首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Correlation between the Volga runoff, the Caspian Sea level increments (CSL), and the amount of precipitation is considered. The variables involved are averaged over seasons, periods, and the year. Variations in the obtained correlations within the 20th century are analyzed. A method is proposed for determining the optimal time interval, within which precipitation is to be taken into account in predicting the Volga runoff and CSL. Seasonal anomalies in the precipitation and annual Volga runoff are analyzed for low-water and high-water periods. Linear trends of seasonal sums of precipitation for the period from 1891 to 1998 and in individual parts of this period are evaluated.  相似文献   

2.
Long-term water level variations in the Volga mouth area and the effect exerted on them by the river’s flow and the Caspian Sea’s level variations are considered. Quantitative relationships were identified between the mean annual water levels at different gages in the mouth and the sea level. A backwater component was isolated in the long-term variations in water level in the Volga mouth area. Relationships between the daily water levels in the mouth and the Caspian Sea’s level at fixed water flow in the delta apex are presented. The magnitude and the propagation distance of backwater from the sea into the delta are specified. The responses of the mouth areas of rivers emptying into the Caspian Sea to sea level variations in the past century are compared.  相似文献   

3.
The results of studying the hydrological regime of the Caspian Sea and its basin climate in observation period 1945–2010 are generalized. The results of analysis of the regime of precipitation, air temperature in the Caspian Sea basin and its level, as well as Volga runoff in periods of Caspian Sea level rise and drop are given. The conformity in variations of the trends in Caspian Sea level its basin climate is demonstrated, and the direction of further studies is substantiated.  相似文献   

4.
Present changes in the regime and structure of mouths of rivers, which empty into the Caspian Sea, are discussed. The similarities and differences of these processes at the mouths of different rivers of the Caspian Region were revealed. Assessment was made of the impact of changes in river water runoff and sediment load and in the Caspian Sea level as well as the nearshore zone relief and local hydraulic engineering activities on the processes under study. Anomalous features of the processes occurring at the mouths of the Volga and Terek rivers were revealed and explained. Hydrological and morphological processes typical of the present mouths of the rivers of Ural, Sulak, and Kura were revealed; these processes could be accepted as universal and possible analogs in assessing the expected changes at the mouths of other rivers in Russia and the world in the XXI century.  相似文献   

5.
Regularities in the response of the mouths of major rivers, flowing into the Caspian Sea, to large-scale variations in its level and river water runoff and sediment yield are considered. Changes in the morphological structure and hydrological regime of the Volga, Terek, Sulak, Ural, and Kura mouths have been analyzed in both geological past and separately for three modern periods: a considerable drop in Caspian Sea level before 1978, its abrupt rise in 1978–1995, and a relative stabilization in the subsequent years. Specific features were identified in the hydrological-morphological processes in different mouths, caused by the differences in river sediment yields, and the slopes of delta surface and mouth nearshore beds. Some theoretical and methodological approaches were verified in the analysis and evaluation of the processes under consideration. The obtained results of studies of the mouths of rivers flowing into the Caspian Sea can be regarded as examples and analogues in the assessment of processes, which take place at the mouths of other Russian and world rivers at present and can take place in the future under anticipated natural and anthropogenic variations in sea level and river runoff.  相似文献   

6.
Naidenov  V. I.  Krutova  N. M. 《Water Resources》2002,29(3):270-281
Nonlinear mechanisms of long-term variations in the Caspian Sea level are described. It is shown that with account taken of the dependence of the evaporation depth from the Volga basin surface on soil moisture content and the dependence of the evaporation depth from the sea surface on its level, we obtain a fundamentally new (chaotic) oscillation mechanism with several attraction levels. The stochastic differential equations describing the water budget of the sea basin and the sea proper and the respective solutions of the Fokker–Planck–Kolmogorov equation are shown to have stationary bimodal density of the level probability. The random process, characterizing the sea level variations at a nonlinear dependence between the evaporation rate and the level is found to be non-Gaussian. Noise-induced transitions, caused by nonlinear evaporation processes are described. A new nonlinear stochastic theory describing the Caspian Sea level variations and based on predicted physical effects is suggested.  相似文献   

