首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Weekly bulk aerosol samples collected at Funafuti, Tuvalu (8°30S, 179°12E), American Samoa (14°15S, 170°35W), and Rarotonga (21°15S, 159°45W), from 1983 through most of 1987 have been analyzed for nitrate and other constituents. The mean nitrate concentration is about 0.11 g m–3 at each of these stations: 0.107±0.011 g m–3 at Funafuti; 0.116±0.008 at American Samoa; and 0.117±0.010 at Rarotonga. Previous measurements of mineral aerosol and trace metal concentrations at American Samoa are among the lowest ever recorded for the near-surface troposphere and indicate that this region is minimally affected by transport of soil material and pollutants from the continents. Consequently, the nitrate concentration of 0.11 g m–3 can be regarded as the natural level for the remote marine boundary layer of the tropical South Pacific Ocean. In contrast, over the tropical North Pacific which is significantly impacted by the transport of material from Asia and North America, the mean nitrate concentrations are about three times higher, 0.29 and 0.36 g m–3 at Midway and Oahu, respectively. The major sources of the nitrate over the tropical South Pacific are still very uncertain. A very significant correlation between the nitrate concentrations at American Samoa and the concentrations of 210Pb suggests that transport from continental sources might be important. This continental source could be lightning, which occurs most frequently over the tropical continents. A near-zero correlation with 7Be indicates that the stratosphere and upper troposphere are probably not the major sources. A significant biogenic source would be consistent with the higher mean nitrate concentrations, 0.16 to 0.17 g m–3, found over the equatorial Pacific at Fanning Island (3°55N, 159°20W) and Nauru (0°32S, 166°57E). The lack of correlation between nitrate and nss sulfate at American Samoa does not necessarily preclude an important role for marine biogenic sources.  相似文献   

2.
Carbonyl sulfide emissions from biomass burning have been studied during field experiments conducted both in an African savanna area (Ivory Coast) and rice fields, central highland pine forest and savanna areas in Viet-Nam. During these experiments CO2, CO and C2H2 or CH4 have also been also monitored. COS values range from 0.6 ppbv outside the fires to 73 ppbv in the plumes. Significant correlations have been observed between concentrations of COS and CO (R 2=0.92,n=25) and COS and C2H2 (R 2=0.79,n=26) indicating a COS production during the smoldering combustion. COS/CO2 emission factors (COS/CO2) during field experiments ranged from 1.2 to 61×10–6 (11.4×10–6 mean value). COS emission by biomass burning was estimated to be up to 0.05 Tg S/yr in tropics and up to 0.07 Tg S/yr on a global basis, contributing thus about 10% to the global COS flux. Based on the S/C ratio measured in the dry plant biomass and the COS/CO2 emission factor, COS can account for only about 7% of the sulfur emitted in the atmosphere by biomass burning.  相似文献   

3.
Flux densities of carbon dioxide were measured over an arid, vegetation-free surface by eddy covariance techniques and by a heat budget-profile method, in which CO2 concentration gradients were specified in terms of mixing ratios. This method showed negligible fluxes of CO2, consistent with the bareness of the experimental site, whereas the eddy covariance measurements indicated large downward fluxes of CO2. These apparently conflicting observations are in quantitative agreement with the results of a recent theory which predicts that whenever there are vertical fluxes of sensible or latent heat, a mean vertical velocity is developed. This velocity causes a mean vertical convective mass flux (= cw for CO2, in standard notation). The eddy covariance technique neglects this mean convective flux and measures only the turbulent flux c w. Thus, when the net flux of CO2 is zero, the eddy covariance method indicates an apparent flux which is equal and opposite to the mean convective flux, i.e., c w = – c w. Corrections for the mean convective flux are particularly significant for CO2 because cw and c w are often of similar magnitude. The correct measurement of the net CO2 flux by eddy covariance techniques requires that the fluxes of sensible and latent heat be measured as well.  相似文献   

