首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Galaxy merger simulations have explored the behaviour of gas within the galactic disc, yet the dynamics of hot gas within the galaxy halo have been neglected. We report on the results of high-resolution hydrodynamic simulations of colliding galaxies with metal-free hot halo gas. To isolate the effect of the halo gas, we simulate only the dark matter halo and the hot halo gas over a range of mass ratios, gas fractions and orbital configurations to constrain the shocks and gas dynamics within the progenitor haloes. We find that (i) a strong shock is produced in the galaxy haloes before the first passage, increasing the temperature of the gas by almost an order of magnitude to   T ∼ 106.3 K  . (ii) The X-ray luminosity of the shock is strongly dependent on the gas fraction; it is  ≳1039 erg s−1  for halo gas fractions larger than 10 per cent. (iii) The hot diffuse gas in the simulation produces X-ray luminosities as large as  1042 erg s−1  . This contributes to the total X-ray background in the Universe. (iv) We find an analytic fit to the maximum X-ray luminosity of the shock as a function of merger parameters. This fit can be used in semi-analytic recipes of galaxy formation to estimate the total X-ray emission from shocks in merging galaxies. (v) ∼10–20 per cent of the initial gas mass is unbound from the galaxies for equal-mass mergers, while 3–5 per cent of the gas mass is released for the 3:1 and 10:1 mergers. This unbound gas ends up far from the galaxy and can be a feasible mechanism to enrich the intergalactic medium with metals.  相似文献   

2.
The time-scale for galaxies within merging dark matter haloes to merge with each other is an important ingredient in galaxy formation models. Accurate estimates of merging time-scales are required for predictions of astrophysical quantities such as black hole binary merger rates, the build-up of stellar mass in central galaxies and the statistical properties of satellite galaxies within dark matter haloes. In this paper, we study the merging time-scales of extended dark matter haloes using N -body simulations. We compare these results to standard estimates based on the Chandrasekhar theory of dynamical friction. We find that these standard predictions for merging time-scales, which are often used in semi-analytic galaxy formation models, are systematically shorter than those found in simulations. The discrepancy is approximately a factor of 1.7 for M sat/ M host≈ 0.1 and becomes larger for more disparate satellite-to-host mass ratios, reaching a factor of ∼3.3 for M sat/ M host≈ 0.01. Based on our simulations, we propose a new, easily implementable fitting formula that accurately predicts the time-scale for an extended satellite to sink from the virial radius of a host halo down to the halo's centre for a wide range of M sat/ M host and orbits. Including a central bulge in each galaxy changes the merging time-scale by ≲10 per cent. To highlight one concrete application of our results, we show that merging time-scales often used in the literature overestimate the growth of stellar mass by satellite accretion by ≈40 per cent, with the extra mass gained in low mass ratio mergers.  相似文献   

3.
We use semi-analytic techniques to study the formation and evolution of brightest cluster galaxies (BCGs). We show the extreme hierarchical nature of these objects and discuss the limitations of simple ways to capture their evolution. In a model where cooling flows are suppressed at late times by active galactic nucleus (AGN) activity, the stars of BCGs are formed very early (50 per cent at z ∼ 5, 80 per cent at z ∼ 3) and in many small galaxies. The high star formation rates in these high- z progenitors are fuelled by rapid cooling, not by merger-triggered starbursts. We find that model BCGs assemble surprisingly late: half their final mass is typically locked up in a single galaxy after   z ∼ 0.5  . Because most of the galaxies accreted on to BCGs have little gas content and red colours, late mergers do not change the apparent age of BCGs. It is this accumulation of a large number of old stellar populations – driven mainly by the merging history of the dark matter halo itself – that yields the observed homogeneity of BCG properties. In the second part of the paper, we discuss the evolution of BCGs to high redshifts, from both observational and theoretical viewpoints. We show that our model BCGs are in qualitative agreement with high- z observations. We discuss the hierarchical link between high- z BCGs and their local counterparts. We show that high- z BCGs belong to the same population as the massive end of local BCG progenitors, although they are not in general the same galaxies. Similarly, high- z BCGs end up as massive galaxies in the local Universe, although only a fraction of them are actually BCGs of massive clusters.  相似文献   

