首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Two major faults, over 32 km long and 6.4 km apart, truncate or overprint most previous folds and faults as they trend more northerly than the previous N25°E to N40°E fold trends. The faults were imposed as the last event in a region undergoing sequential counter-clockwise generation of tectonic structures. The western Big Cove anticline has an early NW verging thrust fault that emplaces resistant rocks on its NW limb. A 16 km overprint by the Cove Fault is manifested as 30 small northeast striking right-lateral strike-slip faults. This suggests major left-lateral strike-slip separation on the Cove Fault, but steep, dip-slip separation also occurs. From south to north the Cove Fault passes from SE dipping beds within the Big Cove anticline, to the vertical beds of the NW limb. Then it crosses four extended, separated, Tuscarora blocks along the ridge, brings Cambro-Ordovician carbonates against Devonian beds, and initiates the zone of overprinted right-lateral faults. Finally, it deflects the Lat 40°N fault zone as it crosses to the next major anticline to the northwest. To the east, the major Path Valley Fault rotates and overprints the earlier Carrick Valley thrust. The Path Valley Fault and Cove Fault may be Mesozoic in age, based upon fault fabrics and overprinting on the east–west Lat 40°N faults.  相似文献   

2.
The N–S oriented Coastal Cordillera of South Central Chile shows marked lithological contrasts along strike at ∼38°S. Here, the sinistral NW–SE-striking Lanalhue Fault Zone (nomen novum) juxtaposes Permo-Carboniferous magmatic arc granitoids and associated, frontally accreted metasediments (Eastern Series) in the northeast with a Late Carboniferous to Triassic basal-accretionary forearc wedge complex (Western Series) in the southwest. The fault is interpreted as an initially ductile deformation zone with divergent character, located in the eastern flank of the basally growing, upwarping, and exhuming Western Series. It was later transformed and reactivated as a semiductile to brittle sinistral transform fault. Rb–Sr data and fluid inclusion studies of late-stage fault-related mineralizations revealed Early Permian ages between 280 and 270 Ma for fault activity, with subsequent minor erosion. Regionally, crystallization of arc intrusives and related metamorphism occurred between ∼306 and ∼286 Ma, preceded by early increments of convergence-related deformation. Basal Western Series accretion started at >290 Ma and lasted to ∼250 Ma. North of the Lanalhue fault, Late Paleozoic magmatic arc granitoids are nearly 100 km closer to the present day Andean trench than further south. We hypothesize that this marked difference in paleo-forearc width is due to an Early Permian period of subduction erosion north of 38°S, contrasting with ongoing accretion further south, which kinematically triggered the evolution of the Lanalhue Fault Zone. Permo-Triassic margin segmentation was due to differential forearc accretion and denudation characteristics, and is now expressed in contrasting lithologies and metamorphic signatures in todays Andean forearc region north and south of the Lanalhue Fault Zone.  相似文献   