4.
In early 1982 a station capable of sampling atmospheric trace gas constituents on a continuous basis was established at Palmer Station, Anvers Island, adjacent to the Antarctic Peninsula (64° 46S 64° 04W). Sampling operations began about 1 February 1982. This is an initial report on this station, its location, equipment and general research objectives along with some initial sampling results. The constituents being measured and recorded were: ozone, methane, carbon dioxide, carbon monoxide, CCl3F (fluorocarbon-11), CCl2F2 (fluorocarbon-12), carbontetrachloride, methylchloroform, nitrous oxide, and Aitken nuclei (CN). Data storage, data processing, and sampling system control is handled by a Hewlett-Packard 85 system. Preliminary analyses of about the first 20–22 months of data are presented and show not only the expected long-term trends but also shorter period concentration cycles that seem to be related to synoptic meteorology.  相似文献   

5.
Observations of tidal currents in lat. 71° 01 S, long. 10° 55 W indicate that a semi-diurnal tidal wave progresses towards the WSW, that is, parallel to the main direction of the barrier. ForM 2 the cotidal hour appears to be about 7h, in good agreement with the value 6.7h, that is derived from observations of the atmospheric pressure. Furthermore, the current measurements indicate that the ratio(K 1+O1)/(M2+S2) is large, perhaps as large as 2.5.
Zusammenfassung Beobachtungen der Gezeitenströmungen in 71° 01 S und 10° 55 W lassen erkennen, daß eine halbtägige Gezeitenwelle gegen WSW, also parallel zur Hauptrichtung der Eisbarriere, wandert. FürM 2 scheint das Flutstundenintervall etwa 7 Stunden zu betragen und damit gut zu dem Wert von 6,7 Stunden zu stimmen, der aus Beobachtungen des Luftdrucks abgeleitet wird. Ferner lassen Strömungsmessungen erkennen, daß der Quotient(K 1+O1)/(M2+S2) mit etwa 2,5 groß ist.

Résumé Des observations des courants de marée, faites à 71° 01 S et 10° 55 W, montrent qu'une vague de marée semi-diurne progresse en direction WSW, ce qui est parallèle à la direction principale de la limite de la banquise. PourM 2 l'heure cotidale paraît être de 7h environ, ce qui correspond assez bien avec la valeur de 6.7h déduite des observations de la pression atmosphérique. En outre les mesures du courant indiquent que le quotient(K 1+O1)/(M2+S2) est assez grand et comporte environ 2.5.


With 1 Figure.  相似文献   

6.
Meteorological measurements taken at the Näsudden wind turbine site during slightly unstable conditions have been analyzed. The height of the convective boundary layer (CBL) was rather low, varying between 60 and 300 m. Turbulence statistics near the ground followed Monin-Obukhov similarity, whereas the remaining part of the boundary layer can be regarded as a near neutral upper layer. In 55% of the runs, horizontal roll vortices were found. Those were the most unstable runs, with -z i/L > 5. Spectra and co-spectra are used to identify the structures. Three roll indicators were identified: (i) a low frequency peak in the spectrum of the lateral component at low level; (ii) a corresponding increase in the vertical component at mid-CBL; (iii) a positive covariance {ovvw} together with positive wind shear in the lateral direction (V/z) in the CBL. By applying these indicators, it is possible to show that horizontal roll circulations are likely to be a common phenomenon over the Baltic during late summer and early winter.  相似文献   

7.
The commonly reported temperature coefficient of P. the equilibrium partial pressure of CO2, is (P/T) A,C ,which is about 15 ppm/°C, or 5% of the atmospheric partial pressure of CO2. This coefficient, however, applies only to deep water, not to surface water which can exchange CO2 with the atmosphere. The coefficient (P/T) A,C ,, where designates constancy of the sum of atmospheric and surface-ocean CO2, is the appropriate value for air-sea exchange. Numerical values are mass-dependent because the depth of the exchanging ocean layer must be specified. For a 100-m surface layer, the value is ca. 1.5 ppm/°C, or 0.5% of ambient CO2. Editor's Note:In view of the interdisciplinary importance of the carbon dioxide-climate problem, this note on seawater chemistry should be of interest to specialists beyond the discipline of ocean chemistry.  相似文献   

