首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Cretaceous phosphorites from the onshore of Tamil Nadu have been investigated for their origin and compared with those in the offshore. Cretaceous phosphorites occur as light brown to yellowish brown or white nodules in Karai Shale of the Uttatur Group in the onshore Cauvery basin. Nodules exhibit phosphatic nucleus encrusted by a chalky shell of carbonate. The nucleus of the nodules consists of light and dark coloured laminae, phosphate peloids/coated grains and detrital particles interspersed between the laminae. Scanning electron microscope (SEM) studies reveal trapping and binding activity of microbial filaments. A mat structure with linearly arranged microbial filaments and hollow, cell-based coccoid cyanobacterial mat are present. Nodules contain abundant carbonate fluorapatite, followed by minor calcite, quartz and feldspar. The P2O5 content of the phosphorites ranges from 18 to 26%. The CaO/P2O5, Sr and F contents are higher than that of pure carbonate fluorapatite. Concentrations of Si, Al, K, Fe, and Ti are low. We suggest that the nuclei of the nodules represent phosphate clasts related to phosphate stromatolites formed at intertidal conditions. At high energy levels the microbial mats were disintegrated into phosphate clasts, coated with carbonate and then reworked into Karai Shale. On the other hand, Quaternary phosphorites occur as irregular to rounded, grey coloured phosphate clasts at water depths between 180 and 320m on the continental shelf of Tamil Nadu. They exhibit grain-supported texture. Despite Quaternary in age, they also resemble phosphate stromatolites of intertidal origin and reworked as phosphate clasts onto the shelf margin depressions. Benthic microbial mats probably supplied high phosphorus to the sediments. Availability of excess phosphorus seems to be a pre-requisite for the formation of phosphate stromatolites.  相似文献   

2.
Samples of Fe-oxide-rich hydrothermal sediments were collected from active and inactive portions of the TransAtlantic Geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge. Clays separated from TAG metalliferous sediments in this study all consist of Al-poor nontronite. Oxygen isotope thermometry of the clays yields formation temperatures of 54-67°C for samples from the inactive Alvin mound compared with 81-96°C for samples from the active TAG site. The latter are the highest recorded temperatures for authigenic hydrothermal clays. Sr isotope analysis of the clays from the active mound suggests that they precipitated from seawater-dominated fluids, containing less than 15% hydrothermal end-member fluid. In contrast, nontronite from the inactive Alvin mound has 87Sr/86Sr values that closely resemble that of detrital North Atlantic clays, suggesting a dominantly continental source for the Sr. Rare earth element data are consistent with a significant detrital input to the inactive site but also demonstrate the extent of hydrothermal input to the low temperature fluid. Crystallographic fractionation of the trivalent REE is apparent in the heavy REE enrichments for all nontronite samples. The inferred formation-mechanism for nontronite-rich Fe-oxyhydroxide deposits at the surface of the active mound is by direct precipitation from low temperature fluids. At the inactive Alvin site, in contrast, the deposits form during alteration of pelagic sediments by diffuse fluids and replacement of biogenic carbonate with nontronite and Fe-oxyhydroxide. These two modes of formation are both important in seafloor hydrothermal settings where clay minerals are a significant component of the hydrothermal deposit.  相似文献   

3.
Sedimentary records of redox-sensitive trace elements hold significant potential as indicators of paleoceanographic environmental conditions. Records of Re can reveal the intensity of past reducing conditions in sediments at the time of deposition, whereas records of Ag may record the magnitude of past diatom fluxes to the seafloor. Confidence in paleoenvironmental reconstruction from records of either metal, however, requires it to have experienced negligible redistribution since deposition. This study examines diagenetic rearrangements of Re and Ag that occur in response to exposure to bottom-water O2 in environments of low sedimentation rate, including Madeira Abyssal Plain turbidites and eastern Mediterranean basin sapropels. Authigenic Re was remobilized quantitatively by oxidation but poorly retained by the underlying sediments. All records are consistent with previous work demonstrating that only a limited reimmobilization of Re occurs preferentially in Corg-rich, reducing sediments. Silver was also mobilized quantitatively by oxidation, but it was subsequently immobilized more efficiently in all cases as sharp peaks immediately into anoxic conditions below active oxidation fronts, and these peaks remain immobile in anoxic conditions during long-term burial. Comparison of Ag, S, and Se records from various cores suggests that Ag is likely to have been immobilized as a selenide, a mechanism previously proposed for Hg in similar situations (Mercone et al., 1999). Coexisting narrow peaks of Ag and Hg with Se offer a means of assessing whether oxidative burndown has ever occurred at the top of Corg- and sulfide-rich sedimentary units. Although these results suggest that caution must be used when inferring paleoenvironmental information from records of Ag and Re in cores with low sediment accumulation rates (<5 cm ka−1), they should not affect the promise that authigenic Ag and Re records hold for paleoenvironmental reconstruction in sediments with higher accumulation rates and where anoxic conditions have been maintained continuously.  相似文献   

