首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The outflow from the Sea of Okhotsk to the North Pacific is important in characterising the surface-to-intermediate-depth water masses in the Pacific Ocean. The two basins are separated by the Kuril Islands with numerous straits, among which the Bussol and the Kruzenshterna Straits are deeper than 1000 m. The physics governing the transport between the two basins is complicated, but when the semidiurnal and diurnal tides are subtracted, the observed density and velocity structures across the Bussol Strait suggest a significant contribution from geostrophic balance. Using a two-layer model with the interface at 27.5σ θ , part of the upper layer transport that is not driven by tides is estimated using two previously unexplored data sets: outputs from the Ocean General Circulation Model for Earth Simulator (OFES), and historical hydrographic data. The Pacific water flows into the Sea of Okhotsk through the northeastern straits. The greatest inflow is through the Kruzenshtern Strait, but the OFES results show that the contributions from other shallower straits are almost half of the Kruzenshtern inflow. Similarly, the outflow from the Sea of Okhotsk is through the southwestern straits of the Kuril Islands with the largest Bussol Strait contributing 60% of the total outflow. The OFES and hydrographic estimates agree that the exchange is strongest in February to March, with an inflow of about −6 to −12 Sv (negative indicates the flow from the North Pacific, 1 Sv = 106 m3s−1), and an outflow from the Sea of Okhotsk of about +8 to +9 Sv (positive indicates the flow from the Sea of Okhotsk), which is weakest in summer (−3 to +1 Sv through the northeastern straits and +0 to +3 Sv through the southwestern straits). The estimated seasonal variation is consistent with a simple analytic model driven by the difference in sea surface height between the two basins.  相似文献   

2.
Time-series measurements of dissolved inorganic carbon (DIC) and nutrient concentrations were conducted in the northwestern North Pacific from October 2002 to August 2004. Assuming that data obtained in different years represented time-series seasonal data for a single year, vertical distributions of DIC and nutrients showed large seasonal variabilities in the surface layer (∼100 m). Seasonal variabilities in normalized DIC (nDIC) and nitrate concentrations at the sea surface were estimated to be 81–113 μmol kg−1 and 12.7–15.7 μmol kg−1, respectively, in the Western Subarctic Gyre. The variability in nutrients between May and July was generally at least double that in other seasons. In the Western Subarctic Gyre, estimations based on statistical analyses revealed that seasonal new production was 39–61 gC m−2 and tended to be higher in the southwestern regions or coastal regions. The seasonal new productions in the northwestern North Pacific were two or more times higher than in the North Pacific subtropical gyre and the northeastern North Pacific. It is likely that this difference is due to spatial variations in the concentrations of trace metals and the species of phytoplankton present. In addition, from estimations of surface pCO2 it was verified that the Western Subarctic Gyre is a source of atmospheric CO2 between February and May and a sink for CO2 between July and October.  相似文献   

