首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
申文斌 《测绘学报》2012,41(5):670-675
确定全球大地水准面最常用的方法是斯托克司方法。然而,除了人们熟知的缺陷之外,斯托克司方法还存在人们没有意识到的理论困难:当大地水准面位于参考椭球(WGS84椭球)内部时,在大地水准面上及其与参考椭球面界定的区域中扰动位没有定义,当然在这部分区域也不调和。为了解决这一困难,可以选取一个包含在大地水准面内部的由四个基本参数唯一确定其外部正常重力位的参考椭球(简称内部椭球),其中心与 WGS84 椭球的中心重合,其中的两个基本参数,旋转角速度和地心引力常数,与 WGS84 椭球面的相同,另外两个参数,半长轴和扁率,如此选取,使得内部椭球产生的新的正常重力位在 WGS84 椭球面上与大地水准面上的重力位 相等。这样,传统的斯托克司方法中存在的理论困难不复存在。  相似文献   

2.
不同的GNSS采用的坐标系定义几乎相近,但参考椭球及其坐标实现不同,这将影响多GNSS融合导航定位效果。根据各GNSS坐标系所采用参考椭球的基本常数,计算比较了不同坐标系参考椭球参数的差异;导出了相应的正常重力公式,比较了这些正常重力公式确定的正常重力值差异;最后分别从坐标系统的定义与实现两个方面分析了其对定位结果的影响。结果表明:1)GPS(BDS)与Galileo和GLONASS所使用的参考椭球引起正常重力差约为0.15和0.30 mgal;2)GPS与BDS,Galileo及GLONASS所使用参考椭球引起纬度分量最大差异约为0.1 mm,3 cm和3 cm,高程分量约为0.1 mm,0.5 m和1 m;3)各GNSS所使用坐标框架间转换参数引起的坐标变化达到厘米级。  相似文献   

3.
我国大地坐标系的换代问题   总被引:22,自引:3,他引:22  
首先指出了我国现有大地坐标系在先进性和实用性方面存在的问题,提出了我们面临的选择与采用地心坐标系的建议,然后就地心坐标系的定义和实现、参考椭球常数、正常重力公式等问题提出了初步意见,并就坐标系改变对旧地形图的影响问题进行了研究。我国大地坐标系应由局部坐标系更新为地心坐标系。我国大地坐标系的定义应与IERS(国际地球自转服务)协议相一致,采用国际常用的参考椭球和正常重力公式。本文提出的参考椭球和正常重力公式符合这些原则,提出的地形图坐标系变化改正方案应是基本可行的。  相似文献   

4.
将重力场内蕴几何结构的研究引入到正常椭球内部场的研究中,深入探讨了内蕴几何量及其与内部物理量之间的关系,并据此建立了弱平衡条件下的基本微分方程,进而给出确定椭球内部内蕴几何量与场源密度分布的方法。研究表明,平衡形状理论中的Wavre公式和Clairaut方程可由内蕴几何与内部物理量之间的关系导出,它们是在平衡假设下取椭球近似的结果。  相似文献   

5.
将重力场内蕴几何结构的研究引入到正常椭球内部场的研究中,深入探讨了内蕴几何量及其与内部物理量之间的关系,并据此建立了弱平衡条件下的基本微分方程,进而给出确定椭球内部内蕴几何量与场源密度分布的方法。研究表明,平衡形状理论中的Waver公式和Clairaut方程可由内蕴几何与内部物理量之间的关系导出,它们是在平衡假设下取椭球近似的结果。  相似文献   