4.
The distribution and rates of accumulation of Mo in marine deposits have been determined and compared with the same parameters for U and Mn. High concentrations of Mo are associated both with oxidizing environments represented by the presence of ferro-manganese oxide-rich sediments (where Mo/U ~- 3) and with reducing environments (where Mo/U is about unity). The supply of Mo by streams is more than adequate to balance the measured removal rate in normal deep-sea deposits and no submarine volcanic ‘emanations’ need be involved. On an ocean-wide basis, 4 · 3 μg Mo/cm2/1000 yr is supplied in solution by streams. Of this, 2·0 μg Mo/cm2/1000 yr is removed in deep-sea sediments and manganese nodules. The remaining 2·3 μg Mo/cm2/1000 yr is probably removed in primarily (but not exclusively) near-shore reducing sediments. The average Mo accumulation rate in these environments is about 1000 μg Mo/cm2/1000 yr; thus only 0·23 per cent of the world ocean area need be such reducing sites.  相似文献   

5.
Iodometric titration of deep sea sediment from cores at MANOP sites M and H indicate a particulate Mn oxidation state between 3.3 and 3.9 in the top 5 cm. Results from site H show a minimum in the Mn oxidation state at 1.5 cm depth indicating Mn reduction is occurring above the zone of pore water Mn oxidation. Using a simple box model, the rate of reduction is calculated to be 19 mg/cm2 kyr ? 77 mg/cm2 kyr, at least 5 times the flux of Mn to nodules in this region. Although no Mn oxidation state minimum is observed in site M sediments, oxic reduction is inferred from a particulate mass balance, indicating that a large fraction of the Mn rain to this site is not preserved in the sediments and must be remobilized. We suggest that the process of reduction in oxic or suboxic environments near the sediment-water interface may be an important mechanism controlling the concentration of Mn in sediments and provides a mechanism for supplying diagenetic Mn to the nodules at site H.  相似文献   

6.
The groundwater extracted from the unconfined Quaternary aquifer is the main source of water supply in El-Tur area. The area is bounded from the east by the elevated basement complex of Southern Sinai and from the west by El-Qabaliyat Ridge. The wadis dissecting these highlands form effective watersheds of the Quaternary aquifer. These wadis form areas of focused recharge. Recharge also occurs directly via the Quaternary sediments covering El-Qaa Plain. Subsurface lateral groundwater flow from the fractured basement contributes significant recharge to the aquifer as well. The aquifer sediment facies affect the type and quality of groundwater. In the eastern part where the aquifer is composed mainly of gravel and coarse sand with fragments of weathered basement, the Na-Cl-SO4 water dominates. In the west where the facies change is rapid and complex, many water types arise. The base exchange index (BEX) is positive in this part reflecting the role of clay minerals in changing the water types via cation exchange. In the east where clays are insignificant in the aquifer, the BEX is negative. In the western part next to El-Qabaliyat Ridge, the wells discharging from the calcareous sand zone have low groundwater salinities compared to the wells discharging from the alluvium. In general, the groundwater salinity increases in the direction of groundwater flow from the northeast to the southwest which reflects the dissolution of aquifer sediments. The concentration relationships between the major ions on one hand and chloride on the other reflect the dissolution of calcium carbonates, precipitation of K- and Mg-bearing minerals, and cation exchange of Ca for Na on clay minerals. The hydrochemical models support these reactions. In addition, they show that the effect of evaporation on the recharge water in the western catchment is about four times its effect on the eastern recharge water which reflects the rapid recharge through the wadis draining the fractured basement. Moreover, the contribution from the eastern catchment in sample No. 23 is more than four-folds the contribution from the western recharge area. The stable isotopes (2H and 18O) show that the Quaternary aquifer is recharging from recent rainfall. However, upward leakage of Paleogene groundwater (depleted in 18O) also occurs. The groundwater level map shows strong overpumping impact especially in the areas close to El-Tur city.  相似文献   

