首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groundwater management decisions are often founded upon estimates of aquifer hydraulic properties, recharge and the rate of groundwater usage. Too often hydraulic properties are unavailable, recharge estimates are very uncertain, and usage is unmetered or infrequently metered over only recent years or estimated using numerical groundwater models decoupled from the drivers of drawdown. This paper extends the HydroSight groundwater time-series package ( http://peterson-tim-j.github.io/HydroSight/ ) to allow the joint estimation of gross recharge, transmissivity, storativity, and daily usage at multiple production bores. A genetic evolutionary scheme was extended from estimating time-series model parameters to also estimating time series of usage that honor metered volumes at each production bore and produces (1) the best fit with the observed hydrograph and (2) plausible estimates of actual evapotranspiration and hence recharge. The reliability of the approach was rigorously tested. Repeated calibration of models for four bores produced estimates of transmissivity, storativity, and mean recharge that varied by a factor of 0.22-0.32, 0.13-0.2, and 0.03-0.48, respectively, when recharge boundary effects were low and the error in monthly, quarterly, and biannual metered usage was generally <10%. Application to the 30 observation bores within the Warrion groundwater management area (Australia), produced a coefficient of efficiency of ≥0.80 at 22 bores and ≥0.90 at 12 bores. The aquifer transmissivity and storativity were reasonably estimated, and were consistent with independent estimates, while mean gross recharge may be slightly overestimated. Overall, the approach allows greater insights from the available data and provides opportunity for the exploration of usage and climatic scenarios.  相似文献   

2.
Langseth DE  Smyth AH  May J 《Ground water》2004,42(5):689-699
Predicting the future performance of horizontal wells under varying pumping conditions requires estimates of basic aquifer parameters, notably transmissivity and storativity. For vertical wells, there are well-established methods for estimating these parameters, typically based on either the recovery from induced head changes in a well or from the head response in observation wells to pumping in a test well. Comparable aquifer parameter estimation methods for horizontal wells have not been presented in the ground water literature. Formation parameter estimation methods based on measurements of pressure in horizontal wells have been presented in the petroleum industry literature, but these methods have limited applicability for ground water evaluation and are based on pressure measurements in only the horizontal well borehole, rather than in observation wells. This paper presents a simple and versatile method by which pumping test procedures developed for vertical wells can be applied to horizontal well pumping tests. The method presented here uses the principle of superposition to represent the horizontal well as a series of partially penetrating vertical wells. This concept is used to estimate a distance from an observation well at which a vertical well that has the same total pumping rate as the horizontal well will produce the same drawdown as the horizontal well. This equivalent distance may then be associated with an observation well for use in pumping test algorithms and type curves developed for vertical wells. The method is shown to produce good results for confined aquifers and unconfined aquifers in the absence of delayed yield response. For unconfined aquifers, the presence of delayed yield response increases the method error.  相似文献   

3.
刘春平  邓亮  廖欣  万飞  石云 《地震》2010,30(4):50-57
气压作用下, 井-含水层系统中地下水流是一类流体力学问题。 本文应用井壁水流通量边界条件和气压作用下井壁内外水(孔)压平衡条件, 提出了一个井水位随气压变化的解析公式。 解析式表明, 气压系数随时段长度增加而增大, 并趋于气压常数; 气压系数随时段长度的变化只依赖于导水系数与井半径平方的比值(T/r2w), 而与气压变化过程无关; 气压常数只与含水层的一维荷载效率(B)有关, 而与导水系数和井半径无关。 解析解所反映的气压系数与时段长度的关系, 与南溪井实测序列数据分析结果具有很好的一致性。 根据气压系数随时段长度变化过程, 提出了一个参数估计方法, 应用于估计南溪井含水层气压常数和导水系数, 并对本文提出的参数估计方法进行了讨论。  相似文献   