4.
We use a semi-analytic model of galaxy formation to study signatures of large-scale modulations in the star formation (SF) activity in galaxies. In order to do this, we carefully define local and global estimators of the density around galaxies. The former are computed using a voronoi tessellation technique and the latter are parametrized by the normalized distance to haloes and voids, in terms of the virial and void radii, respectively. As a function of local density, galaxies show a strong modulation in their SF, a result that is in agreement with those from several authors. When taking subsamples of equal local density at different large-scale environments, we find relevant global effects whereby the fraction of red galaxies diminishes for galaxies in equal local density environments farther away from clusters and closer to voids. In general, the semi-analytic simulation is in good agreement with the available observational results, and offers the possibility to disentangle many of the processes responsible for the variation of galaxy properties with the environment; we find that the changes found in samples of galaxies with equal local environment but different distances to haloes or voids come from the variations in the underlying mass function of dark matter (DM) haloes. There is an additional possible effect coming from the host DM halo ages, indicating that halo assembly also plays a small but significant role (1.14σ) in shaping the properties of galaxies, and in particular, hints at a possible spatial correlation in halo/stellar mass ages. An interesting result comes from the analysis of the coherence of flows in different large-scale environments of fixed local densities; the neighbourhoods of massive haloes are characterized by lower coherences than control samples, except for galaxies in filament-like regions, which show highly coherent motions.  相似文献   

5.
Using high-resolution cosmological N -body simulations, we investigate the survival of dark matter satellites falling into larger haloes. Satellites preserve their identity for some time after merging. We compute their loss of mass, energy and angular momentum as they are dissolved by dynamical friction, tidal forces and collisions with other satellites. We also analyse the evolution of their internal structure. Satellites with less than a few per cent of the mass of the main halo may survive for several billion years, whereas larger satellites rapidly sink into the centre of the main halo potential well and lose their identity. Penetrating encounters between satellites are frequent and may lead to significant mass loss and disruption. Only a minor fraction of cluster mass (10–15 per cent on average) is bound to substructure at most redshifts of interest. We discuss the application of these results to the survival and extent of dark matter haloes associated with galaxies in clusters, and to their interactions. We find that a minor fraction of galaxy-size dark matter haloes are disrupted by redshift z  = 0. The fraction of satellites undergoing close encounters is similar to the observed fraction of interacting or merging galaxies in clusters at moderate redshift.  相似文献   

6.
7.
We investigate the environments and clustering properties of starburst galaxies selected from the 2dF Galaxy Redshift Survey (2dFGRS) in order to determine which, if any, environmental factors play a role in triggering a starburst. We quantify the local environments, clustering properties and luminosity functions of our starburst galaxies and compare to random control samples. The starburst galaxies are also classified morphologically in terms of their broad Hubble type and evidence of tidal merger/interaction signatures. We find the starburst galaxies to be much less clustered on large (5–15 Mpc) scales compared to the overall 2dFGRS galaxy population. In terms of their environments, we find just over half of the starburst galaxies to reside in low to intermediate luminosity groups, and a further ∼30 per cent residing in the outskirts and infall regions of rich clusters. Their luminosity functions also differ significantly from that of the overall 2dFGRS galaxy population, with the sense of the difference being critically dependent on the way their star formation rates are measured. In terms of pin-pointing what might trigger the starburst, it would appear that factors relating to their local environment are most germane. Specifically, we find clear evidence that the presence of a near neighbour of comparable luminosity/mass within 20 kpc is likely to be important in triggering a starburst. We also find that a significant fraction (20–30 per cent) of the galaxies in our starburst samples have morphologies indicative of either an ongoing or a recent tidal interaction and/or merger. These findings notwithstanding, there remain a significant portion of starburst galaxies where such local environmental influences are not in any obvious way playing a triggering role, leading us to conclude that starbursts can also be internally driven.  相似文献   