7.
A sedimentological study of Quaternary sediments from the northwestern part of the Barents Sea shows that their composition is controlled by the underlying Mesozoic bedrock and that very little sediment has been supplied from outside sources. The Quaternary sediments consist of Pleistocene glacial clays (moraines) and Holocene gravel, sand and mud, derived by erosion of the clay-rich moraines, which again have been derived from underlying Mesozoic rocks. On the shallow Spitsbergen Bank (30-100 m depth) we find a high energy facies of bioclastic carbonate sand and gravel and lag deposits of Mesozoic rock fragments from the underlying moraine. 14C-datings of the bioclastic carbonates (Molluscs and Barnacles) suggest that soft bottom conditions with Mya truncata prevailed in early Holocene time, succeeded by a hard bottom high energy environment with Barnacles in the last 2000-3000 years. This may be due to a southward movement of the oceanic polar front into the Spitsbergen Bank due to colder climate in Late Holocene (subatlantic) time, which at present day produces strong bottom currents down to 100 m depth. On the Spitsbergen Bank carbonate sedimentation has succeeded glacial sedimentation as a result of withdrawal of clastic sediment supply in Holocene time and high organic productivity because of upwelling. A similar mechanism may have been operating during earlier glaciations, i.e. in Late Precambrian time to produce an association of glacial and carbonate sediments although the biological precipitation was different at that time. In Late Precambrian time precipitation or carbonate by algaes may have occurred in colder water on the shelves due to higher saturation of carbonate in the sea water.  相似文献   

8.
Sedimentological, mineralogical, stable carbon and oxygen isotope determinations and biomarker analyses were performed on siderite concretions occurring in terrestrial silts to understand their formation and to characterize the sedimentary and diagenetic conditions favouring their growth. High δ13C values (6·4‰ on average) indicate that siderite precipitated in an anoxic environment where bacterial methanogenesis operated. The development of anoxic conditions during shallow burial was induced by a change in sedimentary environment from flood plain to swamp, related to a rise of the ground‐water table. Large amounts of decaying plant debris led to efficient oxygen consumption within the pore‐water in the peat. Oxygen depletion, in combination with a decrease in sedimentation rate, promoted anoxic diagenetic conditions under the swamp and favoured abundant siderite precipitation. This shows how a change in sedimentary conditions can have a profound impact on the early‐diagenetic environment and carbonate authigenesis. The concretions contain numerous rhizoliths; they are cemented with calcium‐rhodochrosite, a feature which has not been reported before. The rhodochrosite cement has negative δ13C values (?16·5‰ on average) and precipitated in suboxic conditions due to microbial degradation of roots coupled to manganese reduction. The exceptional preservation of the epidermis/exodermis and xylem vessels of former root tissues indicates that the rhodochrosite formed shortly after the death of a root in water‐logged sediments. Rhodochrosite precipitated during the initial stages of concretionary growth in suboxic microenvironments within roots, while siderite cementation occurred simultaneously around them in anoxic conditions. These suboxic microenvironments developed because oxygen was transported from the overlying oxygenated soil into sediments saturated with anoxic water via roots acting as permeable conduits. This model explains how separate generations of carbonate cements having different mineralogy and isotopic compositions, which would conventionally be regarded as cements precipitated sequentially in different diagenetic zones during gradual burial, can form simultaneously in shallow burial settings where strong redox gradients exist around vertically oriented permeable root structures.  相似文献   

9.
In a sequence of glacigenic sediments at Aberdaron, Foraminifera were obtained from samples located specifically in order to differentiate between opposing models of depositional environment. All the diamict samples yielded remarkably uniform assemblages, with similar numbers of benthic specimens and benthic species per unit weight of sediment, similar planktic : benthic ratios, and similar ratios of clearly allochthonous to possibly autochthonous elements. This is precisely as predicted by the terrestrial model of sedimentation, where all of the sediments are interpreted as being derived from the melting of glacier ice rich in marine debris entrained during passage along the Irish Sea Basin. The results lend no support to a glacial marine model, since no faunal responses to increasingly distal sedimentary environments are observed. However, the fauna is dominated by the Foraminifera Elphidium excavatum (Terquem) forma clavata Cushman, which is commonly assumed to indicate glacial marine conditions. The modern distribution of similar assemblages suggests that it is just as likely to represent the cold, reduced salinity conditions that would have prevailed in the northern Irish Sea Basin for much of the Quaternary.  相似文献   