4.
In this paper, we perform an inverse method to simultaneously estimate aquifer parameters, initial condition, and boundary conditions in groundwater modelling. The parameter estimation is extended to a complete inverse problem that makes the calibrated groundwater flow model more realistic. The adjoint state method, the gradient search method, and the least square error algorithm are combined to build the optimization procedure. Horizontal two‐dimensional groundwater flow in a confined aquifer is exemplified to demonstrate the correlation between unknowns, the contribution of observation, as well as the suitability of applying the inverse method. The correlation analysis shows the connection between storage coefficient and initial condition. Besides, transmissivity and boundary conditions are also highly correlated. More observations at different location and time are necessary to provide sufficient information. A time series of unsteady head is requested for estimation of storage coefficient and initial condition. Observation near boundary is very effective for boundary condition estimation. The observation at pumping well mostly contributes to the estimation of transmissivity. According to all observations, it is possible to identify parameters, initial condition, and boundary condition simultaneously. Furthermore, the results not only illustrate the traditional assumption of known boundary condition but also initial condition, which may cause an incorrect estimation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
We present a workflow to estimate geostatistical aquifer parameters from pumping test data using the Python package welltestpy . The procedure of pumping test analysis is exemplified for two data sets from the Horkheimer Insel site and from the Lauswiesen site, Germany. The analysis is based on a semi-analytical drawdown solution from the upscaling approach Radial Coarse Graining, which enables to infer log-transmissivity variance and horizontal correlation length, beside mean transmissivity, and storativity, from pumping test data. We estimate these parameters of aquifer heterogeneity from type-curve analysis and determine their sensitivity. This procedure, implemented in welltestpy , is a template for analyzing any pumping test. It goes beyond the possibilities of standard methods, for example, based on Theis' equation, which are limited to mean transmissivity and storativity. A sensitivity study showed the impact of observation well positions on the parameter estimation quality. The insights of this study help to optimize future test setups for geostatistical aquifer analysis and provides guidance for investigating pumping tests with regard to aquifer statistics using the open-source software package welltestpy .  相似文献   

6.
Accurate estimation of aquifer parameters, especially from crystalline hard rock area, assumes a special significance for management of groundwater resources. The aquifer parameters are usually estimated through pumping tests carried out on water wells. While it may be costly and time consuming for carrying out pumping tests at a number of sites, the application of geophysical methods in combination with hydro-geochemical information proves to be potential and cost effective to estimate aquifer parameters. Here a method to estimate aquifer parameters such as hydraulic conductivity, formation factor, porosity and transmissivity is presented by utilizing electrical conductivity values analysed via hydro-geochemical analysis of existing wells and the respective vertical electrical sounding (VES) points of Sindhudurg district, western Maharashtra, India. Further, prior to interpolating the distribution of aquifer parameters of the study area, variogram modelling was carried out using data driven techniques of kriging, automatic relevance determination based Bayesian neural networks (ARD-BNN) and adaptive neuro-fuzzy neural networks (ANFIS). In total, four variogram model fitting techniques such as spherical, exponential, ARD-BNN and ANFIS were compared. According to the obtained results, the spherical variogram model in interpolating transmissivity, ARD-BNN variogram model in interpolating porosity, exponential variogram model in interpolating aquifer thickness and ANFIS variogram model in interpolating hydraulic conductivity outperformed rest of the variogram models. Accordingly, the accurate aquifer parameters maps of the study area were produced by using the best variogram model. The present results suggest that there are relatively high value of hydraulic conductivity, porosity and transmissivity at Parule, Mogarne, Kudal, and Zarap, which would be useful to characterize the aquifer system over western Maharashtra.  相似文献   

7.
《Advances in water resources》2005,28(10):1057-1075
The theory of a pumping test or a slug test to measure aquifer transmissivity or storativity assumes that the aquifer properties are uniform around the well. The response of the drawdown to small spatial variations in aquifer properties in the volume of influence is determined by spatial weighting functions or Fréchet kernels, which in general are functions of space and time. The Fréchet kernels determine the effective “volume of influence” of the measurements at any time. Under the assumption that the well is a line sink we derive explicit analytical expressions for the Fréchet kernels for storativity and for transmissivity for both pumping and slug tests. We also derive the total sensitivity functions for uniform variations in storativity and transmissivity and show that they are the spatial integrals of the Fréchet kernels. We consider both the case of separate pumping and observation wells and also the radially symmetric case of observations made at the pumped or slugged well. The “volume of influence” is symmetric with respect to the pumping or slugged well and the observation well, and far from the well the contours of equal spatial sensitivity approach the shapes of ellipses with a well at each focus, rather than circles centered on the pumping well. We use the analytical solutions to investigate the nature of the singularities in the spatial sensitivity functions around the wells, which govern the importance of inhomogeneities close to the well or observation point.  相似文献   