3.
40Ar/39Ar age data from the boundary between the Delamerian and Lachlan Fold Belts identify the Moornambool Metamorphic Complex as a Cambrian metamorphic belt in the western Stawell Zone of the Palaeozoic Tasmanide System of southeastern Australia. A reworked orogenic zone exists between the Lachlan and Delamerian Fold Belts that contains the eastern section of the Cambrian Delamerian Fold Belt and the western limit of orogenesis associated with the formation of an Ordovician to Silurian accretionary wedge (Lachlan Fold Belt). Delamerian thrusting is craton-verging and occurred at the same time as the final consolidation of Gondwana. 40Ar/39Ar age data indicate rapid cooling of the Moornambool Metamorphic Complex at about 500 Ma at a rate of 20 – 30°C per million years, temporally associated with calc-alkaline volcanism followed by clastic sedimentation. Extension in the overriding plate of a subduction zone is interpreted to have exhumed the metamorphic rocks within the Moornambool Metamorphic Complex. The Delamerian system varies from a high geothermal gradient with syntectonic plutonism in the west to lower geothermal gradients in the east (no syntectonic plutonism). This metamorphic zonation is consistent with a west-dipping subduction zone. Contrary to some previous models involving a reversal in subduction polarity, the Ross and Delamerian systems of Antarctica and Australia are inferred to reflect deformation processes associated with a Cambrian subduction zone that dipped towards the Gondwana supercontinent. Western Lachlan Fold Belt orogenesis occurred about 40 million years after the Delamerian Orogeny and deformed older, colder, and denser oceanic crust, with metamorphism indicative of a low geothermal gradient. This orogenesis closed a marginal ocean basin by west-directed underthrusting of oceanic crust that produced an accretionary wedge with west-dipping faults that verge away from the major craton. The western Lachlan Fold Belt was not associated with arc-related volcanism and plutonism occurred 40 – 60 million years after initial deformation. The revised orogenic boundaries have implications for the location of world-class 440 Ma orogenic gold deposits. The structural complexity of the 440 Ma Stawell gold deposit reflects its location in a reworked part of the Cambrian Delamerian Fold Belt, while the structurally simpler 440 Ma Bendigo deposit is hosted by younger Ordovician turbidites solely deformed by Lachlan orogenesis.  相似文献   

4.
ABSTRACT

U-Pb detrital zircon age patterns are presented for nine samples of metapelites from the metamorphic basement of south-central Chile between 37° and 40°S, along with detrital zircon ages for a sample from the Piedra Santa metamorphic complex and a crystallization age of the Chachil plutonic complex, farther east in Argentina. Two distinct zircon age patterns are identified. One is a pattern with a dominant population of zircons at ca. 470 Ma (Ordovician), a widespread presence of Mesoproterozoic ages (1200 ? 1000 Ma), and a Carboniferous maximum deposition age indicated by the youngest zircon population. The second pattern is drastically different, with a main population of Permian zircons, a 290–250 Ma maximum deposition age, and a minor contribution of Pennsylvanian age zircons. Our results, coupled with previously reported metamorphic ages, show that the patterns reflect the presence of different tectonic blocks separated by the Mocha-Villarrica Fault Zone at 39°S. Metapelites north of this structure have the Ordovician-dominated pattern characteristic of the Western Series of the Paleozoic basement, and those south of the fault show the Permian-dominated pattern observed in the younger high-pressure metapelites from the Bahía Mansa metamorphic complex. The Piedra Santa metamorphic complex also shows the Ordovician-dominated pattern and was intruded by the Chachil plutonic complex dated here at ca. 303 Ma. Therefore, the Piedra Santa complex is interpreted as coeval with the Chilean metamorphic basement. The present dislocation of blocks with different ages is attributed to continental-scale dextral strike-slip tectonics along the Huincul Fault Zone, Argentina, which extends to the west as the Mocha-Villarrica Fault Zone in Chile.  相似文献   

5.
The wedge‐shaped Moornambool Metamorphic Complex is bounded by the Coongee Fault to the east and the Moyston Fault to the west. This complex was juxtaposed between stable Delamerian crust to the west and the eastward migrating deformation that occurred in the western Lachlan Fold Belt during the Ordovician and Silurian. The complex comprises Cambrian turbidites and mafic volcanics and is subdivided into a lower greenschist eastern zone and a higher grade amphibolite facies western zone, with sub‐greenschist rocks occurring on either side of the complex. The boundary between the two zones is defined by steeply dipping L‐S tectonites of the Mt Ararat ductile high‐strain zone. Deformation reflects marked structural thickening that produced garnet‐bearing amphibolites followed by exhumation via ductile shearing and brittle faulting. Pressure‐temperature estimates on garnet‐bearing amphibolites in the western zone suggest metamorphic pressures of ~0.7–0.8 GPa and temperatures of ~540–590°C. Metamorphic grade variations suggest that between 15 and 20 km of vertical offset occurs across the east‐dipping Moyston Fault. Bounding fault structures show evidence for early ductile deformation followed by later brittle deformation/reactivation. Ductile deformation within the complex is initially marked by early bedding‐parallel cleavages. Later deformation produced tight to isoclinal D2 folds and steeply dipping ductile high‐strain zones. The S2 foliation is the dominant fabric in the complex and is shallowly west‐dipping to flat‐lying in the western zone and steeply west‐dipping in the eastern zone. Peak metamorphism is pre‐ to syn‐D2. Later ductile deformation reoriented the S2 foliation, produced S3 crenulation cleavages across both zones and localised S4 fabrics. The transition to brittle deformation is defined by the development of east‐ and west‐dipping reverse faults that produce a neutral vergence and not the predominant east‐vergent transport observed throughout the rest of the western Lachlan Fold Belt. Later north‐dipping thrusts overprint these fault structures. The majority of fault transport along ductile and brittle structures occurred prior to the intrusion of the Early Devonian Ararat Granodiorite. Late west‐ and east‐dipping faults represent the final stages of major brittle deformation: these are post plutonism.  相似文献   