10.
Below the zone where manganese is remobilized as Mn2+(aq), reductively cleaned foraminifera in deep sea sediments have much higher MnCa than those in core tops and sediment traps. MnCa ranges from less than 20 × 10?6 in and above the MnO2 maximum to as high as 700 × 10?6 in reducing Panama Basin sediments. The most plausible explanation for this enrichment is that the tests are coated with Mn carbonate overgrowths. These coatings can account for a significant proportion of the Mn in reduced deep-sea sediments. Uptake of manganous ion by carbonate may explain the absence of Mn nodules in areas of high carbonate accumulation. Extreme degrees of overgrowth can alter foram trace element values, but this artifact can be avoided by avoiding foraminifera with high Mn/Ca.  相似文献   

11.
Geochemistry of Peruvian near-surface sediments   总被引:6,自引:0,他引:6  
Sixteen short sediment cores were recovered from the upper edge (UEO), within (WO) and below (BO) the oxygen minimum zone (OMZ) off Peru during cruise 147 of R/V Sonne. Solids were analyzed for major/trace elements, total organic carbon, total inorganic carbon, total sulfur, the stable sulfur isotope composition (δ34S) of pyrite, and sulfate reduction rates (SRR). Pore waters were analyzed for dissolved sulfate/sulfide and δ34S of sulfate. In all cores highest SRR were observed in the top 5 cm where pore water sulfate concentrations varied little due to resupply of sulfate by sulfide oxidation and/or diffusion of sulfate from bottom water. δ34S of dissolved sulfate showed only minor downcore increases. Strong 32S enrichments in sedimentary pyrite (to −48‰ vs. V-CDT) are due to processes in the oxidative part of the sulfur cycle in addition to sulfate reduction. Manganese and Co are significantly depleted in Peruvian upwelling sediments most likely due to mobilization from particles settling through the OMZ, whereas release of both elements from reducing sediments only seems to occur in near-coastal sites. Cadmium, Mo and Re are exceptionally enriched in WO sediments (<600 m water depth). High Re and moderate Cd and Mo enrichments are seen in BO sediments (>600 m water depth). Re/Mo ratios indicate anoxic and suboxic conditions for WO and BO sediments, respectively. Cadmium and Mo downcore profiles suggest considerable contribution to UEO/WO sediments by a biodetrital phase, whereas Re presumably accumulates via diffusion across the sediment-water interface to precipitation depth. Uranium is distinctly enriched in WO sediments (due to sulfidic conditions) and in some BO sediments (due to phosphorites). Silver transfer to suboxic BO sediments is likely governed by diatomaceous matter input, whereas in anoxic WO sediments Ag is presumably trapped due to sulfide precipitation. Cadmium, Cu, Zn, Ni, Cr, Ag, and T1 predominantly accumulate via biogenic pre-concentration in plankton remains. Rhenium, Sb, As, V, U and Mo are enriched in accordance with seawater TE availability. Lead and Bi enrichment in UEO surface sediments is likely contributed by anthropogenic activity (mining). Accumulation rates of TOC, Cd, Mo, U, and V from Peruvian and Namibian sediments exceed those from the Oman Margin and Gulf of California due to enhanced preservation off Peru and Namibia.  相似文献   

12.
The sediment succession of Lake Emanda in the Yana Highlands was investigated to reconstruct the regional late Quaternary climate and environmental history. Hydro-acoustic data obtained during a field campaign in 2017 show laminated sediments in the north-western and deepest (up to ̃15 m) part of the lake, where a ̃6-m-long sediment core (Co1412) was retrieved. The sediment core was studied with a multi-proxy approach including sedimentological and geochemical analyses. The chronology of Co1412 is based on 14C AMS dating on plant fragments from the upper 4.65 m and by extrapolation suggests a basal age of c. 57 cal. ka BP. Pronounced changes in the proxy data indicate that early Marine Isotope Stage (MIS) 3 was characterized by unstable environmental conditions associated with short-term temperature and/or precipitation variations. This interval was followed by progressively colder and likely drier conditions during mid-MIS 3. A lake-level decline between 32.0 and 19.1 cal. ka BP was presumably related to increased continentality and dry conditions peaking during the Last Glacial Maximum (LGM). A subsequent rise in lake level could accordingly have been the result of increased rainfall, probably in combination with seasonally high meltwater input. A milder or wetter Lateglacial climate increased lake productivity and vegetation growth, the latter stabilizing the catchment and reducing clastic input into the lake. The Bølling-Allerød warming, Younger Dryas cooling and Holocene Thermal Maximum (HTM) are indicated by distinct changes in the environment around Lake Emanda. Unstable, but similar-to-present-day climatic and environmental conditions have persisted since c. 5 cal. ka BP. The results emphasize the highly continental setting of the study site and therefore suggest that the climate at Lake Emanda was predominantly controlled by changes in summer insolation, global sea level, and the extent of ice sheets over Eurasia, which influenced atmospheric circulation patterns.  相似文献   