6.
李建成  褚永海  徐新禹 《测绘学报》2017,46(10):1262-1273
全球高程基准统一是继全球大地测量坐标系及其参考基准统一之后,大地测量学科面临和亟待解决的一个重要问题,也是全球空间信息共享与交换的基础。本文针对区域高程基准与全球高程基准间基准差异确定的理论、方法及实际问题开展研究。利用物理大地测量高程系统的经典理论方法,给出了高程基准差异的定义,并推导了计算基准差异的严密公式,该公式可将高程基准差异确定的现有3种方法统一起来。在此基础上,分析顾及了不同椭球参数对于计算基准差异的影响及量级,同时,高程异常差法还需考虑全球高程基准重力位与模型计算大地水准面位值不一致引起的零阶项改正。利用青岛原点附近152个GPS水准点数据,分别选择GRS80、WGS-84、CGCS2000参考椭球以及EGM2008、EIGEN-6C4、SGG-UGM-1模型,采用位差法和高程异常差法,确定了我国1985高程基准与全球高程基准的差异。其中,EIGEN-6C4模型计算的我国高程基准与WGS-84参考椭球正常重力位U0定义的全球高程基准之间的差异约为-23.1cm。也就是说,我国高程基准低于采用WGS-84参考椭球正常重力位U0定义的全球高程基准,当选取基于平均海面确定的Gauss-Listing大地水准面作为全球高程基准时,我国1985高程基准高于全球基准约21.0cm。从计算结果还可看出,当前重力场模型在青岛周边不同GPS/水准点的精度差别依然较大,这会导致选择不同数据对确定我国85国家高程基准与全球基准之间的差异影响较大,因此,若要实现厘米级精度区域高程基准与全球高程基准的统一,全球重力场模型的精度和可靠性还需要进一步提高。  相似文献   

7.
余代俊 《测绘科学》2005,30(5):36-37
在建立地方独立坐标系时需要匹配一个与该坐标系投影面吻合的地方参考椭球体,在保证地方椭球体的中心、轴向和扁率与国家参考椭球体相同的前提下,采用何种计算公式来确定长半轴的改正量,以使新椭球体面与地方坐标系投影面吻合得最好,本文对现今个别规范和教科书中采用的计算公式作了分析,指出了公式错误,同时导出了新的计算公式,并得出了现用公式对实际测量工作无影响的结论。  相似文献   

8.
基于地球椭球模型的符号形式的航迹计算法   总被引:2,自引:2,他引:0  
王瑞  李厚朴 《测绘学报》2010,39(2):151-155
分析了传统的航迹计算法存在的缺陷,为提高航迹计算精度,给出基于地球椭球模型的改进的墨卡托航法;从中分纬度的几何定义出发,导出地球椭球体上改进的中分纬度公式,在此基础上给出改进的中分纬度航法。本文所给算法公式均为符号形式,可以解决航海中不同参考椭球下的航迹精确计算问题。  相似文献   

9.
采用15′×15′网格离散化手段对均质旋转对称椭球体产生的引力位场进行了数值模拟计算,在相对精度优于10-4的水平上,验证了引力位虚拟压缩恢复法以及重力场虚拟向下延拓法的可靠性和有效性。  相似文献   

10.
关于参考椭球平均半径的探讨   总被引:3,自引:0,他引:3  
陈丽华  汪孔政 《测绘通报》2000,(10):15-15,17
推导了参考椭球任意子午线和参考椭球体平均半径的计算公式,并采用数值积会方法计算了我国1980国家大地坐标系参考椭球任意子午线的平均半径和参考椭球体的平均半径的精确值。  相似文献   

11.
Given a continuous boundary value on the boundary of a "simply closed surface"S that encloses the whole Earth, a regular harmonic fictitious field V*(P) in the domain outside an inner sphere K i that lies inside the Earth could be determined, and it is proved that V*(P) coincides with the Earth’s real field V(P) in the whole domain outside the Earth. Since in the domain outside the inner sphere Ki and the fictitious regular harmonic function V*(P) could be expressed as a uniformly convergent spherical harm...  相似文献   