6.
The location of potentially unrecognized gold deposits in the close vicinity of the Cadillac–Larder Lake Fault Zone in the Archean Abitibi Subprovince (Canada) is predicted by applying a stochastic approach to the distribution of known gold deposits. The methodology uses the distances between neighboring orogenic gold deposits along the fault trace. The cumulative distribution of the curvilinear inter-distances along the fault zone, are adequately represented by a log-uniform model. The average inter-distance is 1.95 km, and an upper inter-distance of 5.6 km is observed. The same distribution pattern appears along the Destor–Porcupine Fault Zone (Abitibi). This log-uniform distribution shows that the spatial distribution of gold deposits is regionally controlled by the major crustal shear zone. Lithologies and structures only seem to exert a local influence at the deposit scale. The log-uniform spacing could be interpreted as the result of the crustal failure locations induced by hydraulic overpressure along mechanically independent segments on the main fault.  相似文献   

7.
郯庐断裂带构造演化的同位素年代学制约   总被引:10,自引:0,他引:10       下载免费PDF全文
朱光  张力  谢成龙  牛漫兰  王勇生 《地质科学》2009,44(4):1327-1342
近年来在郯庐断裂带内获得了大量的同位素年龄,为了解该断裂带的演化规律与相关动力学过程提供了有效的制约。该断裂带早期走滑构造带内给出了238~236 Ma的白云母 40Ar/39Ar 变形年龄,指示其起源于华北与华南克拉通碰撞过程的深俯冲阶段,支持其造山期陆内转换断层成因观点。其晚中生代走滑韧性剪切带内已获得的较大白云母 40Ar/39Ar冷却年龄为162~150 Ma,表明其再次左行平移发生在晚侏罗世初或中 晚侏罗世之交,出现在区域压扭性动力学背景下。这一事件应代表了中国东部滨太平洋构造域的开始时间。已获得的一系列断裂带内岩体与火山岩锆石LA ICPMS年龄显示,该断裂带内伸展性背景下最早的岩浆活动时间为136 Ma。而断裂带所控制的断陷盆地内地层时代表明其伸展活动发生在早白垩世初(约145 Ma)。这应指示了中国东部转变为伸展性动力学背景的时间。该断裂带一系列长石40Ar/39Ar年龄与磷灰石裂变径迹年龄,显示其在晚白垩世与古近纪仍处于伸展活动之中。  相似文献   