7.
The Late Quaternary history of the Caspian Sea remains controversial. One of the major disagreements in this debate concerns the stratigraphic correlation of various deposits in the Caspian Basin. In this paper we identify and date, for the first time, the Enotaevka regression, lying between the two major phases of the largest Late Quaternary Caspian Sea transgression, the Khvalynian transgressive epoch, and provide a minimum estimate of sea level decrease during this regression. The River Volga is the major source of water to the Caspian; the Lower Volga region is unique in its record of palaeogeographic events, and this provides the opportunity to build a single stratigraphic and palaeogeographic history for the Pleistocene of Central Eurasia. Here we use luminescence to establish a new chronology for the largest Late Quaternary transgressive epoch of the Caspian Sea. The existing radiocarbon chronology does not allow the resolution of the two transgressive phases of this epoch (Early and Late Khvalynian). Based on clear palaeontological and geomorphological evidence, these must be very different in age, but shells associated with both transgressions gave very scattered ages of between 8 and 50 ka. This ambiguity has led to considerable discussion concerning the existence or otherwise of a deep Enotaevka regression phase between the two Khvalynian transgressions. Recently we have again identified these deposits at Kosika, on the right valley side of the Volga River. The new luminescence chronology described here, based on quartz OSL and K-feldspar pIRIR290 ages, allows us to reconstruct the complicated history of Late Quaternary sedimentation in the southern part of the Lower Volga valley. The Kosika section reflects the following major stages: (1) the earlier Khazarian transgressive epoch; (2) a decrease in the sea level with the development of a freshwater lake/lagoon in the Volga valley; and (3) the Khvalynian transgressive-regressive epoch, including both the Early and Late Khvalynian transgressive periods, and the intercalated Enotaevka regression. Sea level during the early stage of the Khvalynian transgression reached Kosika at about 23–22 ka (approx. −1 to −2 m asl). This event is of the same age as the “grey clay” strata at the base of the Leninsk section marine unit (Kurbanov et al., 2021), also formed at the beginning of the Early Khvalynian transgression. Around 15–14 ka the Khvalynian basin moved to a regressive stage, and in the northern part of the Lower Volga the top part of the well-known ‘Chocolate Clay’ accumulated. In the southern part of the valley marine accumulation stopped at about 12–13 ka. This allows us to reconstruct a decrease in Early Khvalynian basin sea level between 15–14 ka and 13–12 ka ago, of about ∼15 m. At the Kosika section sediments derived from the Enotayevka regression are visible as a weakly developed palaeosol with evidence of surficial erosion, and these sediments are now dated to 13–12 ka. At 8.6 ± 0.5 ka, during the period of the Mangyshlak regression, aeolian deflation processes reworked sediments deposited by immediately preceding Late Khvalynian transgression.  相似文献   

8.
Kislov  A. V.  Morozova  P. A. 《Water Resources》2021,48(6):844-853
Water Resources - Water balance components for the territory of the Volga basin and Caspian Sea water area have been analyzed using the results of climatic simulation under CMIP6 Project for...  相似文献   

9.
Water Resources - The runoff of glacial melt water into the river system of the Volga and farther into the Caspian Sea is evaluated for the epoch of the last glaciation. Melt water entered the...  相似文献   

10.
The normally-closed Caspian Sea is known for large changes in relative sea-level (of ∼170 m) during the late Quaternary. These transgressive/regressive events influenced the topography, sedimentation and ecosystems of a large area, of up to 1 million km2. The Volga River has played an important role in the water balance of the Caspian Quaternary basins but our understanding of the temporal evolution is poorly constrained. Recent studies on the evolution of the Lower Volga have focused mainly on the subaerial sequence of loess-palaeosol series corresponding to a long-duration Caspian low stand (the so-called “Atelian regression” from ∼90 to ∼25 ka). In this study we address, for the first time, the temporal evolution of the Volga River during the late Quaternary, as recorded in the many layers of alluvial sands at the Raygorod reference section. This 50 m high outcrop contains a complicated sequence of different types of interlayered alluvium (channel and floodplain facies), a loess-palaeosol sequence with a weakly developed palaeosol, and marine sediments of the Khvalynian transgression (Chocolate Clay facies). The new chronology, based on 35 samples, is derived using optically stimulated luminescence (OSL) analysis of sand-sized quartz, with support from post-infra-red infra-red stimulated luminescence (post-IR IRSL) from K-rich feldspar grains to date the older parts of the section. The new ages identify five stages of the topography development in the northern parts of the Lower Volga: (1) an MIS 5a flood-plain in deltaic/estuary environments (>90 ka) during a high-stand of the Caspian Sea (Hyrcanian transgression); (2) a transition from deltaic/estuary conditions to a river valley with normal alluvial sedimentation and sporadic stabilization reflected in palaeosol development (80–70 ka); (3) a palaeo-Volga channel migration at elevations of 4–8 m msl during 69–62 ka, evidence of a brief increase in Caspian Sea-level and blocking of the Volga flow; (4) a subaerial stage with high-speed accumulation of loess during MIS 4 to MIS 2, containing one weakly developed palaeosol (MIS 3c) and pedocomplex of three combined palaeosols of the beginning of MIS2 (30–24 ka); (5) a rapid Khvalynian transgression, starting at the Raygorod location at ∼18.3 ka, with relatively weak marine erosion of the top 40–60 cm of loess cover, presumably because of the rapid migration of the coastline in the flat Northern Caspian Lowland.  相似文献   