8.
Daily measurements of atmospheric sulfur dioxide (SO2) concentrations were performed from March 1989 to January 1991 at Amsterdam Island (37°50 S–77°30 E), a remote site located in the southern Indian Ocean. Long-range transport of continental air masses was studied using Radon (222Rn) as continental tracer. Average monthly SO2 concentrations range from less than 0.2 to 3.9 nmol m-3 (annual average = 0.7 nmol m-3) and present a seasonal cycle with a minimum in winter and a maximum in summer, similar to that described for atmospheric DMS concentrations measured during the same period. Clear diel correlation between atmospheric DMS and SO2 concentrations is also observed during summer. A photochemical box model using measured atmospheric DMS concentrations as input data reproduces the seasonal variations in the measured atmospheric SO2 concentrations within ±30%. Comparing between computed and measured SO2 concentrations allowed us to estimate a yield of SO2 from DMS oxidation of about 70%.  相似文献   

9.
The reactions of alkoxy radicals determine to a large extent the products formed during the atmospheric degradations of emitted organic compounds. Experimental data concerning the decompositions, 1,5-H shift isomerizations and reactions with O2 of several classes of alkoxy radicals are inconsistent with literature estimations of their absolute or relative rate constants. An alternative, although empirical, method for assessing the relative importance under atmospheric conditions of the reactions of alkoxy radicals with O2 versus decomposition was derived. This estimation method utilizes the differences in the heats of reaction, (H)=(Hdecomposition–HO 2 reaction), between these two reactions pathways. For (H)[22–0.5(HO 2 reaction)], alkoxy radical decomposition dominates over the reaction with O2 at room temperature and atmospheric pressure of air, while for (H)[25-0.5(HO 2 reaction)], the O2 reaction dominates over decomposition (where the units of H are in kcal mol–1). The utility and shortcomings of this approach are discussed. It is concluded that further studies concerning the reactions of alkoxy radicals are needed.  相似文献   

10.
Quantitative infrared measurements of ethane (C2H6) in the upper troposphere and lower stratosphere are reported. The results have been obtained from the analysis of absorption features of the 9 band at 12.2 m, which have been identified in high-resolution ballon-borne and aircraft solar absorption spectra. The ballon-borne spectral data were recorded at sunset with the 0.02 cm-1 resolution University of Denver interferometer system from a float altitude of 33.5 km near Alamogordo, New Mexico, on 23 March 1981. The aircraft spectra were recorded at sunset in July 1978 with a 0.06 cm-1 resolution interferometer aboard a jet aircraft at 12 km altitude, near 35°N, 96°W. The balloon analysis indicates the C2H6 mixing ratio decreased from 3.5 ppbv near 8.8 km to 0.91 ppbv near 12.1 km. The results are consistent with the colum value obtained from the aircraft data.  相似文献   

11.
Analyses of concentration fluctuation (C) spectra from boundary-layer smoke plume experiments at six separate locations show that the spectra from these experiments generally exhibit an inertial subrange at high frequencies with a slope of -5/3 and indicate peak energy at a time period of about 50 to 100 s. These periods of peak energy are a factor of two to five less than those for the peak of the wind speed fluctuation (u or v) spectra. A general spectral formula fits normalized spectra from the U.S. and Australia, where the frequency, n, is made dimensionless by multiplying by the plume dispersion parameter, y , and dividing by the wind speed, u. Peak energy occurs at a dimensionless frequency of n y/u equal to about 0.15. The Kolmogorov constant in the inertial subrange is estimated from a set of averaged spectra. Cross-spectra indicate little relation between concentration and wind fluctuations. However, most of the correlation that exists is due to periods larger than about 10 or 20 s.  相似文献   

12.
Wind velocities within a plant canopy are much more strongly skewed than those of the air flow above. We have examined the governing Eulerian equations for the velocity products u i, u j uk using data from a wind tunnel study with an artificial canopy consisting of an array of 5 cm lengths of monofilament fishing line, and from measurements in corn (Zea mays L).Simple parameterizations for pressure-velocity correlations, and for the quadruple velocity products allowed reasonably accurate calculations of the third moments using measured profiles of the mean velocity, variance and covariance fields. Comparisons of individual terms in the rate equations for ovu i, u j u krevealed that diffusion (from above) and mean shear were most important in creating large skewness in the canopy. A drag term also contributed but was of lesser importance. These terms were balanced by return-to-isotropy and a turbulence interaction term. A quasi-Gaussian approximation considerably underestimated the magnitude of the fourth moments within the canopy.  相似文献   