8.
The N–S oriented Coastal Cordillera of South Central Chile shows marked lithological contrasts along strike at 38°S. Here, the sinistral NW–SE-striking Lanalhue Fault Zone (nomen novum) juxtaposes Permo-Carboniferous magmatic arc granitoids and associated, frontally accreted metasediments (Eastern Series) in the northeast with a Late Carboniferous to Triassic basal-accretionary forearc wedge complex (Western Series) in the southwest. The fault is interpreted as an initially ductile deformation zone with divergent character, located in the eastern flank of the basally growing, upwarping, and exhuming Western Series. It was later transformed and reactivated as a semiductile to brittle sinistral transform fault. Rb–Sr data and fluid inclusion studies of late-stage fault-related mineralizations revealed Early Permian ages between 280 and 270 Ma for fault activity, with subsequent minor erosion. Regionally, crystallization of arc intrusives and related metamorphism occurred between 306 and 286 Ma, preceded by early increments of convergence-related deformation. Basal Western Series accretion started at >290 Ma and lasted to 250 Ma. North of the Lanalhue fault, Late Paleozoic magmatic arc granitoids are nearly 100 km closer to the present day Andean trench than further south. We hypothesize that this marked difference in paleo-forearc width is due to an Early Permian period of subduction erosion north of 38°S, contrasting with ongoing accretion further south, which kinematically triggered the evolution of the Lanalhue Fault Zone. Permo-Triassic margin segmentation was due to differential forearc accretion and denudation characteristics, and is now expressed in contrasting lithologies and metamorphic signatures in todays Andean forearc region north and south of the Lanalhue Fault Zone.  相似文献   

9.
SHRIMP U–Pb dating and laser ablation ICP‐MS trace element analyses of zircon from four eclogite samples from the north‐western Dabie Mountains, central China, provide evidence for two eclogite facies metamorphic events. Three samples from the Huwan shear zone yield indistinguishable late Carboniferous metamorphic ages of 312 ± 5, 307 ± 4 and 311 ± 17 Ma, with a mean age of 309 ± 3 Ma. One sample from the Hong'an Group, 1 km south of the shear zone yields a late Triassic age of 232 ± 10 Ma, similar to the age of ultra‐high pressure (UHP) metamorphism in the east Qinling–Dabie orogenic belt. REE and other trace element compositions of the zircon from two of the Huwan samples indicate metamorphic zircon growth in the presence of garnet but not plagioclase, namely in the eclogite facies, an interpretation supported by the presence of garnet, omphacite and phengite inclusions. Zircon also grew during later retrogression. Zircon cores from the Huwan shear zone have Ordovician to Devonian (440–350 Ma) ages, flat to steep heavy‐REE patterns, negative Eu anomalies, and in some cases plagioclase inclusions, indicative of derivation from North China Block igneous and low pressure metamorphic source rocks. Cores from Hong'an Group zircon are Neoproterozoic (780–610 Ma), consistent with derivation from the South China Block. In the western Dabie Mountains, the first stage of the collision between the North and South China Blocks took place in the Carboniferous along a suture north of the Huwan shear zone. The major Triassic continent–continent collision occurred along a suture at the southern boundary of the shear zone. The first collision produced local eclogite facies metamorphism in the Huwan shear zone. The second produced widespread eclogite facies metamorphism throughout the Dabie Mountains–Sulu terrane and a lower grade overprint in the shear zone.  相似文献   