8.
Edwards DA 《Ground water》2012,50(4):554-561
The ability to manipulate analytical expressions for aquifer drawdown can provide insights into groundwater flow processes and assist with assessing strengths and weaknesses of aquifer parameter estimation methods. In the Cooper and Jacob (1946) parameter estimation method, the antilog of the horizontal-axis intercept in a plot of drawdown vs. log(time) is referred to as time naught (t(0)), which is used for estimating storativity. This article briefly reviews traditional uses of the time-naught concept and then spends time introducing new insights and applications involving (1) time-naught/distance relationships, including ways to compensate for certain missing data; (2) use of time naught in a simple method providing a quick visual check of which data in a Cooper-Jacob plot are suitable for use in linear regression; (3) application of time naught, as determined for one well, in estimating the later minimum time for which data from a distant well can be used in the Cooper-Jacob method; (4) development of relationships between drawdown and time naught; (5) use of time naught in a simple algebraic equation to estimate drawdown at smaller times than feasible using the Cooper-Jacob method; and (6) employment of time naught and a vertical-axis intercept on a plot of drawdown vs. log(time) for evaluating storativity. This information may be useful to new hydrogeologists or others interested in further developing their analytical well hydraulics skills.  相似文献   

9.
A new method for the interpretation of pumping tests in leaky aquifers   总被引:4,自引:0,他引:4  
A novel methodology for the interpretation of pumping tests in leaky aquifer systems, referred to as the double inflection point (DIP) method, is presented. The method is based on the analysis of the first and second derivatives of the drawdown with respect to log time for the estimation of the flow parameters. Like commonly used analysis procedures, such as the type-curve approach developed by Walton (1962) and the inflection point method developed by Hantush (1956), the mathematical development of the DIP method is based on the assumption of homogeneity of the leaky aquifer layers. However, contrary to the two methods developed by Hantush and Walton, the new method does not need any fitting process. In homogeneous media, the two classic methods and the one proposed here provide exact results for transmissivity, storativity, and leakage factor when aquifer storage is neglected and the recharging aquifer is unperturbed. The real advantage of the DIP method comes when applying all methods independently to a test in a heterogeneous aquifer, where each method yields parameter values that are weighted differently, and thus each method provides different information about the heterogeneity distribution. Therefore, the methods are complementary and not competitive. In particular, the combination of the DIP method and Hantush method is shown to lead to the identification of contrasts between the local transmissivity in the vicinity of the well and the equivalent transmissivity of the perturbed aquifer volume.  相似文献   

10.
Aquifer parameter estimation using an incremental area method   总被引:2,自引:0,他引:2  
Theoretical well functions have been derived over the years to predict ground water level behaviour in aquifer systems under stress owing to groundwater extraction. The drawdown data collected during pump tests are typically analysed using graphical curve‐matching procedures to estimate aquifer parameters based on these well functions. Difficulty in aquifer characteristic identification and parameter estimation may arise when the field data do not perfectly match the drawdown curves obtained from the well functions. The present study provides a new method for the interpretation of aquifer pump tests which supplements the existing curve‐matching procedures in case ideal conditions do not exist; the proposed method provides a greater degree of flexibility in the data analysis for diagnostic tool purposes. The method, referred to as the Incremental Area Method (IAM) is based on integrating the logarithmic‐based drawdown curves within a discrete time and matching the results with a corresponding time integral of the Theis ( 1935 ) Well Function which governs ideal confined aquifers. The application of the proposed method to synthetically generated data and field data showed that IAM represents a viable method which yields information on potential non‐idealness of the aquifer and provides aquifer parameter estimates thus potentially overcoming drawdown data curve‐matching difficulties. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Estimation of aquifer hydraulic properties is essential for predicting the response of an aquifer to extractions and hence estimating the availability of the groundwater resources. Aquifer tests are commonly used for the estimation of aquifer properties; however, they can be expensive and often only characterize the short‐term response of the aquifer. This paper presents a time series modelling approach to estimating aquifer hydraulic properties. It is applied to 42 bores monitoring an unconfined aquifer within an irrigation region of south‐eastern Australia, and the resulting probabilistic estimate of hydraulic properties are evaluated against pumping test estimates. It is demonstrated that the time series modelling can provide a reliable estimate of the hydraulic properties that are typical of a very long‐term pumping test. Furthermore, the application of the time series modelling to 42 bores provided novel insights into the aquifer heterogeneity. We encourage others to further test the approach and the source code is available from: http://www.mathworks.com/matlabcentral/fileexchange/48546‐peterson‐tim‐j‐groundwater‐statistics‐toolbox Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Complexity in simulating the hydrological response in large watersheds over long times has prompted a significant need for procedures for automatic calibration. Such a procedure is implemented in the basin‐scale hydrological model (BSHM), a physically based distributed parameter watershed model. BSHM simulates the most important basin‐scale hydrological processes, such as overland flow, groundwater flow and stream–aquifer interaction in watersheds. Here, the emphasis is on estimating the groundwater parameters with water levels in wells and groundwater baseflows selected as the calibration targets. The best set of parameters is selected from within plausible ranges of parameters by adjusting the values of hydraulic conductivity, storativity, groundwater recharge and stream bed permeability. The baseflow is determined from stream flow hydrographs by using an empirical scheme validated using a chemical approach to hydrograph separation. Field studies determined that the specific conductance for components of the composite hydrograph were sufficiently unique to make the chemical approach feasible. The method was applied to the Big Darby Creek Watershed, Ohio. The parameter set selected for the groundwater system provides a good fit with the estimated baseflow and observed water well data. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
We developed a method to estimate aquifer transmissivity from the hydraulic-head data associated with the normal cyclic operation of a water supply well thus avoiding the need for interrupting the water supply associated with a traditional aquifer test. The method is based on an analytical solution that relates the aquifer's transmissivity to the standard deviation of the hydraulic-head fluctuations in one or more observation wells that are due to the periodic pumping of the production well. We analyzed the resulting analytical solution and demonstrated that when the observation wells are located near the pumping well, the solution has a simple, Dupuit like form. Numerical analysis demonstrates that the analytical solution can also be used for a quasi-periodic pumping of the supply well. Simulation of cyclic pumping in a statistically heterogeneous medium confirms that the method is suitable for analyzing the transmissivity of weakly or moderately heterogeneous aquifers. If only one observation well is available, and the shift in the phase of hydraulic-head oscillations between the pumping well and the observation well is not identifiable. Prior knowledge of aquifer's hydraulic diffusivity is required to obtain the value of the aquifer transmissivity.  相似文献   