3.
Most marginal seas in the North Pacific are fed by nutrients supported mainly by upwelling and many are undersaturated with respect to atmospheric CO2 in the surface water mainly as a result of the biological pump and winter cooling. These seas absorb CO2 at an average rate of 1.1 ± 0.3 mol C m−2yr−1 but release N2/N2O at an average rate of 0.07 ± 0.03 mol N m−2yr−1. Most of primary production, however, is regenerated on the shelves, and only less than 15% is transported to the open oceans as dissolved and particulate organic carbon (POC) with a small amount of POC deposited in the sediments. It is estimated that seawater in the marginal seas in the North Pacific alone may have taken up 1.6 ± 0.3 Gt (1015 g) of excess carbon, including 0.21 ± 0.05 Gt for the Bering Sea, 0.18 ± 0.08 Gt for the Okhotsk Sea; 0.31 ± 0.05 Gt for the Japan/East Sea; 0.07 ± 0.02 Gt for the East China and Yellow Seas; 0.80 ± 0.15 Gt for the South China Sea; and 0.015 ± 0.005 Gt for the Gulf of California. More importantly, high latitude marginal seas such as the Bering and Okhotsk Seas may act as conveyer belts in exporting 0.1 ± 0.08 Gt C anthropogenic, excess CO2 into the North Pacific Intermediate Water per year. The upward migration of calcite and aragonite saturation horizons due to the penetration of excess CO2 may also make the shelf deposits on the Bering and Okhotsk Seas more susceptible to dissolution, which would then neutralize excess CO2 in the near future. Further, because most nutrients come from upwelling, increased water consumption on land and damming of major rivers may reduce freshwater output and the buoyancy effect on the shelves. As a result, upwelling, nutrient input and biological productivity may all be reduced in the future. As a final note, the Japan/East Sea has started to show responses to global warming. Warmer surface layer has reduced upwelling of nutrient-rich subsurface water, resulting in a decline of spring phytoplankton biomass. Less bottom water formation because of less winter cooling may lead to the disappearance of the bottom water as early as 2040. Or else, an anoxic condition may form as early as 2200 AD. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
A basin-wide ocean general circulation model of the Pacific Ocean was used to investigate how the interior restoration in the Okhotsk Sea and the isopycnal diffusion affect the circulation and intermediate water masses. Four numerical experiments were conducted, including a run with the same isopycnal and thickness diffusivity of 1.0×103 m2/s, a run employing the interior restoration of temperature and salinity in the Okhotsk Sea with a time scale of 3 months, a run that is the same as the first run except for the enhanced isopycnal mixing, and a final run with the combination of the restoration in the Okhotsk Sea and large isopycnal diffusivity. Simulated results show that the intermediate water masses reproduced in the first run are relatively weak. An increase in isopycnal diffusivity can improve the simulation of both Antarctic and North Pacific intermediate waters, mainly increasing the transport in the interior ocean, but inhibiting the outflow from the Okhotsk Sea. The interior restoration generates the reverse current from the observation in the Okhotsk Sea, whereas the simulation of the temperature and salinity is improved in the high latitude region of the Northern Hemisphere because of the reasonable source of the North Pacific Intermediate Water. A comparison of vertical profiles of temperature and salinity along 50°N between the simulation and observations demonstrates that the vertical mixing in the source region of intermediate water masses is very important.  相似文献   

5.
A numerical study using a 3-D nonhydrostatic model has been applied to baroclinic processes generated by the K 1 tidal flow in and around the Kuril Straits. The result shows that large-amplitude unsteady lee waves are generated and cause intense diapycnal mixing all along the Kuril Island Chain to levels of a maximum diapycnal diffusivity exceeding 103 cm2s−1. Significant water transformation by the vigorous mixing in shallow regions produces the distinct density and potential vorticity (PV) fronts along the Island Chain. The pinched-off eddies that arise and move away from the fronts have the ability to transport a large amount of mixed water (∼14 Sv) to the offshore regions, roughly half being directed to the North Pacific. These features are consistent with recent satellite imagery and in-situ observations, suggesting that diapycnal mixing within the vicinity of the Kuril Islands has a greater impact than was previously supposed on the Okhotsk Sea and the North Pacific. To examine this influence of tidal processes at the Kurils on circulations in the neighboring two basins, another numerical experiment was conducted using an ocean general circulation model with inclusion of tidal mixing along the islands, which gives a better representation of the Okhotsk Sea Mode Water than in the case without the tidal mixing. This is mainly attributed to the added effect of a significant upward salt flux into the surface layer due to tidal mixing in the Kuril Straits, which is subsequently transported to the interior region of the Okhotsk Sea. With a saline flux into the surface layer, cooling in winter in the northern part of the Okhotsk Sea can produce heavier water and thus enhance subduction, which is capable of reproducing a realistic Okhotsk Sea Mode Water. The associated low PV flux from the Kuril Straits to the open North Pacific excites the 2nd baroclinic-mode Kelvin and Rossby waves in addition to the 1st mode. Interestingly, the meridional overturning in the North Pacific is strengthened as a result of the dynamical adjustment caused by these waves, leading to a more realistic reproduction of the North Pacific Intermediate Water (NPIW) than in the case without tidal mixing. Accordingly, the joint effect of tidally-induced transport and transformation dominating in the Kuril Straits and subsequent eddy-transport is considered to play an important role in the ventilation of both the Okhotsk Sea and the North Pacific Ocean. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
In this study we used two stable isotopes, δ13C and δ18O, for water mass classification in the coastal region off eastern Hokkaido. δ13C* values, which were corrected for the biological effect, and δ 18O values up to 300 m depth suggested that the isotopic character of the onshore and offshore water in the southern Okhotsk Sea, the Nemuro Strait and the western North Pacific could be explained by the mixing of three source waters: the Oyashio water (OYW), Soya Warm Current water (SWCW) and East Sakhalin Current water (ESCW). In summer, δ 13C*-δ 18O plots indicated mixing between SWCW from the southern Okhotsk Sea and OYW in the Pacific coast of southeastern Hokkaido, while temperature-salinity plots of the onshore water showed minimal difference from the offshore OYW. In winter, on the other hand, the mixed water of ESCW and OYW (or SWCW) appeared in the Pacific coastal region, distributed as cold, low salinity onshore water. Finally, we estimated mixing ratios of OYW, SWCW and ESCW in the coastal region of western North Pacific using their mean values of δ 13C* and δ 18O as endmembers. These results suggest seasonal and yearly changes of water mass combination en route from the southern Okhotsk Sea to the western North Pacific.  相似文献   