10.
Petrological and isotopic investigations were undertaken on high pressure granulites of granitic to mafic composition from the Prachatice and Blansky les granulite complexes of southern Bohemia, Czech Republic. The predominant felsic granulites are quartz + ternary feldspar (now mesoperthite)-rich rocks containing minor garnet, kyanite and rutile, and most show a characteristic mylonitic fabric formed during retrogression along the exhumation path. Three high temperature reaction stages at distinctly different pressures are recognized. Rare layers of intermediate to mafic composition, containing clinopyroxene, best record a primary high pressure–high temperature stage (>15 kbar, >900 °C), and a well-defined overprint at medium pressure granulite facies conditions (6–8 kbar, 700–800 °C) during which orthopyroxene (+plagioclase) formed from garnet and clinopyroxene. A further high temperature overprint at lower pressure (ca. 4 kbar) is reflected in the development of cordierite- and/or andalusite-bearing partial-melt patches in some felsic granulites. Conventionally separated zircons from the granulites were measured on a SHRIMP II ion microprobe. Near-spherical, multifaceted grains interpreted to be metamorphic, and short prismatic grains from the cordierite-bearing melt patch, are all concordant and yielded indistinguishable results producing an average age, for 83 individual grain spots, of 339.8 ± 2.6 Ma (2σ). Metamorphic grains from a meta-granodiorite associated with the granulites gave the same age (339.6 ± 3.1 Ma, mean of 9), whereas inherited magmatic grains of the same sample yielded 367.8 ± 1.4 Ma. A mean age of 469.3 ± 3.8 Ma was obtained for two short prismatic concordant grains in one of the granulites, whereas several of the rounded grains with ca. 340 Ma metamorphic zircon overgrowths had much older (207Pb/206Pb minimum ages up to 1771 Ma) discordant cores. In addition to analysis of conventionally separated grains, ion-microprobe measurements were also made on zircons extracted from thin sections (drilled-out, mounted and repolished) such that a direct relationship between the dated zircons and petrographic position could be made. Identical results were obtained from both preparation methods, thus showing that the considerable advantage in petrological control is not offset by any appreciable lack of precision when compared to conventionally prepared ion-microprobe samples. All these isotopic results are identical to those previously obtained by conventional multigrain and single-grain evaporation techniques, but rather than allowing a greater resolution of the age of the petrographically obvious different metamorphic stages the results document, for the first time, the apparent short time scale for high, medium and low pressure metamorphism in the granulites. The short time period between the 340 Ma age for the high pressure granulites, as derived here and from studies of similar rocks elsewhere in the European Variscides, and the 320–330 Ma ages for regional low pressure–high temperature metamorphism, migmatization and granite magmatism, strongly suggests an important link between these two high temperature processes. Received: 25 February 1999 / Accepted: 27 September 1999  相似文献   

11.
Summary The Lanterman Fault Zone, a major terrane boundary in northern Victoria Land, displays a polyphase structural evolution. After west-over-east thrusting, it experienced sinistral strike-slip shearing. Sheared metabasites from the Wilson Terrane (inboard terrane) preserve a record of retrograde metamorphic evolution. Shearing took place under amphibolite-facies metamorphic conditions (roughly comparable to those reached during regional metamorphism) which later evolved to greenschist-facies conditions. In contrast, the Bowers Terrane (outboard terrane) preserves a prograde metamorphic evolution which developed from greenschist-facies to amphibolite-facies metamorphism during shearing, followed by greenschist-facies metamorphism during the late deformational stages. Laser step-heating 40Ar–39Ar analyses of syn-shear amphibolite-facies amphiboles yielded ages of 480–460 Ma, in agreement with a ∼480-Ma age obtained from a biotite aligned along the mylonitic foliation. These ages are younger than those (∼492 to ∼495 Ma) obtained from pre-shear amphibole relics linked to regional metamorphism of the Wilson Terrane. Results attribute the structural and metamorphic reworking during shearing to the late stages of the Cambrian-Ordovician Ross Orogeny and to the Middle-Late Ordovician probably in relation to the beginning of deformation in the Lachlan Orogen, thus precluding any appreciable impact of the Devonian-Carboniferous Borchgrevink event in the study area.  相似文献   

12.
龚银杰 《地质与勘探》2014,50(5):902-909
武当-桐柏-大别成矿带可分为南秦岭造山带、北淮阳构造带、桐柏-大别构造带三个二级构造单元,在南秦岭造山带广泛分布变质热液型铜矿,北淮阳构造带内产出VMS型、岩浆熔离型及斑岩型铜矿,桐柏-大别构造带则分布有岩浆热液型和矽卡岩型铜矿。构造单元的性质对区内产出的铜矿类型具有较强的控制作用。变质热液型铜矿主要与浅变质作用有关,变质流体以断层为运移通道并最终就位于黑色岩系内的次级断层。VMS型、岩浆熔离型、斑岩型铜矿与岩浆作用密切相关,产出在岩体内部及与围岩的接触带。岩浆热液型及矽卡岩型铜矿形成于岩浆作用晚期阶段,分布在岩体与围岩接触带及附近构造裂隙带等部位。  相似文献   