14.
Analysis of borehole flow logs is a valuable technique for identifying the presence of fractures in the subsurface and estimating properties such as fracture connectivity, transmissivity and storativity. However, such estimation requires the development of analytical and/or numerical modeling tools that are well adapted to the complexity of the problem. In this paper, we present a new semi-analytical formulation for cross-borehole flow in fractured media that links transient vertical-flow velocities measured in one or a series of observation wells during hydraulic forcing to the transmissivity and storativity of the fractures intersected by these wells. In comparison with existing models, our approach presents major improvements in terms of computational expense and potential adaptation to a variety of fracture and experimental configurations. After derivation of the formulation, we demonstrate its application in the context of sensitivity analysis for a relatively simple two-fracture synthetic problem, as well as for field-data analysis to investigate fracture connectivity and estimate fracture hydraulic properties. These applications provide important insights regarding (i) the strong sensitivity of fracture property estimates to the overall connectivity of the system; and (ii) the non-uniqueness of the corresponding inverse problem for realistic fracture configurations.  相似文献   

15.
Current climate change models for the southeast UK predict changing rainfall patterns, with increased incidence of extreme events. The chalk aquifer in the UK and northern France is susceptible to groundwater‐induced flooding under such conditions. In this methodological study we apply a frequency domain analysis approach to the chalk aquifer to derive a transfer function between effective rainfall and groundwater level from 7 years of monitoring data from the North Heath Barn site, near Brighton. The derived transfer function was calibrated and validated against monitoring data and then used to predict groundwater level for rainfall models for high, medium and low emission scenarios from the UKCP09 database. The derived transfer function is most closely comparable to the linear aquifer model, despite evidence for both matrix and fracture or karst water flow in the chalk, with transmissivity and unconfined storativity at the catchment scale of 1548 m2 day?1 and 1.6 × 10?2. The application of the transfer function to UKCP09 rainfall data suggests that groundwater‐induced flooding may be about four times more frequent by 2040–2069 compared with 1961–1990 and seven times more frequent by 2070–2099. The model data also suggest an increase in the duration of groundwater minima relative to the reference period. Compared to deterministic modelling which requires detailed knowledge of aquifer heterogeneity and processes, the transfer function approach, although with limitations, is simpler, incorporating these factors into the analysis through frequency and phase coefficients, and thus may have the potential for groundwater risk assessment in other areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The self-calibrated method has been extended for the generation of equally likely realizations of transmissivity and storativity conditional to transmissivity and storativity data and to steady-state and transient hydraulic head data. Conditioning to transmissivity and storativity data is achieved by means of standard geostatistical co-simulation algorithms, whereas conditioning to hydraulic head data, given its non-linear relation to transmissivity and storativity, is achieved through non-linear optimization, similar to standard inverse algorithms. The algorithm is demonstrated in a synthetic study based on data from the WIPP site in New Mexico. Seven alternative scenarios are investigated, generating 100 realizations for each of them. The differences among the scenarios range from the number of conditioning data, to their spatial configuration, to the pumping strategies at the pumping wells. In all scenarios, the self-calibrated algorithm is able to generate transmissivity–storativity realization couples conditional to all the sample data. For the specific case studied here the results are not surprising. Of the piezometric head data, the steady-state values are the most consequential for transmissivity characterization. Conditioning to transient head data only introduces local adjustments on the transmissivity fields and serves to improve the characterization of the storativity fields.  相似文献   

