首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soil salinity has been known to be problematic to land productivity and environment in the lower Yellow River Delta due to the presence of a shallow, saline water table and marine sediments. Spatial information on soil salinity has gained increasing importance for the demand of management and sustainable utilization of arable land in this area. Apparent electrical conductivity, as measured by electromagnetic induction instrument in a fairly quick manner, has succeeded in mapping soil salinity and many other soil physical and chemical properties from field to regional scales. This was done based on the correlation that existed between apparent electrical conductivity and many other soil properties. In this paper, four spatial prediction methods, i.e., local polynomial, inverse distance weighed, ordinary kriging and universal kriging, were employed to estimate field-scale apparent electrical conductivity with the aid of an electromagnetic induction instrument (type EM38). The spatial patterns estimated by the four methods using EM38 survey datasets of various sample sizes were compared with those generated by each method using the entire sample size. Spatial similarity was evaluated using difference index (DI) between the maps created using various sample sizes (i.e., target maps) and the maps generated with the entire sample size (i.e., the reference map). The results indicated that universal kriging had the best performance owing to the inclusion of residuals and spatial detrending in the kriging system. DI showed that spatial similarity between the target and reference maps of apparent electrical conductivity decreased with the reduction in sample size for each prediction method. Under the same reduction in sample size, the method retaining the most spatial similarity was universal kriging, followed by ordinary kriging, inverse distance weighed, and local polynomial. Approximately, 70 % of total survey data essentially met the need for retaining 90 % details of the reference map for universal kriging and ordinary kriging methods. This conclusion was that OK and UK were two most appropriate methods for spatial estimation of apparent electrical conductivity as they were robust with the reduction in sample size.  相似文献   

2.
This paper presents a methodology to conduct geostatistical variography and interpolation on areal data measured over geographical units (or blocks) with different sizes and shapes, while accounting for heterogeneous weight or kernel functions within those units. The deconvolution method is iterative and seeks the pointsupport model that minimizes the difference between the theoretically regularized semivariogram model and the model fitted to areal data. This model is then used in area-to-point (ATP) kriging to map the spatial distribution of the attribute of interest within each geographical unit. The coherence constraint ensures that the weighted average of kriged estimates equals the areal datum.This approach is illustrated using health data (cancer rates aggregated at the county level) and population density surface as a kernel function. Simulations are conducted over two regions with contrasting county geographies: the state of Indiana and four states in the Western United States. In both regions, the deconvolution approach yields a point support semivariogram model that is reasonably close to the semivariogram of simulated point values. The use of this model in ATP kriging yields a more accurate prediction than a na?ve point kriging of areal data that simply collapses each county into its geographic centroid. ATP kriging reduces the smoothing effect and is robust with respect to small differences in the point support semivariogram model. Important features of the point-support semivariogram, such as the nugget effect, can never be fully validated from areal data. The user may want to narrow down the set of solutions based on his knowledge of the phenomenon (e.g., set the nugget effect to zero). The approach presented avoids the visual bias associated with the interpretation of choropleth maps and should facilitate the analysis of relationships between variables measured over different spatial supports.  相似文献   

3.
This paper presents a methodology to conduct geostatistical variography and interpolation on areal data measured over geographical units (or blocks) with different sizes and shapes, while accounting for heterogeneous weight or kernel functions within those units. The deconvolution method is iterative and seeks the point-support model that minimizes the difference between the theoretically regularized semivariogram model and the model fitted to areal data. This model is then used in area-to-point (ATP) kriging to map the spatial distribution of the attribute of interest within each geographical unit. The coherence constraint ensures that the weighted average of kriged estimates equals the areal datum.This approach is illustrated using health data (cancer rates aggregated at the county level) and population density surface as a kernel function. Simulations are conducted over two regions with contrasting county geographies: the state of Indiana and four states in the Western United States. In both regions, the deconvolution approach yields a point support semivariogram model that is reasonably close to the semivariogram of simulated point values. The use of this model in ATP kriging yields a more accurate prediction than a naïve point kriging of areal data that simply collapses each county into its geographic centroid. ATP kriging reduces the smoothing effect and is robust with respect to small differences in the point support semivariogram model. Important features of the point-support semivariogram, such as the nugget effect, can never be fully validated from areal data. The user may want to narrow down the set of solutions based on his knowledge of the phenomenon (e.g., set the nugget effect to zero). The approach presented avoids the visual bias associated with the interpretation of choropleth maps and should facilitate the analysis of relationships between variables measured over different spatial supports.  相似文献   