13.
The 1900–1700 Ma Waterberg Group in the main Waterberg fault-bounded basin consists of dominantly coarse siliciclastic red beds with minor volcanic rocks. The sedimentary rocks were deposited mainly by alluvial fans, fluvial braidplains and transgressive shallow marine environments, with lesser lacustrine and aeolian settings. Uplifted, largely granitic source areas were located along the Thabazimbi-Murchison lineament (TML) fault system in the south, and along the Palala shear zone in the northeast. Palaeoplacer titanomagnetite-ilmenite-zircon heavy mineral deposits, best developed in the Cleremont Formation in the centre of the basin, reflect initial fluvial reworking and subsequent littoral marine concentration. Coarse alluvial cassiterite placer deposits are found in the Gatkop area in the southwest of the basin, and appear to have been derived from stanniferous Bushveld Complex lithologies south of the TML. Hydrothermal zinc and U-Cu mineralisation in the Alma lithologies in the same area appears to be related to the TML fault system. Small manganese deposits and anomalous tungsten values occur in the south of the basin, where they are again closely spatially associated with the TML. Copper-barium mineralisation is found associated with dolerite dykes, and in stratigraphically controlled, inferred syngenetic settings. The most interesting of these apparently syngenetic occurrences is found within green coloured reduced mudrocks and inferred volcanic rocks, at an unconformity developed within the overall red bed sequence of the Waterberg Group, adjacent to the TML in the southwest of the basin. The most important potential mineralisation in the main Waterberg basin thus encompasses shoreline placer Ti and the possibility of substantial sediment-hosted copper deposits. Received: 31 May 1996 / Accepted: 17 February 1997  相似文献   

14.
青藏高原向东挤出的变形响应及南北地震带构造组成   总被引:12,自引:1,他引:12  
张家声  李燕  韩竹均 《地学前缘》2003,10(Z1):168-175
受青藏高原物质在南北挤压下向东逸出的影响 ,四川地块、鄂尔多斯地块、川滇地块和滇西地块均发生了不同性质的变形响应。根据航磁异常揭示的四川、鄂尔多斯盆地基底构造样式和滇西地区的地质构造研究结果 ,在主要由变质褶皱基底组成的四川地块发生平行龙门山断层的逆冲推覆 ,基底岩石发生递进褶皱缩短的同时 ,由华北变质结晶基底组成的鄂尔多斯地块在前期逆冲推覆构造的基础上 ,结晶基底沿一系列近东西向左行走滑断层向东错移。滇西和川滇地块则分别沿金沙江—红河断裂 (2 0Ma前后 )和鲜水河—小江断裂 (5Ma前后 )发生了大规模的左行位移。发生在滇西、川滇、四川和鄂尔多斯地块上的最新构造变动叠加或改造了先存构造 ,并且表现为从南向北、由盖层向基底发展的趋势 ,变形程度自西向东减弱 ,反映了青藏高原持续同构造伸展作用的边缘和远程效应。青藏高原东缘多层次、多阶段的现今构造变动引发的地震活动组成了宏观的南北地震带。  相似文献   

15.
The Odra Fault Zone of southwestern Poland is a NW-trending horst marked by gravimetric and magnetic anomalies and composed of high- to low-grade metamorphic and igneous rocks which are only known from boreholes. This zone embraces a concealed border between Variscan internides and externides. It also contains an array of several I-type, metaluminous to peraluminous, high potassic granitoid bodies which intruded earlier metamorphosed rocks. Except for one case, they remain unfoliated and undeformed, and presumably play a role of stitching plutons at the suture between two obliquely colliding terranes. U–Pb TIMS dating of single zircons from one foliated and one unfoliated granitoid samples yielded identical concordant ages of 344±1 Ma (Tournaisian). They resemble a Pb–Pb age of 350±5 Ma obtained for S-type granitoids from the Luckau area further west in Germany, which is generally regarded as an eastern segment of the Mid-German Crystalline High. Carboniferous granitic intrusions in the high are generally younger (340–290 Ma). Correlations of the the Odra Fault Zone with the Mid-German Crystalline High appear plausible, but by no means certain and require further confirmation.  相似文献   