17.
The estimation of recharge through groundwater model calibration is hampered by the nonuniqueness of recharge and aquifer parameter values. It has been shown recently that the estimability of spatially distributed recharge through calibration of steady‐state models for practical situations (i.e., real‐world, field‐scale aquifer settings) is limited by the need for excessive amounts of hydraulic‐parameter and groundwater‐level data. However, the extent to which temporal recharge variability can be informed through transient model calibration, which involves larger water‐level datasets, but requires the additional consideration of storage parameters, is presently unknown for practical situations. In this study, time‐varying recharge estimates, inferred through calibration of a field‐scale highly parameterized groundwater model, are systematically investigated subject to changes in (1) the degree to which hydraulic parameters including hydraulic conductivity (K) and specific yield (Sy) are constrained, (2) the number of water‐level calibration targets, and (3) the temporal resolution (up to monthly time steps) at which recharge is estimated. The analysis involves the use of a synthetic reality (a reference model) based on a groundwater model of Uley South Basin, South Australia. Identifiability statistics are used to evaluate the ability of recharge and hydraulic parameters to be estimated uniquely. Results show that reasonable estimates of monthly recharge (<30% recharge root‐mean‐squared error) require a considerable amount of transient water‐level data, and that the spatial distribution of K is known. Joint estimation of recharge, Sy and K, however, precludes reasonable inference of recharge and hydraulic parameter values. We conclude that the estimation of temporal recharge variability through calibration may be impractical for real‐world settings.  相似文献   

18.
In confined aquifers, the influence of neighboring active wells is often neglected when interpreting a pumping test. This can, however, lead to an erroneous interpretation of the pumping test data. This paper presents simple methods to evaluate the transmissivity (T) and storativity (S) of a confined aquifer under Theis conditions, when an interfering well starts pumping in the neighborhood of the tested well before the beginning of the test. These new methods yield better estimates of the T and especially S values than when the interfering well influence is neglected. They also permit to distinguish between interfering wells and other deviations from the Cooper‐Jacob straight line, such as impermeable boundaries. The new methods were then applied on data obtained from a numerical model. The new methods require knowing the pumping rate of the interfering well and the time elapsed since the pumping started in each well, but contrary to previous methods, they do not require the aquifer natural level at the beginning of the test, which is often unknown if the interfering well has started pumping before the tested well.  相似文献   

19.
In confined aquifers the influence of neighboring active wells is often neglected when interpreting a pumping test. This can, however, lead to an erroneous interpretation of the pumping test data. This article presents simple methods to evaluate the transmissivity tensor and storativity of an anisotropic confined aquifer when there is an interfering well in the neighborhood of the tested well. Two methods have been developed depending on whether the tested well or the interfering well is the first in operation. These new methods yield better estimates of the hydraulic parameters than when the influence of the interfering well is neglected. These methods have then been used on data obtained from numerical models with an interfering well and the results have been compared to an analytical method that neglects the influence of the interfering well. The methods require knowledge of the pumping rate of the interfering well and the time elapsed since the pumping started in each well. If the interfering well started pumping before the tested well, the method does not require knowledge of the aquifer piezometric level at the beginning of the test, which is often unknown in this case. As for the method without interference, at least three monitoring wells (MWs) are needed, the position of which influences the accuracy of the estimated parameters. Some recommendations concerning MWs position have been given to get more accurate results according to the sought parameter.  相似文献   

20.
Water level fluctuations induced by tidal strains can be analyzed to estimate the elastic properties, porosity, and transmissivity of the surrounding aquifer material. We review underutilized methods for estimating aquifer properties from the confined response to earth tides. The earth tide analyses are applied to an open well penetrating a confined carbonate aquifer. The resulting range of elastic and hydraulic aquifer properties are in general agreement with that determined by other investigators for the area of the well. The analyses indicate that passive monitoring data from wells completed in sufficiently stiff, low porosity formations can provide useful information on the properties of the surrounding formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号