8.
We consider the effect of reionization on the clustering properties of galaxy samples at intermediate redshifts ( z ∼ 0.3–5.5). Current models for the reionization of intergalactic hydrogen predict that overdense regions will be reionized early, thus delaying the build-up of stellar mass in the progenitors of massive lower redshift galaxies. As a result, the stellar populations observed in intermediate-redshift galaxies are somewhat younger and hence brighter in overdense regions of the Universe. Galaxy surveys would therefore be sensitive to galaxies with a somewhat lower dark matter mass in overdense regions. The corresponding increase in the observed number density of galaxies can be parametrized as a galaxy bias due to reionization. We model this process using merger trees combined with a stellar synthesis code. Our model demonstrates that reionization has a significant effect on the clustering properties of galaxy samples that are selected based on their star formation properties. The bias correction in Lyman-break galaxies (including those in proposed baryonic oscillation surveys at z < 1) is at the level of 10–20 per cent for a halo mass of  1012 M  , leading to corrections factors of 1.5–2 in the halo mass inferred from measurements of clustering length. The reionization of helium could also lead to a sharp increase in the amplitude of the galaxy correlation function at z ∼ 3. We find that the reionization bias is approximately independent of scale and halo mass. However, since the traditional galaxy bias is mass dependent, the reionization bias becomes relatively more important for lower mass systems. The correction to the bias due to reionization is very small in surveys of luminous red galaxies at z < 1.  相似文献   

9.
We have analysed the distribution of inclination-corrected galaxy concentrations in the Sloan Digital Sky Survey. We find that unlike most galaxy properties, which are distributed bimodally, the distribution of concentrations is trimodal: it exhibits three distinct peaks. The newly discovered intermediate peak, which consists of early-type spirals and lenticulars, may contain ∼60 per cent of the number density and ∼50 per cent of the luminosity density of  0.1 Mr < −17  galaxies in the local universe. These galaxies are generally red and quiescent, although the distribution contains a tail of blue star-forming galaxies and also shows evidence of dust. The intermediate-type galaxies have higher apparent ellipticities than either disc or elliptical galaxies, most likely because some of the face-on intermediate types are misidentified as ellipticals. Their physical half-light radii are smaller than the radii of either the disc or elliptical galaxies, which may be evidence that they form from disc fading. The existence of a distinct peak in parameter space associated with early-type spiral galaxies and lenticulars implies that they have a distinct formation mechanism and are not simply the smooth transition between disc-dominated and spheroid-dominated galaxies.  相似文献   

10.
We present a pair of high-resolution smoothed particle hydrodynamics simulations that explore the evolution and cooling behaviour of hot gas around Milky Way size galaxies. The simulations contain the same total baryonic mass and are identical other than their initial gas density distributions. The first is initialized with a low-entropy hot gas halo that traces the cuspy profile of the dark matter, and the second is initialized with a high-entropy hot halo with a cored density profile as might be expected in models with pre-heating feedback. Galaxy formation proceeds in dramatically different fashion depending on the initial setup. While the low-entropy halo cools rapidly, primarily from the central region, the high-entropy halo is quasi-stable for  ∼4 Gyr  and eventually cools via the fragmentation and infall of clouds from ∼100 kpc distances. The low-entropy halo's X-ray surface brightness is ∼100 times brighter than current limits and the resultant disc galaxy contains more than half of the system's baryons. The high-entropy halo has an X-ray brightness that is in line with observations, an extended distribution of pressure-confined clouds reminiscent of observed populations and a final disc galaxy that has half the mass and ∼50 per cent more specific angular momentum than the disc formed in the low-entropy simulation. The final high-entropy system retains the majority of its baryons in a low-density hot halo. The hot halo harbours a trace population of cool, mostly ionized, pressure-confined clouds that contain ∼10 per cent of the halo's baryons after 10 Gyr of cooling. The covering fraction for H  i and Mg  ii absorption clouds in the high-entropy halo is ∼0.4 and ∼0.6, respectively, although most of the mass that fuels disc growth is ionized, and hence would be under counted in H  i surveys.  相似文献   