16.
New tectonic uplifts south of the Salt Range Thrust and Himalayan Front Thrust (HFT) represent an outward step of the plate boundary from the principal tectonic displacement zone into the Indo-Gangetic Plain. In Pakistan, the Lilla Anticline deforms fine-grained overbank deposits of the Jhelum River floodplain 15 km south of the Salt Range. The anticline is overpressured in Eocambrian non-marine strata. In northwest India south of Dehra Dun, the Piedmont Fault (PF) lies 15 km south of the HFT. Coalescing fans derived from the Himalaya form a piedmont (Old Piedmont Zone) 15–20 km wide east of the Yamuna River. This zone is uplifted as much as 15–20 m near the PF, and bedding is tilted 5–7° northeast. Holocene thermoluminescence-optically-stimulated luminescence dates for sediments in the Old Piedmont Zone suggest that the uplift rate might be as high as several mm/a. The Old Piedmont Zone is traced northwest 200 km and southeast another 200 km to the Nepal border. These structures, analogous to protothrusts in subduction zones, indicate that the Himalayan plate boundary is not a single structure but a series of structures across strike, including reactivated parts of the Main Boundary Thrust north of the range front, the HFT sensu stricto, and stepout structures on the Indo-Gangetic Plain. Displacement rates on all these structures must be added to determine the local India-Himalaya convergence rate.  相似文献   

17.
文中通过对晚石炭世至早三叠世华南和华北地块古地理特征以及地层学证据的分析,认为中国东部的郯庐断裂带自海西期以来经历了两个主要发展阶段:第一阶段是广义的郯庐断裂带发展阶段,在海西期它是扬子地块北东缘呈宽缓弧形展布的边缘裂陷槽(或盆地)的边界;在印支期由于扬子地块与华北地块的碰撞,成为两地块的对接边界,具有逆冲推覆的性质,属广义的特提斯构造域。第二发展阶段从燕山期以来,发展成为一条平移断裂带,属于狭义的环太平洋构造域的平移系统。自晚石炭世至早三叠世的中国南方及华北东南部的岩相古地理资料显示了扬子地块与华北地块的对接始于晚二叠世早期,地块的抬升自南向北、自南东向北西方向呈迁移趋势;印支期的郯庐断裂带是一条北东、北北东展布的缓‘S’形的地块拼贴边界,在现今的郯庐断裂带上表现为残留的由北北西向南南东的斜向逆冲推覆的性质,表现为大别苏鲁造山带的中上部构造层的变形,即张八岭构造带及前陆褶皱冲断带的变形;燕山期以来则为众所周知的狭义的郯庐断裂带即郯庐平移断裂系统的一部分。  相似文献   