4.
The analysis of health data and putative covariates, such as environmental, socio-economic, behavioral or demographic factors, is a promising application for geostatistics. However, it presents several methodological challenges that arise from the fact that data is typically aggregated over irregular spatial supports and consists of a numerator and a denominator (e.g., population size). This paper presents an overview of recent developments in the field of health geostatistics, with an emphasis on three main steps in the analysis of areal health data: (1) estimation of the underlying disease risk, (2) detection of areas with significantly higher risk, and (3) analysis of relationships with putative risk factors. The analysis is illustrated by using age-adjusted cervix cancer mortality rates recorded from 1970 to 1994 of 118 counties in four Western USA states. Poisson kriging allows the filtering of noisy mortality rates computed from small population sizes, enhancing the correlation with two putative explanatory variables: percentage of habitants living below the federally defined poverty line, and percentage of Hispanic females. Area-to-point kriging formulation creates continuous maps of mortality risk, reducing the visual bias associated with the interpretation of choropleth maps. Stochastic simulation is used to generate realizations of cancer mortality maps, which allows one to quantify how uncertainty of the spatial distribution of health outcomes translates into uncertainty of the location of clusters of high values or the correlation with covariates. Finally, geographically-weighted regression highlights the non-stationarity in the explanatory power of covariates; the higher mortality values along the coast are better explained by the two covariates than the lower risk recorded in Utah.  相似文献   

5.
This paper presents the incorporation of a digital elevation model into the spatial prediction of water table elevation in Mazandaran province (Iran) using a range of interpolation techniques. The multivariate methods used are: linear regression (LR), cokriging (COK), kriging with an external drift (KED) and regression kriging (RK). The analysis is performed on 3 years (1987, 1997 and 2007) of water table elevation data from about 260 monitoring wells. Prediction performances of the different algorithms are compared with two univariate techniques, i.e. inverse distance weighting and ordinary kriging (OK), through cross validation and examination of the consistency of the generated maps with the natural phenomena. Significantly smaller prediction errors are obtained for four multivariate algorithms but, in particular, KED and RK outperform LR and COK for 3 years. The results show the potential for using elevation for a more precise mapping of water table elevation.  相似文献   

6.
The Bayesian Maximum Entropy (BME) method of spatial analysis and mapping provides definite rules for incorporating prior information, hard and soft data into the mapping process. It has certain unique features that make it a loyal guardian of plausible reasoning under conditions of uncertainty. BME is a general approach that does not make any assumptions regarding the linearity of the estimator, the normality of the underlying probability laws, or the homogeneity of the spatial distribution. By capitalizing on various sources of information and data, BME introduces an epistemological framework that produces predictive maps that are more accurate and in many cases computationally more efficient than those derived by traditional techniques. In fact, kriging techniques can be derived as special cases of the BME approach, under restrictive assumptions regarding the prior information and the data available. BME is a more rigorous approach than indicator kriging for incorporating soft data. The BME formulation, in fact, applies in a spatial or a spatiotemporal domain and its extension to the case of block and vector random fields is straightforward. New theoretical results are presented and numerical examples are discussed, which use the BME approach to account for important sources of knowledge in a systematic manner. BME can be useful in practical situations in which prior information can be used to compensate for the limited amount of measurements available (e.g., preliminary or feasibility study levels) or soft data are available that can be combined with hard data to improve mapping significantly. BME may be then viewed as an effort towards the development of a more general framework of spatial/temporal analysis and mapping, which includes traditional geostatistics as its limiting case, and it also provides the means to derive novel results that could not be obtained by traditional geostatistics.  相似文献   

7.
A comparative study on two interpolator methods for Bouguer anomaly mapping was performed in the El Kef-Ouargha region, Tunisia. In particular, we compare the results of minimum curvature gridding and kriging. We undertake a geostatistical study using both anisotropic and isotropic analysis for studding the spatial variability and kriging the random variable: “Bouguer anomaly”. The model parameters of each method are calculated to compare the results. The anisotropic analysis most closely approximates the measured data. Consequentially, the Bouguer anomaly and vertical gradient maps using anisotropic kriging have the best correlation with the geological map, best represent density distributions at depth and most closely approximate the measured anomaly amplitudes.  相似文献   

