits and not significantly different to the CNES estimate from Corsica. The inference of geographically correlated errors in the GDR POE orbits (estimated to be approximately 17 mm at Bass Strait) highlights the importance of maintaining globally distributed verification sites and makes it clear that further work is required to improve our understanding of the Jason-1 instrument and algorithm behavior.  相似文献   

16.
The accuracy and drift of atmospheric path delay due to water vapor as derived from satellite microwave radiometers (MWR) is vital to altimetric measures of sea-level change. In this study a continuous time series of dual frequency GPS data from a number of offshore sites is used to examine the long term stability of the TOPEX/Poseidon radiometer and investigate initial performance of that of Jason-1. The location offshore eliminates the problems associated with land based/coastal locations where extrapolation of the GPS tropospheric correction to subsatellite points offshore are required to avoid background surface heat emissions contaminating the MWR delay measurement.  相似文献   

17.
《Marine Geodesy》2013,36(3-4):261-284
The double geodetic Corsica site, which includes Ajaccio-Aspretto and Cape Senetosa (40 km south Ajaccio) in the western Mediterranean area, has been chosen to permit the absolute calibration of radar altimeters. It has been developed since 1998 at Cape Senetosa and, in addition to the use of classical tide gauges, a GPS buoy is deployed every 10 days under the satellites ground track (10 km off shore) since 2000. The 2002 absolute calibration campaign made from January to September in Corsica revealed the necessity of deploying different geodetic techniques on a dedicated site to reach an accuracy level of a few mm: in particular, the French Transportable Laser Ranging System (FTLRS) for accurate orbit determination, and various geodetic equipment as well as a local marine geoid, for monitoring the local sea level and mean sea level. TOPEX/Poseidon altimeter calibration has been performed from cycle 208 to 365 using M-GDR products, whereas Jason-1 altimeter calibration used cycles from 1 to 45 using I-GDR products. For Jason-1, improved estimates of sea-state bias and columnar atmospheric wet path delay as well as the most precise orbits available have been used. The goal of this article is to give synthetic results of the analysis of the different error sources for the tandem phase and for the whole studied period, as geophysical corrections, orbits and reference frame, sea level, and finally altimeter biases. Results are at the millimeter level when considering one year of continuous monitoring; they show a great consistency between both satellites with biases of 6 ± 3 mm (ALT-B) and 120 ± 7 mm, respectively, for TOPEX/Poseidon and Jason-1.  相似文献   

18.
SARAL/AltiKa has a Dual Frequency Microwave Radiometer (DFMR), and Jason-2 has an Advanced Microwave Radiometer (AMR). Both microwave radiometer sensors include a 23.8 GHz primary water sensing channel. The measurement consistencies between DFMR and AMR are important for establishing a consistent altimetry data set between SARAL/AltiKa and Jason-2 in order to accurately assess sea level rise in a long-term time series. This study investigates the measurement consistency in the 23.8 GHz channel between DFMR and AMR at the Simultaneous Nadir Overpasses (SNO's) between the two satellites and also at coldest ocean brightness temperature locations. Preliminary results show that while both instruments show no significant trends over the one year since the launch of SARAL, a consistent relative bias of 2.88 K (DFMR higher than AMR) with a standard deviation of 0.98 K is observed. The relative bias at the lowest brightness temperature from the SNO method (-3.82 K) is consistent with that calculated from coldest ocean method (-3.74 K). The relative bias exhibits strong latitude (and scene temperature) dependency, changing from -3.82 K at high latitudes to -0.92 K near the equator. There also exists an asymmetry between the northern and southern hemisphere. The relative bias increases toward the lower end of brightness temperature.  相似文献   

19.
The location of the GAVDOS facility is under a crossing point of the original ground-tracks of TOPEX/Poseidon and the present ones for Jason-1, and adjacent to an ENVISAT pass, about 50 km south of Crete, Greece. Ground observations and altimetry comparisons over cycles 70 to 90, indicate that a preliminary estimate of the absolute measurement bias for the Jason-1 altimeter is 144.7 ± 15 mm. Comparison of Jason microwave radiometer data from cycles 37 and 62, with locally collected water vapor radiometer and solar spectrometer observations indicate a 1–2 mm agreement.  相似文献   

20.
The Kavaratti calibration-validation site in India at Lakshadweep Sea has been improved to carry out absolute calibration of SARAL/AltiKa altimeter. This site is augmented with a down-looking radar gauge and a permanent GPS receiver. The Kavaratti Island is located near a repeating ground track of SARAL/AltiKa and ~12 km away from the point of closest measurement of Jason-2, SARAL/AltiKa crossover point. Additionally, the altimeter and radiometer footprints do not experience any land contamination. This article aims at presenting the initial calibration-validation results over cycles 001-011 of AltiKa. The absolute sea surface height bias has been found to be ?48 mm at Kavaratti calibration site. In this preliminary study the effect of environmental variables such as winds and pressure are not considered in calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号