18.
Sequence‐stratigraphic correlations provide a better understanding of sediment architecture in the Mt Isa and lower McNamara Groups of northern Australia. Sediments record deposition in a marine environment on a broad southeast‐facing ramp that extended from the Murphy Inlier in the northwest to the Gorge Creek, Saint Paul and Rufous Fault Zones in the southeast. Depositional systems prograded in a southeasterly direction. Shoreline siliciclastic facies belts initially formed on the western and northern parts of the ramp, deeper water basinal facies occurred to the east and south. The general absence of shoreline facies throughout the Mt Isa Group suggests that depositional systems originally extended further to the east and probably crossed the Kalkadoon‐Leichhardt Block. Fourteen, regionally correlatable fourth‐order sequences, each with a duration of approximately one million years, are identified in the 1670–1655 Ma Gun Supersequence. Stratal correlations of fourth‐order sequences and attendant facies belts resolve a stratigraphic architecture dominated by times of paired subsidence and uplift. This architecture is most consistent with sinistral strike‐slip tectonism along north‐northeast‐oriented structures with dilational jogs along northwest structures as the primary driver for accommodation. Although reactivated during deformation, the ancestral northwest‐trending May Downs, Twenty Nine Mile, Painted Rocks, Transmitter, Redie Creek and Termite Range Fault Zones are interpreted as the principal synsedimentary growth structures. Sinistral strike‐slip resulted in a zone of long‐lived dilation to the north of the May Downs/Twenty Nine Mile and Gorge Creek Fault Zones and a major basin depocentre in the broad southeast‐facing ramp. Subordinate depocentres also developed on the northern side of the ancestral Redie Creek and Termite Range fault zones. Transfer of strike‐slip movement to the east produced restraining or compressive regions, localising areas of uplift and the generation of local unconformities. Northwest‐ and north‐northeast‐oriented magnetic anomalies to the south and west of Mt Isa, identify basement heterogeneities. Basement to the south and west of these anomalies is interpreted to mark intrabasin siliciclastic provenance areas in the Gun depositional system. Pb–Zn–Ag deposits of the Mt Isa valley are interpreted as occurring in a major basin depocentre in response to a renewed phase of paired uplift and subsidence in late Gun time (approximately 1656 Ma). This event is interpreted to have synchronously created accommodation for sediments that host the Mt Isa deposit, while focusing topographically and thermobarically driven basinal fluids into the zone of dilation.  相似文献   

19.
The Leannan Fault of north-west Ireland is a sinistral strike-slip fault system which juxtaposes Dalradian metasediments of differing structural trends and metamorphic grades. It probably represents a south-west splay of the Great Glen Fault of Scotland. The recognition and tracing of the Foyle Synform across the fault zone, together with the correlation of regional Dalradian strike swings, lateral sedimentary facies variation and metamorphic grades, suggest a sinistral displacement of 34 km across the fault. Members of the Leannan Fault system displace a Lower Devonian (about 397 Ma) granite, but are overlain by Viséan (about 352 Ma) sandstones, thus constraining major late Caledonian sinistral motions to the Middle to Upper Devonian.  相似文献   

20.
Deep-large faults in the central continental margin of eastern China are well developed. Based on the regularity of spatial and temporal distribution of the faults, four fault systems were divided: the Yanshan orogenic belt fault system, the Qinling-Dabie-Sulu orogenic belt fault system, the Tanlu fault system and the East China Sea shelf basin-Okinawa trough fault system. The four fault systems exhibit different migration behaviors. The Yanshan orogenic belt fault system deflected from an EW to a NE direction, then to a NNE direction during the Indo-Chinese epoch-Yanshanian epoch. The thrust-nappe strength of the Qinling-Dabie orogenic belt fault system showed the tendency that the strength was greater in the south and east, but weaker in the north and west. This fault system faulted in the east and folded in the west from the Indo-Chinese epoch to the early Yanshanian epoch. At the same time, the faults also had a diachronous migration from east to west from the Indo-Chinese epoch to the early Yanshanian epoch. On the contrary, the thrust-nappe strength was greater in the north and west, weaker in the south and east during the late Yanshanian epoch-early Himalayan epoch. The Tanlu fault system caused the basin to migrate from west to east and south to north. The migration regularity of the East China Sea shelf basin-Okinawa trough fault system shows that the formation age became younger in the west. The four fault systems and their migration regularities were respectively the results of four different geodynamic backgrounds. The Yanshan orogenic belt fault system derived from the intracontinental orogeny. The Qinling-Dabie-Sulu orogenic belt fault system derived from the collision of plates and intracontinental subduction. The Tanlu fault system derived from the strike-slip movement and the East China Sea shelf basin-Okinawa trough fault system derived from plate subduction and retreat of the subduction belt. Translated from Journal of Jilin University (Earth Science Edition), 2005, 35(5): 554–563 [译自: 吉林大学学报 (地球科学版)]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号