8.
Information on the spatial distribution of soil particle-size fractions (psf) is required for a wide range of applications. Geostatistics is often used to map spatial distribution from point observations; however, for compositional data such as soil psf, conventional multivariate geostatistics are not optimal. Several solutions have been proposed, including compositional kriging and transformation to a composition followed by cokriging. These have been shown to perform differently in different situations, so that there is no procedure to choose an optimal method. To address this, two case studies of soil psf mapping were carried out using compositional kriging, log-ratio cokriging, cokriging, and additive log-ratio cokriging; and the performance of Mahalanobis distance as a criterion for choosing an optimal mapping method was tested. All methods generated very similar results. However, the compositional kriging and cokriging results were slightly more similar to each other than to the other pair, as were log-ratio cokriging and additive log-ratio cokriging. The similar results of the two methods within each pair were due to similarities of the methods themselves, for example, the same variogram models and prediction techniques, and the similar results between the two pairs were due to the mathematical relationship between original and log-ratio transformed data. Mahalanobis distance did not prove to be a good indicator for selecting an optimal method to map soil psf.  相似文献   

9.
In stream sediment and soil surveys, samples represent mixtures of components from different geological environments. Such mixed samples are misclassified when using conventional “hard” cluster methods. In fuzzy clustering, each sample is allowed to belong to several clusters. Similar to element concentrations, these cluster contributions can be displayed in contour maps (e.g. kriging maps). The amount of an element that is explained by the cluster contribution and element residuals can be calculated. The modified fuzzy clustering algorithm called “limited fuzzy clusters” used in this paper avoids negative residuals.Stream sediment data of Sierra de San Carlos, Tamaulipas, Mexico are used to demonstrate the possibilities of limited fuzzy clustering in geochemical exploration and mapping. From the different drainage systems, 681 stream sediment samples were taken and analyzed for 24 elements. A nineteen-element data set was used to calculate limited fuzzy clusters and element residuals. The contribution values for the clusters and element residuals are displayed in contour maps. All geological units were outlined by the cluster contributions. Extended anomalies are characterized by their own cluster. Small anomalies are clearly identified from the element residuals.  相似文献   

10.
Cost and time are the two most important factors conditioning soil surveys. Since these surveys provide basic information for modelling and management activities, new methods are needed to speed the soil-mapping process with limited input data. In this study, the polypedon concept was used to extend the spatial representation of sampled pedons (point data) in order to train artificial neural networks (ANNs) for digital soil mapping (DSM). The input database contained 97 soil profiles belonging to 7 different soil series and 15 digital elevation model (DEM) attributes. Pedons were represented in raster format as one-cell areas. The corresponding polypedons were then spatially represented by neighbouring raster cells (e.g. 2 × 2, … up to 6 × 6 cells). The primary database contained 97 pedons (97 cells) that were extended up to 3492 cells (in the case of 6 × 6-cell regions). This approach employed test and validation areas to calculate the respective accuracies of data interpolation and extrapolation. The results showed increased accuracies in training and interpolation (test area) but a poor level of accuracy in the extrapolation process (validation area). However, the overall precision of all predictions increased considerably. Using only topographic attributes for extrapolation was not sufficient to obtain an accurate soil map. To improve prediction, other soil-forming factors, such as landforms and/or geology, should also be considered as input data in the ANN. The proposed method could help to improve existing soil maps by using DSM results in areas with limited soil data and to save time and money in soil survey work.  相似文献   

11.
Spatial distribution of concentrations of radon gas in the soil is important for defining high risk areas because geogenic radon is the major potential source of indoor radon concentrations regardless of the construction features of buildings. An area of southern Italy (Catanzaro-Lamezia plain) was surveyed to study the relationship between radon gas concentrations in the soil, geology and structural patterns. Moreover, the uncertainty associated with the mapping of geogenic radon in soil gas was assessed. Multi-Gaussian kriging was used to map the geogenic soil gas radon concentration, while conditional sequential Gaussian simulation was used to yield a series of stochastic images representing equally probable spatial distributions of soil radon across the study area. The stochastic images generated by the sequential Gaussian simulation were used to assess the uncertainty associated with the mapping of geogenic radon in the soil and they were combined to calculate the probability of exceeding a specified critical threshold that might cause concern for human health. The study showed that emanation of radon gas radon was also dependent on geological structure and lithology. The results have provided insight into the influence of basement geochemistry on the spatial distribution of radon levels at the soil/atmosphere interface and suggested that knowledge of the geology of the area may be helpful in understanding the distribution pattern of radon near the earth’s surface.  相似文献   