13.
长江口晚新生代沉积物的物源研究: REE和Nd同位素制约*   总被引:14,自引:19,他引:14  
长江三角洲地区第四纪以来堆积了200多米厚的碎屑沉积物,主要由河湖相和滨浅海相组成,构成了多个沉积旋回。选择长江口地区一个320m深的PD钻孔,运用多通道等离子体质谱MC ICP-MS方法,开展沉积物中的REE和Nd同位素组成分析,研究了上新世以来三角洲地区沉积物物源的变化。沉积物中REE和Nd同位素组成具有明显的变化规律,Ce呈弱的负异常,介于0.83~0.99之间,而Eu呈现中等亏损,在0.53~0.73之间变化。岩芯中上新统沉积物中Ce异常变化大,而Eu亏损相对第四系沉积物更显著。143 Nd/144 Nd比值在钻孔中变化较小,介于0.511975~0.5122367之间,平均值为0.512062。相关分析揭示粒度和化学风化对Nd同位素组成影响小。REE和Nd同位素判别图解揭示河口地区上新统沉积物主要来自长江流域中、下游的近源物源区,而第四系沉积物的物源虽然存在一定的变化,但是总体上与上新统沉积物来源明显不同,主要来自更广泛的流域物源区,尤其是长江上游的风化物质被大量输运到河口三角洲地区。在第四纪构造和气候因素控制下,古长江水系具有不同的演化阶段,流域源岩经历的风化作用强度也不同,因此河流沉积物的源汇过程也相应地发生变化。  相似文献   

14.
Shingled Quaternary debris flow lenses on the north-east Newfoundland Slope   总被引:1,自引:0,他引:1  
Debris flow deposits are the principal component of Quaternary continental slope sediments between the north-east Newfoundland Shelf and central Orphan Basin. In seismic profiles, these deposits occur as shingled, elongate, acoustically transparent lenses with their long axes orientated downslope. Deposits of individual flows form positive mounds on the sea floor; subsequent flows were diverted by the pre-existing topography into bathymetric lows between older debris flow deposits. These deposits show a large variation in the area of sea floor covered by individual flows (about 60–1000 km2), average thickness of deposits (9–37 m) and volume of sediment displaced (1–27 km3). The ratio of average thickness to a measure of deposit diameter, termed the aspect ratio, has a threefold variation from 0·0006 to 0·0021. Very low depositional slopes and low aspect ratios suggest relatively low viscosities, probably due to inmixing of water during downslope transport. Stratified sediments form three distinct horizons and are locally interbedded with the debris flow deposits. These are mainly hemipelagic deposits. The slope and rise to the west of the Orphan Basin are constructional in character. The apparent absence of upper slope erosional features and the abundance of debris flow deposits on the slope suggest that the supply of sediment to the continental slope occurred predominantly during times of maximum extent of Quaternary glacial ice. The ice sheet grounding line during several glacial maxima must have been situated at or near the present shelf break, supplying vast amounts of sediment directly to the upper slope. Oversteepening and subsequent slope failures fed material into deeper water.  相似文献   