13.
We have devised a partial differential equation for the prediction of dust concentration in a thin layer near the ground. In this equation, erosion (detachment), transport, deposition and source are parameterised in terms of known quantities. The interaction between a wind prediction model in the boundary layer and this equation affects the evolution of the dust concentration at the top of the surface layer. Numerical integrations are carried out for various values of source strength, ambient wind and particle size. Comparison with available data shows that the results appear very reasonable and that the model should be subjected to further development and testing.Notation (x, y, z, t) space co-ordinates and time (cm,t) - u, v components of horizontal wind speed (cm s–1) - u g, vg components of the geostrophic wind (cm s–1) - V=(u2+v2)1/2 (cm s–1) - (û v)= 1/(h – k) k h(u, v)dz(cm s–1) - V * friction velocity (cm s–1) - z 0 roughness length (cm) - k 1 von Karman constant =0.4 - V d deposition velocity (cm s–1) - V g gravitational settling velocity (cm s–1) - h height of inversion (cm) - k height of surface layer (cm) - potential temperature (°K) - gr potential temperature at ground (°K) - K potential temperature at top of surface layer (°K) - P pressure (mb) - P 0 sfc pressure (mb) - C p/Cv - (t)= /z lapse rate of potential temperature (°K cm–1) - A(z) variation of wind with height in transition layer - B(z) variation of wind with height in transition layer - Cd drag coefficient - C HO transfer coefficient for sensible heat - C dust concentration (g m–3) - C K dust concentration at top of surface layer (g m–3) - D(z) variation with height of dust concentration - u, v, w turbulent fluctuations of the three velocity components (cm s–1) - A 1 constant coefficient of proportionality for heat flux =0.2 - Ri Richardson number - g gravitational acceleration =980 cm s–2 - Re Reynolds number = - D s thickness of laminar sub-layer (cm) - v molecular kinematic viscosity of air - coefficient of proportionality in source term - dummy variable - t time step (sec) - n time index in numerical equations On sabbatical leave at University of Aberdeen, Department of Engineering, September 1989–February 1990.  相似文献   

14.
An experimental investigation of the simultaneous absorption of NH3 and SO2 from the ambient atmosphere by freely falling water drops has been carried out in the Mainz vertical wind tunnel. The experimental results were found to be in good agreement with the results derived from computations with the Kronig-Brink convective diffusion model and also with a model which assumes a drop to be well mixed at all times. Encouraged by this agreement, these computation schemes for the uptake of gas by single drops where incorporated in a pollution washout model with realistic SO2, NH3 and CO2 gas profiles. This model allows an entire raindrop size distribution to fall through a gas layer. The results of this plume-model show that the SO2 uptake is strongly dependent on the NH3 concentration in the atmosphere and on the rainrate. We also find that the small drops contribute more towards the washout of these gases. In the case of simultaneous presence of NH3 and SO2, desorption of these gases is negligible.  相似文献   

15.
Measurements of the stable carbon isotope ratio in atmospheric CO2 permit a distinction between variations resulting from biospheric and oceanic exchange. In situ extraction of CO2 from Cape Grim air (41°S) for isotopic analysis commenced in 1977; however difficulties with technique reliability were experienced until 1982. Since 1982, 2.6 years of relatively consistent values have accumulated.For a preliminary assessment of the latter data, estimates of the isotopic behaviour from the global transport and inter-reservoir exchange model of Pearman and Hyson (1985) have been employed. The assessment demonstrates the precision requirements of a carbon isotope monitoring program and the relevance of the isotope measurements as a constraint on parameterization of the model.Clear evidence of the changes due to fossil fuel combustion is seen in the year-to-year differences in 13C, with the mean and standard error of the overall trend being –0.025±0.005 yr-1. A significant seasonal variation in 13C is apparent, despite considerable inter-annual variability possibly associated with the 1982/83 ENSO phenomena. The average peak-to-peak amplitude is 0.055±0.014 with a maximum on day 85±15 (approx. 26 March).There is some evidence for a complex seasonal inter-relationship between concentration and isotope ratio, both in the Cape Grim data and in Mook et al. (1983) South Pole data, but with marked differences between the stations, and with both different from the model estimates.In particular, the Cape Grim results suggest that exchange with Southern Hemisphere biosphere is the main contributor to the seasonal variation in isotope ratio at this latitude.  相似文献   