12.
Surface map of soil properties plays an important role in various applications in a watershed. Ordinary kriging (OK) and regression kriging (RK) are conventionally used to prepare these surface maps but generally need large number of regularly girded soil samples. In this context, REML-EBLUP (REsidual Maximum Likelihood estimation of semivariogram parameters followed by Empirical Best Linear Unbiased Prediction) shown capable but not fully tested in a watershed scale. In this study, REML-EBLUP approach was applied to prepare surface maps of several soil properties in a hilly watershed of Eastern India and the performance was compared with conventionally used spatial interpolation methods: OK and RK. Evaluation of these three spatial interpolation methods through root-mean-squared residuals (RMSR) and mean squared deviation ratio (MSDR) showed better performance of REML-EBLUP over the other methods. Reduction in sample size through random selection of sampling points from full dataset also resulted in better performance of REML-EBLUP over OK and RK approach. The detailed investigation on effect of sample number on performance of spatial interpolation methods concluded that a minimum sampling density of 4/km2 may successfully be adopted for spatial prediction of soil properties in a watershed scale using the REML-EBLUP approach.  相似文献   

13.
A key problem in the application of kriging is the definition of a local neighborhood in which to search for the most relevant data. A usual practice consists in selecting data close to the location targeted for prediction and, at the same time, distributed as uniformly as possible around this location, in order to discard data conveying redundant information. This approach may however not be optimal, insofar as it does not account for the data spatial correlation. To improve the kriging neighborhood definition, we first examine the effect of including one or more data and present equations in order to quickly update the kriging weights and kriging variances. These equations are then applied to design a stepwise selection algorithm that progressively incorporates the most relevant data, i.e., the data that make the kriging variance decrease more. The proposed algorithm is illustrated on a soil contamination dataset.  相似文献   

14.
Imprecise (fuzzy) information in geostatistics   总被引:2,自引:0,他引:2  
A methodology based on fuzzy set theory for the utilization of imprecise data in geostatistics is presented. A common problem preventing a broader use of geostatistics has been the insufficient amount of accurate measurement data. In certain cases, additional but uncertain (soft) information is available and can be encoded as subjective probabilities, and then the soft kriging method can be applied (Journel, 1986). In other cases, a fuzzy encoding of soft information may be more realistic and simplify the numerical calculations. Imprecise (fuzzy) spatial information on the possible variogram is integrated into a single variogram which is used in a fuzzy kriging procedure. The overall uncertainty of prediction is represented by the estimation variance and the calculated membership function for each kriged point. The methodology is applied to the permeability prediction of a soil liner for hazardous waste containment. The available number of hard measurement data (20) was not enough for a classical geostatistical analysis. An additional 20 soft data made it possible to prepare kriged contour maps using the fuzzy geostatistical procedure.This paper was presented at MGUS 87 Conference, Redwood City, California, 14 April 1987.  相似文献   

15.
 A thorough understanding of the characteristics of transmissivity makes groundwater deterministic models more accurate. These transmissivity data characteristics occasionally possess a complicated spatial variation over an investigated site. This study presents both geostatistical estimation and conditional simulation methods to generate spatial transmissivity maps. The measured transmissivity data from the Dulliu area in Yun-Lin county, Taiwan, is used as the case study. The spatial transmissivity maps are simulated by using sequential Gaussian simulation (SGS), and estimated by using natural log ordinary kriging and ordinary kriging. Estimation and simulation results indicate that SGS can reproduce the spatial structure of the investigated data. Furthermore, displaying a low spatial variability does not allow the ordinary kriging and natural log kriging estimates to fit the spatial structure and small-scale variation for the investigated data. The maps of kriging estimates are smoother than those of other simulations. A SGS with multiple realizations has significant advantages over ordinary kriging and even natural log kriging techniques at a site with a high variation in investigated data. These results are displayed in geographic information systems (GIS) as basic information for further groundwater study. Received: 27 August 1999 · Accepted: 22 February 2000  相似文献   

16.
Marine research survey data on fish stocks often show a small proportion of very high-density values, as for many environmental data. This makes the estimation of second-order statistics, such as the variance and the variogram, non-robust. The high fish density values are generated by fish aggregative behaviour, which may vary greatly at small scale in time and space. The high values are thus imprecisely known, both in their spatial occurrence and order of magnitude. To map such data, three indicator-based geostatistical methods were considered, the top-cut model, min–max autocorrelation factors (MAF) of indicators, and multiple indicator kriging. In the top-cut and MAF approaches, the variable is decomposed into components and the most continuous ones (those corresponding to the low and medium values) are used to guide the mapping. The methods are proposed as alternatives to ordinary kriging when the variogram is difficult to estimate. The methods are detailed and applied on a spatial data set of anchovy densities derived from a typical fish stock acoustic survey performed in the Bay of Biscay, which show a few high-density values distributed in small spatial patches and also as solitary events. The model performances are analyzed by cross-validating the data and comparing the kriged maps. Results are compared to ordinary kriging as a base case. The top-cut model had the best cross-validation performance. The indicator-based models allowed mapping high-value areas with small spatial extent, in contrast to ordinary kriging. Practical guidelines for implementing the indicator-based methods are provided.  相似文献   