7.
Using time series of hydrographic data in the wintertime and summertime obtained along 137°E from 1971 to 2000, we found that the average contents of nutrients in the surface mixed layer showed linear decreasing trends of 0.001∼0.004 μmol-PO4 l−1 yr−1 and 0.01∼0.04 μmol-NO3 l−1 yr−1 with the decrease of density. The water column Chl-a (CHL) and the net community production (NCP) had also declined by 0.27∼0.48 mg-Chl m−2 yr−1 and 0.08∼0.47 g-C-NCP m−2 yr−1 with a clear oscillation of 20.8±0.8 years. These changes showed a strong negative correlation with the Pacific Decadal Oscillation Index (PDO) with a time lag of 2 years (R = 0.89 ± 0.02). Considering the recent significant decrease of O2 over the North Pacific subsurface water, these findings suggest that the long-term decreasing trend of surface-deep water mixing has caused the decrease of marine biological activity in the surface mixed layer with a bidecadal oscillation over the western North Pacific.  相似文献   

8.
A global ocean inverse model that includes the 3D ocean circulation as well as the production, sinking and remineralization of biogenic particulate matter is used to estimate the carbon export flux in the Pacific, north of 10°S. The model exploits the existing large datasets for hydrographic parameters, dissolved oxygen, nutrients and carbon, and determines optimal export production rates by fitting the model to the observed water column distributions by means of the “adjoint method”. In the model, the observations can be explained satisfactorily with an integrated carbon export production of about 3 Gt C yr−1 (equivalent to 3⋅1015 gC yr−1) for the considered zone of the Pacific Ocean. This amounts to about a third of the global ocean carbon export of 9.6 Gt C yr−1 in the model. The highest export fluxes occur in the coastal upwelling region off northwestern America and in the tropical eastern Pacific. Due to the large surface area, the open-ocean, oligotrophic region in the central North Pacific also contributes significantly to the total North Pacific export flux (0.45 Gt C yr−1), despite the rather small average flux densities in this region (13 gC m−2yr−1). Model e-ratios (calculated here as ratios of model export production to primary production, as inferred from satellite observations) range from as high a value as 0.4 in the tropical Pacific to 0.17 in the oligotrophic central north Pacific. Model e-ratios in the northeastern Pacific upwelling regions amount to about 0.3 and are lower than previous estimates. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Observations of primary productivity, 234Th, and particulate organic carbon (POC) were made from west to east across the northern North Pacific Ocean (from station K2 to Ocean Station Papa) during September–October 2005. Primary productivities in this region varied longitudinally from approximately 236 to 444 mgC m−2d−1 and clearly indicate the West High East Low (WHEL) trend. We estimated east-west variations in the POC flux from the surface layer (0–100 m) by using 234Th as a tracer. POC fluxes in the western region (44–53 mgC m−2d−1) were higher than those in the eastern region (21–34 mgC m−2d−1). However, the export ratios (e-ratios) ranged from approximately 8% to 16% and did not show the WHEL trend. Contrary to our expectation, no relation between POC flux (or e-ratio) and diatom biomass (or dominance) was apparent in autumn in the northern North Pacific.  相似文献   