11.
We present a halo model prediction of the image separation distribution of strong lenses. Our model takes into account the subhalo population, which has been ignored in previous studies, as well as the conventional halo population. Haloes and subhaloes are linked to central and satellite galaxies by adopting a universal scaling relation between masses of (sub)haloes and luminosities of galaxies. Our model predicts that 10–20 per cent of lenses should be caused by the subhalo population. The fraction of lensing by satellite galaxies (subhaloes) peaks at ∼1 arcsec and decreases rapidly with increasing image separations. We compute fractions of lenses which lie in groups and clusters and find them to be ∼14 and ∼4 per cent, respectively; nearly half of such lenses are expected to be produced by satellite galaxies, rather than central parts of haloes. We also study mass distributions of lensing haloes and find that, even at image separations of ∼3 arcsec, the deviation of lens mass distributions from isothermal profiles is large; at or beyond ∼3 arcsec, image separations are enhanced significantly by surrounding haloes. Our model prediction agrees reasonably well with observed image separation distributions from galaxy to cluster scales.  相似文献   

12.
Using a sample of 19 464 galaxies drawn from the DEEP2 Galaxy Redshift Survey, we study the relationship between galaxy colour and environment at  0.4 < z < 1.35  . We find that the fraction of galaxies on the red sequence depends strongly on local environment out to   z > 1  , being larger in regions of greater galaxy density. At all epochs probed, we also find a small population of red, morphologically early-type galaxies residing in regions of low measured overdensity. The observed correlations between the red fraction and local overdensity are highly significant, with the trend at   z > 1  detected at a greater than 5σ level. Over the entire redshift regime studied, we find that the colour–density relation evolves continuously, with red galaxies more strongly favouring overdense regions at low z relative to their red-sequence counterparts at high redshift. At   z ≳ 1.3  , the red fraction only weakly correlates with overdensity, implying that any colour dependence to the clustering of  ∼ L *  galaxies at that epoch must be small. Our findings add weight to existing evidence that the build-up of galaxies on the red sequence has occurred preferentially in overdense environments (i.e. galaxy groups) at   z ≲ 1.5  . Furthermore, we identify the epoch  ( z ∼ 2)  at which typical  ∼ L *  galaxies began quenching and moved on to the red sequence in significant number. The strength of the observed evolutionary trends at  0 < z < 1.35  suggests that the correlations observed locally, such as the morphology–density and colour–density relations, are the result of environment-driven mechanisms (i.e. 'nurture') and do not appear to have been imprinted (by 'nature') upon the galaxy population during their epoch of formation.  相似文献   

13.
Galaxies are believed to be in one-to-one correspondence with simulated dark matter subhaloes. We use high-resolution N -body simulations of cosmological volumes to calculate the statistical properties of subhalo (galaxy) major mergers at high redshift ( z = 0.6–5). We measure the evolution of the galaxy merger rate, finding that it is much shallower than the merger rate of dark matter host haloes at   z > 2.5  , but roughly parallels that of haloes at   z < 1.6  . We also track the detailed merger histories of individual galaxies and measure the likelihood of multiple mergers per halo or subhalo. We examine satellite merger statistics in detail: 15–35 per cent of all recently merged galaxies are satellites, and satellites are twice as likely as centrals to have had a recent major merger. Finally, we show how the differing evolution of the merger rates of haloes and galaxies leads to the evolution of the average satellite occupation per halo, noting that for a fixed halo mass, the satellite halo occupation peaks at   z ∼ 2.5  .  相似文献   

14.
We explore the rich globular cluster (GC) system of the nearby Sa galaxy M104, the 'Sombrero' (NGC 4594), using archive Wide Field Planetary Camera 2 data. The GC colour distribution is found to be bimodal at the >99 per cent confidence level, with peaks at     and     . The inferred metallicities are very similar to those of GCs in our Galaxy and M31. However, the Sombrero reveals a much enhanced number of red (metal-rich) GCs compared to other well-studied spirals. Because the Sombrero is dominated by a huge bulge and only has a modest disc, we associate the two subpopulations with the halo and bulge components, respectively. Thus our analysis supports the view that the metal-rich GCs in spirals are associated with the bulge rather than with the disc. The Sombrero GCs have typical effective (half-light) radii of ∼2 pc with the red ones being ∼30 per cent smaller than the blue ones. We identify many similarities between the GC system of the Sombrero and those of both late-type spirals and early-type galaxies. Thus both the GC system and the Hubble type of the Sombrero galaxy appear to be intermediate in their nature.  相似文献   