17.
康庄 《地质与资源》2017,26(4):412-417
东北地区1∶5万区域地质图空间数据库从1999年度试点工作到2015年底持续近16年的数据库建设工作,收集了大量20世纪60年代以来东北地区开展的1∶5万区域地质调查工作所获取的基础地质成果资料,对东北地区完成的区调和建库工作程度及资料状况进行核查、摸底、整合.完成了382个标准图幅传统填图1∶5万区域地质图空间数据库建设工作.建库过程中建立了完善的质量监控体系,健全了空间数据验收的方法和流程,规范了基本的评分方法和成果评价等级.  相似文献   

18.
Geostatistical Mapping with Continuous Moving Neighborhood   总被引:1,自引:0,他引:1  
An issue that often arises in such GIS applications as digital elevation modeling (DEM) is how to create a continuous surface using a limited number of point observations. In hydrological applications, such as estimating drainage areas, direction of water flow is easier to detect from a smooth DEM than from a grid created using standard interpolation programs. Another reason for continuous mapping is esthetic; like a picture, a map should be visually appealing, and for some GIS users this is more important than map accuracy. There are many methods for local smoothing. Spline algorithms are usually used to create a continuous map, because they minimize curvature of the surface. Geostatistical models are commonly used approaches to spatial prediction and mapping in many scientific disciplines, but classical kriging models produce noncontinuous surfaces when local neighborhood is used. This motivated us to develop a continuous version of kriging. We propose a modification of kriging that produces continuous prediction and prediction standard error surfaces. The idea is to modify kriging systems so that data outside a specified distance from the prediction location have zero weights. We discuss simple kriging and conditional geostatistical simulation, models that essentially use information about mean value or trend surface. We also discuss how to modify ordinary and universal kriging models to produce continuous predictions, and limitations using the proposed models.  相似文献   

19.
Field variability of landslide model parameters   总被引:5,自引:1,他引:4  
 A data set of parameters (slope, soil depth and soil shear strength) relevant to spatially distributed modelling of shallow landslides triggered by rain and snowmelt events was determined from field measurements in 250 grid elements of dimensions 25 m (downslope)×10 m (across slope) in an area of 250 m×250 m on a hillslope in Scotland. These data provide an unusually detailed basis for the evaluation of spatial variability and uncertainty in model parameterisation. The variations in slope and soil strength are represented adequately by normal distributions; a Weibull distribution is suggested for the soil depth data. The factor of safety calculated at each point in the grid was shown partially to identify observed landslides, with a number of false predictions of occurrence. Trend analysis and semivariogram analysis of the data set suggest that the use of kriging could improve upon this approach to landslide prediction by providing areal estimates of parameters at the grid element scale with associated error bounds. Received: 30 October 1996 · Accepted: 25 June 1997  相似文献   

20.
This study uses factorial and indicator kriging methods with a geographic information system (GIS), to overlay and delineate the variation and pollution sources of soil heavy metals in fields in the north of Changhua County, Taiwan. Accordingly, the spatial variation and pollution probability patterns of soil cadmium, chromium and copper are estimated to support further environmental monitoring, remediation and planning. The overlay maps of industrial plants, irrigation channels and kriging estimates, constitute a GIS. This reveals that the short- and long-range variations and soil pollution by Cd, Cr and Cu strongly corresponded to the locations of irrigation systems and industrial plants in the area of study. The maps also verify most locations of suspected pollution sources from the GIS database. Moreover, the probability spatial patterns estimated by indicator kriging, based on the pollution thresholds of Cd, Cr and Cu, were also highly correlated with irrigation channels and industrial plants. The GIS, with factorial and indicator kriging under different combinations of variations and pollution probabilities of soil Cd, Cr and Cu, provide alternative scenarios for delineating the areas that contain high variation and high pollution probability of these heavy metals, to enable decision makers to identify pollution sources, and to further investigate and remedy soil pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号