10.
In order to examine temporal variations of the surface oceanic and atmospheric fCO2 and the DIC concentration, we analyzed air and seawater samples collected during the period May 1992–June 1996 in the northwestern North Pacific, about 30 km off the coast of the main island of Japan. The atmospheric CO2 concentration has increased secularly at a rate of 1.9 ppmv yr−1, and it showed a clear seasonal cycle with a maximum in spring and a minimum late in summer, produced mainly by seasonally-dependent terrestrial biospheric activities. DIC also showed a prominent seasonal cycle in the surface ocean; the minimum and maximum values of the cycle appeared in early fall and in early spring, respectively, due primarily to the seasonally-dependent activities of marine biota and partly to the vertical mixing of seawater and the coastal upwelling. The oceanic fCO2 values were almost always lower than those of the atmospheric fCO2, suggesting that this area of the ocean acts as a sink for atmospheric CO2. Values varied seasonally, mainly reflecting seasonal changes of SST and DIC, with a secular increase at a rate of 3.7 μatm yr−1. The average values of the annual net CO2 flux between the ocean and the atmosphere calculated by using the different bulk equations ranged between −0.8 and −1.7 mol m−2yr−1, and its magnitude was enhanced and reduced late in spring and mid-summer, respectively, due mainly to the seasonally varying oceanic fCO2.  相似文献   

11.
Cold deep water in the South China Sea   总被引:1,自引:0,他引:1  
Two deep channels that cut through the Luzon Strait facilitate deep (>2000 m) water exchange between the western Pacific Ocean and the South China Sea. Our observations rule out the northern channel as a major exchange conduit. Rather, the southern channel funnels deep water from the western Pacific to the South China Sea at the rate of 1.06 ± 0.44 Sv (1 Sv = 106 m3s−1). The residence time estimated from the observed inflow from the southern channel, about 30 to 71 years, is comparable to previous estimates. The observation-based estimate of upwelling velocity at 2000 m depth is (1.10 ± 0.33) × 10−6 ms−1, which is of the same order as Ekman pumping plus upwelling induced by the geostrophic current. Historical hydrographic observations suggest that the deep inflow is primarily a mixture of the Circumpolar Deep Water and Pacific Subarctic Intermediate Water. The cold inflow through the southern channel offsets about 40% of the net surface heat gain over the South China Sea. Balancing vertical advection with vertical diffusion, the estimated mean vertical eddy diffusivity of heat is about 1.21 × 10−3 m2s−1. The cold water inflow from the southern channel maintains the shallow thermocline, which in turn could breed internal wave activities in the South China Sea.  相似文献   

12.
The distribution of the total alkalinity (TA), the total inorganic carbon (TCO2), the calcium (Ca), and the CO2 partial pressure in the waters of the northwestern Bering Sea (Anadyr Bay) and in the western part of the Chukchi Sea is considered according to the data obtained in August–September 2002. It is shown that the areas treated were sinks of atmospheric CO2 in the summer of 2002: the total CO2 exchange between the atmosphere and the seawater was equal to about −20 mmol C/(m2 day). The net community production according to the TCO2 decrease in the upper photic layer in the west of the Chukchi Sea and in the Anadyr Bay waters amounted to 48 ± 12 and 72 ± 18 g C/(m2 year), respectively. The comparison with historical data allows one to tell about the pronounced increase of the TCO2, TA, and Ca concentrations in the waters of Anadyr Bay and in the western part of the Chukchi Sea in the summer 2002. The processes that might have caused the changes observed are the enrichment of the estuarine waters in marine salts under the ice formation in winter and the decrease of the supply of the waters of the Bering Slope Current to the northwestern part of the Bering Sea.  相似文献   