12.
Given the second radial derivative Vrr(P) |δs of the Earth's gravitational potential V(P) on the surface δS corresponding to the satellite altitude, by using the fictitious compress recovery method, a fictitious regular harmonic field rrVrr(P)^* and a fictitious second radial gradient field V:(P) in the domain outside an inner sphere Ki can be determined, which coincides with the real field V(P) in the domain outside the Earth. Vrr^*(P)could be further expressed as a uniformly convergent expansion series in the domain outside the inner sphere, because rrV(P)^* could be expressed as a uniformly convergent spherical harmonic expansion series due to its regularity and harmony in that domain. In another aspect, the fictitious field V^*(P) defined in the domain outside the inner sphere, which coincides with the real field V(P) in the domain outside the Earth, could be also expressed as a spherical harmonic expansion series. Then, the harmonic coefficients contained in the series expressing V^*(P) can be determined, and consequently the real field V(P) is recovered. Preliminary simulation calculations show that the second radial gradient field Vrr(P) could be recovered based only on the second radial derivative V(P)|δs given on the satellite boundary. Concerning the final recovery of the potential field V(P) based only on the boundary value Vrr (P)|δs, the simulation tests are still in process.  相似文献   

13.
确定地球外部重力场的虚拟压缩恢复法   总被引:6,自引:1,他引:5  
自申文斌提出引力位虚拟压缩恢复法[1,2 ] 并证明了级数解的一致收敛性[3 ] 之后 ,宁津生和申文斌等又提出了引力场虚拟压缩恢复法[4] 本文在指出了Stokes理论、Molodenskii理论以及Bjerhammar理论所存在的缺陷或不足之后 ,概述了引力位虚拟压缩恢复法 ,用新的观点考察了引力场虚拟压缩恢复法并证明了由此得到的级数解是一致收敛的 ,提出了引力梯度场虚拟压缩恢复法 ,最后给出了确定高程的模型  相似文献   

14.
The fictitious compress recovery approach is introduced, which could be applied to the establishment of the Rungerarup theorem, the determination of the Bjerhammar's fictitious gravity anomaly, the solution of the "downward con- tinuation" problem of the gravity field, the confirmation of the convergence of the spherical harmonic expansion series of the Earth's potential field, and the gravity field determination in three cases: gravitational potential case, gravitation case, and gravitational gradient case. Several tests using simulation experiments show that the fictitious compress recovery approach shows promise in physical geodesy applications.  相似文献   

15.
Cartesian to geodetic coordinates conversion on a triaxial ellipsoid   总被引:1,自引:0,他引:1  
A new method of transforming Cartesian to geodetic (or planetographic) coordinates on a triaxial ellipsoid is presented. The method is based on simple reasoning coming from essentials of vector calculus. The reasoning results in solving a nonlinear system of equations for coordinates of the point being the projection of a point located outside or inside a triaxial ellipsoid along the normal to the ellipsoid. The presented method has been compared to a vector method of Feltens (J Geod 83:129–137, 2009) who claims that no other methods are available in the literature. Generally, our method turns out to be more accurate, faster and applicable to celestial bodies characterized by different geometric parameters. The presented method also fits to the classical problem of converting Cartesian to geodetic coordinates on the ellipsoid of revolution.  相似文献   

16.
The undulations of the geoid may be computed from spherical harmonic potential coefficients of the earth’s gravitational field. This paper examines three procedures that reflect various points of view on how this computation should be carried out. One method requires only the flattening of a reference ellipsoid to be defined while the other two methods require a complete definition of the parameters of the ellipsoid. It was found that the various methods give essentially the same undulations provided that correct parameters are chosen for the reference ellipsoid. A discussion is given on how these parameters are chosen and numerical results are reported using recent potential coefficient determinations.  相似文献   

17.
The Bruns formula is generalized to three dimensions with the derivation of equations expressing the height anomaly vector or the geoid undulation vector as a function of the disturbing gravity potential and its spatial derivatives. It is shown that the usual scalar Bruns formula provides not the separation along the normal to the reference ellipsoid but the component of the relevant spatial separation along the local direction of normal gravity. The above results which hold for any type of normal potential are specialized for the usual Somigliana-Pizzetti normal field so that the components of the geoid undulation vector are expressed as functions of the parameters of the reference ellipsoid, the disturbing potential and its spatial derivatives with respect to three types of curvilinear coordinates, ellipsoidal, geodetic and spherical. Finally the components of the geoid undulation vector are related to the deflections of the vertical in a spherical approximation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号