15.
The composition of river water, sediments, and pore waters (down to 30 cm below the bed) of Las Catonas Stream was studied to analyze the distribution of trace elements in a peri-urban site. The Las Catonas Stream is one of the main tributaries of Reconquista River, a highly polluted water course in the Buenos Aires Province, Argentina. The semi-consolidated Quaternary sediments of the Luján Formation are the main source of sediments for Las Catonas Stream. The coarse-grained fraction in the sediments is mainly composed of tosca (calcretes), intraclasts, bone fragments, glass shards, quartz, and aggregates of fine-grained sediments together with considerably amounts of vegetal remains. The clay minerals are illite, illite–smectite, smectite, and kaolinite. For the clay-sized fraction, the external surface area values are mostly between 70 and 110 m2g?1, although the fraction at 15 cm below the bottom of the river shows a lower surface area of 12 m2g?1. The N2 adsorption–desorption isotherms at 77 K for this sample display a behavior indicative of non-porous or macroporous material, whereas the samples above and below present a typical behavior of mesoporous materials with pores between parallel plates (slit-shaped). As, Cr, Cu, and Cd concentrations increase down to 15 cm depth in the sediments, where the highest trace element and total organic carbon (TOC) concentrations were found, and then decrease toward the bottom of the core. Except for As, the levels of the other heavy metals show higher concentration in surficial waters than in pore waters. Distribution coefficients between the sediments, pore water, and surficial water phases indicate that As is released from the sediments to the pore and surficial waters. Cu content strongly correlates with TOC (mainly from vegetal remains), suggesting that this element is mainly bound to the organic phase.  相似文献   

16.
Laboratory experiments on reagent-grade calcium carbonate and carbonate rich glacial sediments demonstrate previously unreported kinetic fractionation of carbon isotopes during the initial hydrolysis and early stages of carbonate dissolution driven by atmospheric CO2. There is preferential dissolution of Ca12CO3 during hydrolysis, resulting in δ13C-DIC values that are significantly lighter isotopically than the bulk carbonate. The fractionation factor for this kinetic isotopic effect is defined as εcarb. εcarb is greater on average for glacial sediments (−17.4‰) than for calcium carbonate (−7.8‰) for the < 63 μm size fraction, a sediment concentration of 5 g L−1 and closed system conditions at 5°C. This difference is most likely due to the preferential dissolution of highly reactive ultra-fine particles with damaged surfaces that are common in subglacial sediments. The kinetic isotopic fractionation has a greater impact on δ13C-DIC at higher CaCO3:water ratios and is significant during at least the first 6 h of carbonate dissolution driven by atmospheric CO2 at sediment concentrations of 5 g L−1. Atmospheric CO2 dissolving into solution following carbonate hydrolysis does not exhibit any significant equilibrium isotopic fractionation for at least ∼ 6 h after the start of the experiment at 5°C. This is considerably longer than previously reported in the literature. Thus, kinetic fractionation processes will likely dominate the δ13C-DIC signal in natural environments where rock:water contact times are short <6-24 h (e.g., glacial systems, headwaters in fluvial catchments) and there is an excess of carbonate in the sediments. It will be difficult apply conventional isotope mass balance techniques in these types of environment to identify microbial CO2 signatures in DIC from δ13C-DIC data.  相似文献   

17.
Arsenic (As) concentrations as high as 179 μg/L have been observed in shallow groundwater in the Alberta’s Southern Oil Sand Regions. The geology of this area of Alberta includes a thick cover (up to 200 m) of unconsolidated glacial deposits, with a number of regional interglacial sand and gravel aquifers, underlain by marine shale. Arsenic concentrations observed in 216 unconsolidated sediment samples ranged from 1 and 17 ppm. A survey of over 800 water wells sampled for As in the area found that 50% of the wells contained As concentrations exceeding drinking water guidelines of 10 μg/L. Higher As concentrations in groundwater were associated with reducing conditions. Measurements of As speciation from 175 groundwater samples indicate that As(III) was the dominant species in 74% of the wells. Speciation model calculations showed that the majority of groundwater samples were undersaturated with respect to ferrihydrite, suggesting that reductive dissolution of Fe-oxyhydroxides may be the source of some As in groundwater. Detailed mineralogical characterization of sediment samples collected from two formations revealed the presence of fresh framboidal pyrite in the deeper unoxidized sediments. Electron microprobe analysis employing wavelength dispersive spectrometry indicated that the framboidal pyrite had variable As content with an average As concentration of 530 ppm, reaching up to 1840 ppm. In contrast, the oxidized sediments did not contain framboidal pyrite, but exhibited spheroidal Fe-oxyhydroxide grains with elevated As concentrations. The habit and composition suggest that these Fe-oxyhydroxide grains in the oxidized sediment were an alteration product of former framboidal pyrite grains. X-ray absorption near edge spectroscopy (XANES) indicated that the oxidized sediments are dominated by As(V) species having spectral features similar to those of goethite or ferrihydrite with adsorbed As, suggesting that Fe-oxyhydroxides are the dominant As carriers. XANES spectra collected on unoxidized sediment samples, in contrast, indicated the presence of a reduced As species (As(−I)) characteristic of arsenopyrite and arsenian pyrite. The results of the mineralogical analyses indicate that the oxidation of framboidal pyrite during weathering may be the source of As released to shallow aquifers in this region.  相似文献   