16.
A discharge-flow tube coupled with resonance fluorescence and chemiluminescence detection has been used to investigate the reactions IO + HO2 products (1) and IO + O(3P) I + O2(2), at T = 296 ± 1 K and P = 1.7 - 2 Torr. The rate constants k-1 and k2 have been found to be (7.1 ± 1.6) × 10-11 cm3 molecule-1 s-1 and (1.35 ± 0.15) × 10-10 cm3 molecule-1 s-1, respectively.  相似文献   

17.
Observations made with a monostatic sodar and from a 120 m instrumented tower have been used to study the variations in the atmospheric boundary layer at Tarapur (19° 50 N, 72° 41 E) during the solar eclipse of February 16, 1980. Atmospheric instability was reduced below normal values during the eclipse but the atmosphere at no time became stable.  相似文献   

18.
Daily measurements of atmospheric concentrations of dimethylsulfide (DMS) were carried out for two years in a marine site at remote area: the Amsterdam Island (37°50S–77°31E) located in the southern Indian Ocean. DMS concentrations were also measured in seawater. A seasonal variation is observed for both DMS in the atmosphere and in the sea-surface. The monthly averages of DMS concentrations in the surface coastal seawater and in the atmosphere ranged, respectively, from 0.3 to 2.0 nmol l-1 and from 1.4 to 11.3 nmol m-3 (34 to 274 pptv), with the highest values in summer. The monthly variation of sea-to-air flux of DMS from the southern Indian Ocean ranges from 0.7 to 4.4 mol m-2 d-1. A factor of 2.3 is observed between summer and winter with mean DMS fluxes of 3.0 and 1.3 mol m-2 d-1, respectively.  相似文献   

19.
A previously published technique for using tethered spherical balloons as anemometers for measuring light low-level winds has been further developed. Earlier data on the relationship between the aerodynamic drag coefficient and the Reynolds number of spherical rubber balloons were combined with a large number of new data and re-analysed; and the errors in the relationship were estimated. The results allowed a more accurate calculation of wind speed from the deflection of a tethered balloon from the vertical. When combined with a new technique for calculating the effects of the tether, this enabled light to moderate low-level winds at fixed heights up to 600 m or more to be measured with simple, cheap, and readily mobile equipment; and a slight modification of the technique allowed measurement of winds in and above fog. Wind speeds measured by the ballon technique showed reasonably good agreement with measurements by an anemometer carried beneath the balloon.Glossary of Symbols a, b, c Coefficients in the relationship between lnC d and lnR - A Quantity under square root in solution for lnV whena0 - C d Wind drag coefficient for balloon - C dc Value ofC d given by calibration curve of Table I - D Dynamic wind pressure force on balloon - F Buoyant free lift of balloon with load - Re Reynold's number of balloon (sphere) - R = Re/105 - r Radius of sphere - T Tension in tether - V Wind speed - 83() =(lnC dc -lnC d ) when 83° , or 0 for other - Error in lnC d - Elevation of tether where attached to balloon - Elevation of balloon from ground tether point - Molecular viscosity of air - Ratio of circumference to diameter of circle - Density of air  相似文献   

20.
On the Significance of the Webb Correction to Fluxes   总被引:2,自引:0,他引:2  
For establishing correct mass or energy balances at the Earth's surface, detailed and correct measurements of air constituent fluxes are needed. Flux measurements obtained from the eddy covariance technique have to pass several corrections of different relevance in order to give correct flux data. One of these corrections, the Webb correction, is analysed herein from latent heat flux and CO2 flux data recorded during two field experiments. The significance of this correction for the latent heat flux data varies with the air humidity and the Bowen ratio. The correction changes the latent heat flux values only a little, but significantly (by 2 to 3%). For other air constituents (like CO2), the Webb correction is much more important (20 to 30% of the flux).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号