13.
Results of the long-term study of the spatial and vertical distribution of the parasitic anadromous Arctic lamprey Lethenteron camtschaticum (Tilesius, 1811) (Petromyzontidae) in the North Pacific and data on its size composition are given. This species is most frequent in the northwestern Sea of Japan and the western Bering Sea. The maximum concentrations are noted in waters of southern Primorye, southwestern Sakhalin, the northwestern part of the Sea of Okhotsk, and the northern part of the Bering Sea, which is probably explained by the increased number of its victims, Pacific salmon. Near the bottom, Pacific lampreys are extremely few and are primarily encountered at depths less that 400 m, and in the Pelagic zone, in the 100-m layer. The catches have contained Arctic lampreys having a total length of 15–79 cm. The lampreys of several size groups in the catches may indicate that L. camtschaticum spends not less than four years in the sea. No relationship has been found between the body length and the capture depth. Analyzed are the relationships between the body length and weight and the body length and the condition factor. The seasonal dynamics of these indices are considered.  相似文献   

14.
Seasonal and spatial variations of particulate organic carbon (POC) flux were observed with sediment traps at three sites in the Japan Sea (western and eastern Japan Basin and Yamato Basin). In order to investigate the transport processes of POC, radiocarbon (14C) measurements were also carried out. Annual mean POC flux at 1 km depth was 30.7 mg m−2day−1 in the western Japan Basin, 12.0 mg m−2day−1 in the eastern Japan Basin and 23.8 mg m−2day−1 in the Yamato Basin. At all stations, notably higher POC flux was observed in spring (March–May), indicating biological production and rapid sinking of POC in this season. Sinking POC in the high flux season showed modern Δ14C values (>0‰) and aged POC (Δ14C < −40‰) was observed in winter (December–January). The Δ14C values in sinking POC were negatively correlated with aluminum concentration, indicating that Δ14C is strongly related to the lateral supply of lithogenic materials. The Δ14C values also showed correlations with excess manganese (Mnxs) concentrations in sinking particles. The Δ14C-Mnxs relationship suggested that (1) the majority of the aged POC was advected by bottom currents and incorporated into sinking particles, and (2) some of the aged POC might be supplied from the sea surface at the trap site as part of terrestrial POC. From the difference in the Δ14C-Mnxs relationships between the Japan Basin and the Yamato Basin, we consider that basin-scale transport processes of POC occur in the Japan Sea.  相似文献   