15.
Motivated by the observations on the intracluster light and intergalactic stellar populations, N -body simulations are used to model the galactic merging events as a goal to investigate the production and distribution of gravitational unbound populations (GUPs). Both the parabolic and hyperbolic mergers are considered, and each category includes six models with different relative orientations between two galaxies. Our results show that there are more (about a factor of 2) GUPs after a hyperbolic merging event than after a parabolic one. In general, depending on the relative orientation and also on the relative velocity of the two galaxies in a merging pair, a head-on collision of a galaxy pair would only make a tiny fraction (less than 1 per cent) of the initial stellar mass luminous GUP, but a considerable fraction (8–14 per cent) of the dark matter becomes dark GUP.  相似文献   

16.
We analyse star formation rates (SFRs) derived from photometric and spectroscopic data of galaxies in pairs in different environments using the 2-degree field galaxy redshift survey (2dFGRS) and the Sloan digital sky survey (SDSS). The two samples comprise several thousand pairs, suitable to explore into detail the dependence of star formation activity in pairs on orbital parameters and global environment. We use the projected galaxy density derived from the fifth brightest neighbour of each galaxy, with a convenient luminosity threshold to characterize environment in both surveys in a consistent way. Star formation activity is derived through the η parameter in 2dFGRS and through the SFR normalized to the total mass in stars,  SFR/ M *  , given by Brinchmann et al. in the SDSS-second data release (SDSS-DR2). For both galaxy pair catalogs, the star formation birth rate parameter is a strong function of the global environment and orbital parameters. Our analysis on SDSS pairs confirms previous results found with the 2dFGRS where suitable thresholds for the star formation activity induced by interactions are estimated at a projected distance   r p= 100  h −1 kpc  and a relative velocity  Δ V = 350 km s−1  . We observe that galaxy interactions are more effective at triggering important star formation activity in low- and moderate-density environments with respect to the control sample of galaxies without a close companion. Although close pairs have a larger fraction of actively star-forming galaxies, they also exhibit a greater fraction of red galaxies with respect to those systems without a close companion, an effect that may indicate that dust stirred up during encounters could affect colours and, partially, obscure tidally induced star formation.  相似文献   

17.
A comparison between published field galaxy stellar mass functions (GSMFs) shows that the cosmic stellar mass density is in the range 4–8 per cent of the baryon density (assuming  Ωb= 0.045  ). There remain significant sources of uncertainty for the dust correction and underlying stellar mass-to-light ratio even assuming a reasonable universal stellar initial mass function. We determine the   z < 0.05  GSMF using the New York University Value-Added Galaxy Catalog sample of 49 968 galaxies derived from the Sloan Digital Sky Survey and various estimates of stellar mass. The GSMF shows clear evidence for a low-mass upturn and is fitted with a double Schechter function that has  α2≃−1.6  . At masses below  ∼108.5 M  , the GSMF may be significantly incomplete because of missing low-surface-brightness galaxies. One interpretation of the stellar mass–metallicity relation is that it is primarily caused by a lower fraction of available baryons converted to stars in low-mass galaxies. Using this principle, we determine a simple relationship between baryonic mass and stellar mass and present an 'implied baryonic mass function'. This function has a faint-end slope,  α2≃−1.9  . Thus, we find evidence that the slope of the low-mass end of the galaxy mass function could plausibly be as steep as the halo mass function. We illustrate the relationship between halo baryonic mass function → galaxy baryonic mass function → GSMF. This demonstrates the requirement for peak galaxy formation efficiency at baryonic masses  ∼1011 M  corresponding to a minimum in feedback effects. The baryonic-infall efficiency may have levelled off at lower masses.  相似文献   