11.
We present a detailed luminescence chronology of the loess-palaeosol sequences in the Lower Volga region of Russia at the Leninsk site – an important palaeogeographic archive describing the climate and environmental conditions of regressive stages of the Caspian Sea. The chronology of these sediments has received very little attention compared to the under- and overlying marine deposits. The degree of bleaching was addressed by making use of the differential resetting rates of quartz and feldspar. Our results show that the quartz OSL and feldspar pIRIR50,290 signals were sufficiently bleached before deposition and uncertainties in bleaching have a negligible impact on the reliability of the luminescence ages. The combined quartz OSL and K-feldspar pIRIR50,290 chronology constrains the main stages of the Northern Caspian Lowland evolution during the Late Quaternary. During early MIS 5 (130–120 ka), the northern part of the Lower Volga was covered by a shallow brackish water estuary of the warm Late Khazarian Caspian Sea transgression. After ∼122 ka, the Volga incised the Northern Caspian Lowland surface following sea-level decrease and the start of subaerial conditions at Leninsk. Loess accumulation rate increased towards the end of MIS 5 and two palaeosols of presumably MIS 5с and MIS 5a age formed, exhibiting features evidencing a dry, cold climate, influenced by long seasonal flooding by the Volga River. Cryogenesis affecting the MIS 5a soil is a regional phenomenon and is dated to between ∼70 and 90 ka. The overlying thick Atelian loess unit formed during the cold periods of MIS 4 and MIS 3. Clear erosional features at the top of the Atelian loess are constrained by luminescence to ∼35 to ∼24 ka, allowing reconstruction of erosion of 150–200 cm of loess.  相似文献   

12.
Analysis of Long-Term Variations in the Volga Annual Runoff   总被引:2,自引:0,他引:2  
Ismaiylov  G. Kh.  Fedorov  V. M. 《Water Resources》2001,28(5):469-477
The stability of sample estimates of statistical parameters was analyzed for segments of the initial time series of annual runoff volumes of the Volga River at Volgograd for 1881/1882–1994/1995. The segments of series considered in this study differ in the extent of anthropogenic impact on the runoff and the type of atmospheric circulation and correspond to characteristic periods in the Caspian Sea level variations. The conclusion is made that there are statistically significant variations in the annual runoff of the Volga, caused by both natural–climatic and anthropogenic variations in the hydrological cycle.  相似文献   

13.
Leonov  A. V.  Nazarov  N. A. 《Water Resources》2001,28(6):656-665
Long-term observational data are used to compare and analyze time and space variations in the concentrations of nutrients in the water of major rivers flowing into the Caspian Sea and assess the nutrients runoff into the sea. Annual variations in the normal monthly values of river runoff and nutrient compound concentrations and input into the sea are considered (18 compounds and considered for the Volga, Ural, Terek, Sulak, and Samur, and 7 compounds are considered for the Kura). The Volga contribution to nutrient input into the sea is found to vary from 77 to 94% with the average of 86%.  相似文献   

14.
The development of the Sulak River Delta in the 19th and 20th centuries is discussed. It is shown that a drastic reduction in sediment runoff after the establishment of river flow regulation, anthropogenic restructuring of the river channel system in the delta area, and large-scale variations in the Caspian Sea level had an impact on the delta evolution. The processes of delta degradation over the period of the recent sea level rise are analyzed. The dynamics of the Sulak Delta in recent decades is studied using space photographs.  相似文献   