18.
Relationships among Th and Ra isotopes in nodule, sediment and water phases at MANOP Site S establish the most likely source for Th in the nodules, the frequency of nodule turning, and the similarity of micro and macro nodules. Manganese nodules and bottom waters have 230Th232Th activity ratios considerably higher than other phases at this site suggesting that sea water is the likely source of Th for the nodules. Similar 230Th232Th activity ratios in nodule tops and bottoms and in certain cases departure from expected 226Ra230Th activity ratios in nodule tops and bottoms indicate that the nodules rotate every one to ten thousand years. The micro nodules have diffusion coefficients of Ra similar to macro nodule bottoms. I suggest that they may act as a carrier phase for transporting metals through oxic sediments to nodules.  相似文献   

19.
Samples of chert nodules, diagenetic carbonates and evaporites (gypsum/anhydrite) collected from the gypsiferous limestones of the Kef Eddour Member (Ypressian‐Priabonian) near Metlaoui and Sehib (Tunisia) show selective silicification with great variety in the silicified by‐products. Based on δ13C values, which support an organic origin for the carbon, carbonates replaced evaporites microbially through bacterial sulphate reduction. Observations and results suggest two scenarios for chert formation that are related to the rate and timing of diagenetic carbonate replacement of the evaporites (anhydrite/gypsum). In the absence of early diagenetic carbonate phases, silica with δ18O values from +25 to +28·6‰ [standard mean ocean water (SMOW)] replaced the outer parts of anhydrite nodules at pH < 9. In contrast, pore‐fluid pH values > 9 in the innermost parts of the anhydrite nodules prevented silica precipitation. The record of this chemical barrier is preserved in the microquartz rims and geode features that formed in the inner parts of the nodules after dissolution of the anhydrite nucleus. The microbial diagenetic replacement of evaporites (bacterial sulphate reduction) by carbonates (calcite, aragonite and dolomite) favoured silica replacement of carbonates rather than evaporites. Silica, with δ18O signature of +21 to +26‰ (SMOW), replaced carbonates on a volume‐for‐volume basis, yielding a more siliceous groundmass, and accounting for 90–95% of the nodules. The relatively higher δ18O values of quartz replacing anhydrite can be explained by a diagenetic fluid in equilibrium with mixed (meteoric/marine) to marine water. The lower δ18O values of the quartz that replaced the diagenetic carbonates are ascribed to flushing by meteoric water in a later diagenetic stage. The silica supply for chert formation could be derived from the reworked bio‐siliceous deposits (diatomites) to the west of the basin [vestiges of an opal‐CT precursor undetectable by X‐ray diffraction (XRD) were revealed by δ29Si magic‐angle‐spinning nuclear magnetic resonance investigations], diagenesis of the extraformational and overlying clay‐rich beds (the host limestones are clay‐poor as shown by XRD measurements), and minor volcanogenic and hydrothermal contributions during early diagenetic stages.  相似文献   

20.
Lithospermum (Boraginaceae) belongs to a small group of plant taxa that accumulate biogenic carbonate in their fruits. In this genus, carbonate incrustations form in the cells of the epidermis and sclerenchyma of the pericarp. Fossil Lithospermum fruits (nutlets) with well-preserved calcified tissues commonly occur in Quaternary sediments and cultural layers. We tested the suitability of biogenic carbonate of Lithospermum fruits for radiocarbon dating using a total of 15 AMS measurement results from four modern and 11 fossil samples. The 14C data from modern samples suggest that Lithospermum utilises only atmospheric carbon to synthesise calcite in the nutlets. In general, the ages determined through 14C dating of fossil fruitscorresponded well with the absolute-age intervals for archaeological sites over the last 5000 yr. Biogenic carbonate of Lithospermum fruits, like that of Celtis, represents a new source of chronological information for late Quaternary studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号