15.
In the southwestern Okhotsk Sea off Hokkaido we observed chemical components related to the carbonate system for 1 year from August 1997 to June 1998. Using the conservative components salinity and water temperature, we confirmed the existence of two water masses flowing into the intermediate layer of the Okhotsk Sea, the East Sakhalin Current Water (ESCW) which becomes denser by mixing of brine water, and the Forerunner of Soya Warm Current Water (FSWW) which becomes denser due to cooling of the saline Kuroshio water. The ΔNTCx values were calculated by comparing the ESCW and the FSWW with the Pacific Deep Water (PDW). The ΔNTCx values obtained are 100–110 μmol/kg and 70–100 μmol/kg for the ESCW and the FSWW off Hokkaido, respectively, which are considerably larger than that of the Kuroshio water. These large ΔNTCx values may be due to both low DIC concentration in the surface water and intense gas exchange under the cold and stormy winter conditions for the ESCW and the cooling of the FSWW as it flows northward. Since the flow rates of dense waters concerned with the ESCW and the FSWW have previously been estimated as 0.9 Sv and 0.2 Sv, respectively, the amount of atmospheric CO2 absorbed and transported to the intermediate layer turns out to be 3.9−4.1 × 1013 gC/yr. This flux is small on a global scale, but the flux divided by the surface layer of the Okhotsk Sea is 30 gC/m2/yr, which is 5 times greater than the mean absorption flux of anthropogenic CO2 in the world's oceans. It is thus considered that atmospheric CO2 is efficiently absorbed in the Okhotsk Sea. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The paper presents the records of several paleoproductivity proxies (PP) (biogenic opal and Ba (Si_bio, Ba_bio), organic carbon (C_org) and carbonate Ca_carb, chlorin and benthic foraminifera abundance (BFA)) in sediments of the Okhotsk Sea for the last 80 kyr with a resolution of ∼100–300 years. The sediment age model was based on the AMS 14C data, records of benthic foraminifera δ18O, paleointensity of the Earth’s geomagnetic field and magnetic susceptibility. PP values demonstrate series of severe prolonged productivity drops in the Okhotsk Sea followed by a sharp increase during the last glaciation. On the basis of quantitative estimations of the paleoproductivity in the Okhotsk Sea during the cold MIS 2 and warm Holocene (Gorbarenko and Goldberg, 2005), it is suggested that the millennium scale relationship in productivity-climate changes of this basin was similar: an increase in the sea’s productivity was related with regional climate warming and vice-versa. The PP records of productivity/climate oscillations in the Okhotsk Sea during MIS 2–4 occurred contemporaneously with the North Atlantic cold Heinrich events (HE) and Greenland Dansgaard-Oyeshger interstadial (DOI). Observed successions of prolonged climate cooling events followed by rapid, abrupt warming are similar to climate and environmental oscillations in the N. Atlantic and Greenland, that confirms the millennium-scale climate changes synchronicities in the Northern Hemisphere including the far NW Pacific, the hydrology and climate conditions of which are close to those of the Okhotsk Sea. Synchronism of the N. Hemisphere severe cooling (including the Okhotsk Sea) with the Antarctic warming suggests that mechanisms of the “seesaw” effect (Blunier and Brook, 2001) in the low latitude heat redistribution between high latitudes of both hemispheres were more complicated than direct NADW formation forcing and encompasses the global atmospheric reorganization. Within the PP used a closer connection in the Okhotsk Sea millennium oscillations was observed for the C_org, BFA and chlorin; Ba_bio increases more closely to DOI. Si_bio variability does not show any evident correlation with productivity changes.  相似文献   