15.
The presented results have been obtained in a study of the concentrations and composition of aliphatic and polycyclic hydrocarbons in bottom sediments of Volga delta branches and in its shallow zone (2009–2010), as well as the Caspian Sea proper (2010–2013). Oil hydrocarbon pollution has been found to manifest itself mostly in Volga delta branches, which, despite the low concentrations (up to 54.5 μg/g), showed higher hydrocarbons share in Corg (up to 33.8%), while the composition of alkanes suggested their oil genesis. The geochemical barrier the Volga–the Caspian Sea prevents anthropogenic hydrocarbons from entering the open parts of the Caspian. Bottom sediments in the shallow zone of the Northern Caspian, represented by coarse-grained material, are now polluted by oil hydrocarbons to a lesser extent compared with other areas. The highest concentrations of aliphatic hydrocarbons (up to 178 μg/g) were recorded in the deepsea bottom sediments of Derbent Depression and in depressions of the Middle and Southern Caspian. These areas show a higher concentration of Corg (up to 9.884%) and a low concentration of hydrocarbons in Corg (up to 0.16%), while odd high-molecular homologues (n-C25–C31) dominate in the composition of alkanes.  相似文献   

16.
Water Resources - The Agrakhan Bay of the Caspian Sea is a unique hydrographic and environmentally valuable object at the mouth of the Terek River. At the beginning of the 20th century, it was a...  相似文献   

17.
《水文科学杂志》2013,58(6):1068-1078
Abstract

The study aims to set and implement environmentally relevant limits for the exploitation of mountain streams in the Kura River basin of Azerbaijan. Such streams represent the preferred spawning grounds for valuable sturgeon of the Caspian Sea, but experience continuously increasing exploitation in the form of water withdrawals for industry and irrigation. Since no detailed environmental flow assessments have been conducted on any of the Kura basin streams, an interim approach is suggested based on minimum flow, referred to as “base environmental minimum”. The latter may be estimated from the unregulated parts of observed or simulated daily flow records. Environmental flow requirements for individual months of an individual year may be calculated using correction factors related to monthly rainfall. Simple relationships are suggested for base environmental flow estimation at ungauged sites, and the implications of river pollution for monthly environmental requirements are examined. Further, definition of environmentally critical periods in a stream is proposed based on a ratio of observed to “environmental” flow as an indicator of environmental stress. It is illustrated that the conjunctive use of several closely located streams for water supply may significantly reduce the duration of, or completely eliminate, environmentally critical periods. The idea of environmentally acceptable areal water withdrawal is formulated, so that the overall approach may be applied for environmentally sustainable water withdrawal management in other small streams.  相似文献   

18.
Leonov  A. V.  Stygar  O. V. 《Water Resources》2001,28(5):535-552
A mathematical model based on average long-term data on water temperature, illumination, transparency, and nutrient content is used to calculate annual variations in the concentrations of organic and inorganic fractions of nutrients (C, N, Si, and P) in ten water areas in the Caspian Sea. The eutrophication of sea environment is examined with special emphasis on the increase in the biomass of aquatic animals (in particular, phyto- and zooplankton), the rate and duration of periods of plankton blooming, and changes in the conditions of nutrient limiting of primary production processes in different parts of the sea. Relationships between the inorganic components of N and P in river runoff and sea water areas are established. The obtained Nmin/DIP ratios show P primary production to be limited in the zone of influence of the Volga runoff, P and N primary production to be limited in other northern parts of the sea, and N primary production to be mainly limited in the middle and southern parts of the sea.  相似文献   

19.
The main results of studying discharge currents in the shallow offshore mouth area of the Volga River based on space photography materials collected during 1975–1997 are considered. The hydrographic zoning of the shallow offshore zone was elaborated taking into account the obtained data on the positions of discharge streams. The southern marine boundary of the region was established for the first time by the zone of convergence of river discharge streams and marine alongshore currents. A computer technique was developed for the compilation of discharge current maps in the shallow offshore zone of the Volga based on space photographs. An electronic atlas of discharge streams in the shallow offshore zone is created, and maps of discharge currents are compiled for different hydrological phases and stages of the Caspian Sea.  相似文献   

20.
Datsenko  Yu. S. 《Water Resources》2002,29(5):587-589
With the help of a stationary balance model, the mean annual amounts of P retained in the chain of the Volga water reservoirs are sequentially calculated. It is found that with the current anthropogenic load, the Volga River regulation leads to a twofold decrease in the P runoff into the Caspian Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号