18.
The NGC 5044 galaxy group is dominated by a luminous elliptical galaxy that is surrounded by ∼160 dwarf satellites. The projected number density profile of this dwarf population deviates within ∼1/3 of the virial radius from a projected Navarro, Frenk and White (NFW) profile, which is assumed to approximate the underlying total matter distribution. By means of a semi-analytic model, we demonstrate that the interplay between gravitation, dynamical friction and tidal mass loss and destruction can explain the observed number density profile. We use only two parameters in our models: the total to stellar mass fraction of the satellite haloes and the disruption efficiency. The disruption efficiency is expressed by a minimum radius. If the tidal radius of a galaxy (halo) falls below this radius, it is assumed to become unobservable. The preferred parameters are an initial total to stellar mass fraction of ∼20 and a disruption radius of  4 kpc  . In that model, about 20 per cent of all the satellites are totally disrupted on their orbits within the group environment. Dynamical friction is less important in shaping the inner slope of the number density profile because the reduction in mass by tidal forces lowers the impact of the friction term. The main destruction mechanism is tide. In the preferred model, the total B -band luminosity of all disrupted galaxies is about twice the observed luminosity of the central elliptical galaxy, indicating that a significant fraction of stars are scattered into the intragroup medium. Dwarf galaxy satellites closer to the centre of the NGC 5044 group may exhibit optical evidence of partial tidal disruption. If dynamical friction forces the satellite to merge with the central elliptical, the angular momentum of the satellite tends to be removed at the apocentre passage. Afterwards, the satellite drops radially towards the centre.  相似文献   

19.
We use a  0.040 < z < 0.085  sample of 37 866 star-forming galaxies from the Fourth Data Release of the Sloan Digital Sky Survey to investigate the dependence of gas-phase chemical properties on stellar mass and environment. The local density, determined from the projected distances to the fourth and fifth nearest neighbours, is used as an environment indicator. Considering environments ranging from voids, i.e.  log Σ≲−0.8  , to the periphery of galaxy clusters, i.e.  log Σ≈ 0.8  , we find no dependence of the relationship between galaxy stellar mass and gas-phase oxygen abundance, along with its associated scatter, on local galaxy density. However, the star-forming gas in galaxies shows a marginal increase in the chemical enrichment level at a fixed stellar mass in denser environments. Compared with galaxies of similar stellar mass in low-density environments, they are enhanced by a few per cent for massive galaxies to about 20 per cent for galaxies with stellar masses  ≲109.5 M  . These results imply that the evolution of star-forming galaxies is driven primarily by their intrinsic properties and is largely independent of their environment over a large range of local galaxy density.  相似文献   

20.
We use a large suite of carefully controlled full hydrodynamic simulations to study the ram pressure stripping of the hot gaseous haloes of galaxies as they fall into massive groups and clusters. The sensitivity of the results to the orbit, total galaxy mass, and galaxy structural properties is explored. For typical structural and orbital parameters, we find that ∼30 per cent of the initial hot galactic halo gas can remain in place after 10 Gyr. We propose a physically simple analytic model that describes the stripping seen in the simulations remarkably well. The model is analogous to the original formulation of Gunn & Gott, except that it is appropriate for the case of a spherical (hot) gas distribution (as opposed to a face-on cold disc) and takes into account that stripping is not instantaneous but occurs on a characteristic time-scale. The model reproduces the results of the simulations to within ≈10 per cent at almost all times for all the orbits, mass ratios, and galaxy structural properties we have explored. The one exception involves unlikely systems where the orbit of the galaxy is highly non-radial and its mass exceeds about 10 per cent of the group or cluster into which it is falling (in which case the model underpredicts the stripping following pericentric passage). The proposed model has several interesting applications, including modelling the ram pressure stripping of both observed and cosmologically simulated galaxies and as a way to improve present semi-analytic models of galaxy formation. One immediate consequence is that the colours and morphologies of satellite galaxies in groups and clusters will differ significantly from those predicted with the standard assumption of complete stripping of the hot coronae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号