17.
Vertical distributions of coccolithophores were observed in the depth range 0–50 m in the western subarctic Pacific and western Bering Sea in summer, 1997. Thirty-five species of coccolithophores were collected. Overall, Emiliania huxleyi var. huxleyi was the most abundant taxon, accounting for 82.8% of all coccolithophores, although it was less abundant in the western Bering Sea. Maximum abundance of this species was found in an area south of 41°N and east of 175°E (Transition Zone) reaching >10,000 cells L−1 in the water column. In addition to this species, Coccolithus pelagicus f. pelagicus, which accounted for 4.2% of the assemblage, was representative of the coccolithophore standing crop in the western part of the subarctic Pacific. Coccolithus pelagicus f. hyalinus was relatively abundant in the Bering Sea, accounting for 2.6% of the assemblage. Coccolithophore standing crops in the top 50 m were high south of 41°N (>241 × 106 cells m−2) and east of 170°E (542 × 106 cells m−2) where temperatures were higher than 12°C and salinities were greater than 34.2. The lowest standing crop was observed in the Bering Sea and Oyashio areas where temperatures were lower than 6–10°C and salinities were less than 33.0. From the coccolithophore volumes, the calcite stocks in the Transition, Subarctic, and the Bering Sea regions were estimated to be 73.0, 9.7, and 6.9 mg m−2, respectively, corresponding to calcite fluxes of 3.6, 0.5, and 0.3 mg m−2d−1 using Stoke's Law. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
In order to examine the formation, distribution and synoptic scale circulation structure of North Pacific Intermediate Water (NPIW), 21 subsurface floats were deployed in the sea east of Japan. A Eulerian image of the intermediate layer (density range: 26.6–27.0σθ) circulation in the northwestern North Pacific was obtained by the combined analysis of the movements of the subsurface floats in the period from May 1998 to November 2002 and historical hydrographic observations. The intermediate flow field derived from the floats showed stronger flow speeds in general than that of geostrophic flow field calculated from historical hydrographic observations. In the intermediate layer, 8 Sv (1 Sv ≡ 106 m3s−1) Oyashio and Kuroshio waters are found flowing into the sea east of Japan. Three strong eastward flows are seen in the region from 150°E to 170°E, the first two flows are considered as the Subarctic Current and the Kuroshio Extension or the North Pacific Current. Both volume transports are estimated as 5.5 Sv. The third one flows along the Subarctic Boundary with a volume transport of 5 Sv. Water mass analysis indicates that the intermediate flow of the Subarctic Current consists of 4 Sv Oyashio water and 1.5 Sv Kuroshio water. The intermediate North Pacific Current consists of 2 Sv Oyashio water and 3.5 Sv Kuroshio water. The intermediate flow along the Subarctic Boundary contains 2 Sv Oyashio water and 3 Sv Kuroshio water. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
A data base of 111 filter-collected marine atmospheric particulates is used to describe the distribution of lead over the North and South Atlantic, the Mediterranean Sea, the Red Sea, the Gulf of Aden and the northern and central Arabian Sea. The distribution of atmospheric Pb is assessed in terms of enrichment factor diagrams, and it is shown that over the marine regions studied in both the Northern and Southern Hemispheres the distribution of Pb in the atmosphere is controlled by the mixing of a background component, or components, with crustal material within certain concentration limits. For the Northern Hemisphere samples used in the investigation there is a reasonably well-defined Pb concentration minimum of ~ 0.6 ng m?3 of air; however, this will be severely decreased in more remote Northern Hemisphere marine regions. Geometric average Pb atmospheric concentrations vary from one marine region to another, ranging from ~ 0.98 ng m?3 of air for the South Atlantic westerlies to ~ 15 ng m?3 of air in the North Atlantic westerlies; although the latter reduces to ~ 7 ng m?3 of air when ‘polluted’ samples are excluded. Lead sea-surface deposition fluxes are calculated on the basis of two deposition velocities (0.25 and 1 cm s?1), the largest flux (220 ng Pb cm?2 yr?1) being found for the westerlies over the eastern margins of the North Atlantic. The distribution of lead over the North Atlantic is assessed in terms of the global lead budget and it is estimated that a maximum of ~ 24% of the total ‘natural’ lead injected annually into the World atmosphere, and ~ 3.5% of the anthropogenic lead injected annually into the Northern Hemisphere atmosphere, are deposited over the North Atlantic sea surface.  相似文献   

20.
This study investigated the organic carbon accumulation rates (OCARs) and sulfate reduction rates (SRRs) in slope and basin sediments of the Ulleung Basin, East/Japan Sea. These sediments have high organic contents at depths greater than 2,000 m; this is rare for deep-sea sediments, except for those of the Black Sea and Chilean upwelling regions. The mean organic carbon to total nitrogen molar ratio was estimated to be 6.98 in the Ulleung Basin sediments, indicating that the organic matter is predominantly of marine origin. Strong organic carbon enrichment in the Ulleung Basin appears to result from high export production, and low dilution by inputs of terrestrial materials and calcium carbonate. Apparent sedimentation rates, calculated primarily from excess 210Pb distribution below the zone of sediment mixing, varied from 0.033 to 0.116 cm year−1, agreeing well with previous results for the basin. OCARs fluctuated strongly in the range of 2.06–12.5 g C m−2 year−1, these rates being four times higher at the slope sites than at the basin sites. Within the top 15 cm of the sediment, the integrated SRRs ranged from 0.72 to 1.89 mmol m−2 day−1, with rates approximately twice as high in the slope areas as in the basin areas. SRR values were consistently higher in areas of high sedimentation and of high organic carbon accumulation, correlating well with apparent sedimentation rates and OCARs. The sulfate reduction rates recorded in the basin and slope sediments of the Ulleung Basin are higher than those reported for other parts of the world, with the exception of the Peruvian and Chilean upwelling regions. This is consistent with the high organic carbon contents of surface sediments of the Ulleung Basin, suggesting enhanced organic matter fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号