首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tephrostratigraphy of lake sediments in the Endinger Bruch provides the first robust age model for the Lateglacial palynological records of Vorpommern (north‐east Germany). Cryptotephra investigations revealed six tephra layers within sediments spanning from Open vegetation phase I (~Bølling, ~15 ka) to the Early Holocene Betula/Pinus forest phase (~Pre‐boreal, ~10.5 ka). Four of these layers have been correlated with previously described tephra layers found in sites across Europe. The Laacher See Tephra (Eifel Volcanic Field) is present in very high concentrations within sediments of the Lateglacial Betula (/Pinus) forest phase (~Allerød). The Vedde Ash (Iceland) lies midway through Open vegetation phase III (~Younger Dryas). The Hässeldalen and the Askja tephras (Iceland) lie in the Early Holocene Betula/Pinus forest phase (~Preboreal). These tephra layers have independently derived age estimates, which have been imported into the Endinger Bruch record. Furthermore, the layers facilitate direct correlation of the regional vegetation record with other palaeoenvironmental archives, which contain one or more of the same tephra layers, from Greenland to Southern Europe. In doing this, localized variations are confirmed in some aspects of the pollen stratigraphy; however, transitions between the main vegetation phases appear to occur synchronously (within centennial errors) with the equivalent environmental transitions observed in sites across the European continent. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Four cores from southwestern Sweden are presented together with their tephra geochemistry. Two cryptotephra horizons were confirmed geochemically in the cores, the Vedde Ash and the Hässeldalen Tephra. The Lateglacial Hässeldalen Tephra (11 360–11 300 cal. a BP) offers great potential as a regional isochrone to add a new degree of certainty to the deglaciation chronology of southern Sweden, including the extent of glacial Lake Bolmen. In addition, the geographical distribution of the Hässeldalen Tephra has recently been extended outside of Sweden, making it an important time‐marker horizon in northern Europe. There are potential difficulties, however. Proper identification of the actual isochrone is complicated by the vertical pattern of shard distribution, which could be the result of several eruptive events, as well as by the fact that shards from the 10‐ka Askja horizon (10 500–10 350 cal. a BP) were found in close stratigraphical proximity. The geochemical data presented are the result of improved EPMA methodology, which significantly reduces sodium mobilization. The results therefore have slightly altered values, which has consequences for classifying new finds when they are compared with previous data for geochemically similar tephras. Finally, potential indications of the Borrobol/Penifiler horizon are presented, although the existence of the horizon could not be confirmed geochemically. This highlights the need to retrieve cores from different locations within a basin based on an analysis of basin morphology if horizons are to be located.  相似文献   

3.
We present a Lateglacial and early Holocene chironomid‐based July air temperature reconstruction from Foppe (1470 m a.s.l.) in the Swiss Southern Alps. Our analysis suggests that chironomid assemblages have responded to major and minor climatic fluctuations during the past 17 000 years, such as the Oldest Dryas, the Younger Dryas and the Bølling/Allerød events in the Lateglacial and the Preboreal Oscillation at the beginning of the Holocene. Quantitative July air temperature estimates were produced by applying a combined Norwegian and Swiss temperature inference model consisting of 274 lakes to the fossil chironomid assemblages. The Foppe record infers average July air temperatures of ca. 9.9 °C during the Oldest Dryas, 12.2 °C during most of the Bølling/Allerød and 11.1 °C for the Younger Dryas. Mean July air temperatures during the Preboreal were 14 °C. Major temperature changes were observed at the Oldest Dryas/Bølling (+2.7 °C), the Allerød/Younger Dryas (?2 °C) and the Younger Dryas/Holocene transitions (+3.9 °C). The temperature reconstruction also shows centennial‐scale coolings of ca. 0.8–1.4 °C, which may be synchronous with the Aegelsee (Greenland Interstadial 1d) and the Preboreal Oscillations. A comparison of our results with other palaeoclimate records suggests noticeable temperature gradients across the Alps during the Lateglacial and early Holocene. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Palynological and sedimentological analyses of a sedimentary sequence sampled at Hauterive/Rouges‐Terres, Lake Neuchâtel (Switzerland) provide documentation of changes in vegetation and lake‐level during the Bølling, Younger Dryas and Preboreal pollen zones, and have allowed a comparison with sequences covering the same period from other sites located in the western part of the Swiss Plateau. The Juniperus–Hippophaë zone (regional pollen assemblage zone (RPAZ) CHb‐2, first part of the Bølling, ca. 14 650–14 450 cal. yr BP) was characterised by a generally low lake‐level. A weak rise occurred during this zone. The Juniperus–Hippophaë to Betula zone transition coincided with a lake‐level lowering, interrupted by a short‐lived but marked phase of higher lake‐level recorded at the neighbouring site of Hauterive‐Champréveyres, but not present at Hauterive/Rouges‐Terres owing to an erosion surface. Shortly after the beginning of the Betula zone (RPAZ CHb‐3, second part of the Bølling, ca 14 450–14 000 cal. yr BP), a marked rise in lake‐level occurred. It was composed of two successive periods of higher level, coinciding with high values of Betula, separated by a short episode of relatively lower lake‐level associated with raised values in Artemisia and other non‐arboreal pollen. The last part of RPAZ CHb‐3 saw a fall in lake‐level. The lower lake‐levels during RPAZ CHb‐2 to early RPAZ CHb‐3 can be correlated with the abrupt warming at the beginning of the Greenland Interstadial (GI) 1e thermal maximum. The successive episodes of higher lake‐level punctuating the GI 1e might be linked to the so‐called Intra‐Bølling Cold Oscillations identified from several palaeoclimatic records in the North Atlantic area, and also documented in oxygen‐isotope data sets from Swiss Plateau lakes. The Hauterive/Rouges‐Terres lake‐level record provides evidence for marked climatic drying through the second part of the Younger Dryas event (GS1), during the GS1–Preboreal (RPAZ CHb‐4b–4c) transition (except for a rise at ca. 11 450–11 400 cal. yr BP), and at the RPAZ CHb‐4c–5 (Preboreal–Boreal) transition, following the Preboreal Oscillation (after 11 150 cal. yr BP). The Preboreal Oscillation coincided with higher lake‐levels, its end being followed by a rapid expansion of Corylus, Quercus, Ulmus and Tilia. The Hauterive/Rouges‐Terres lake‐level record suggests that radiocarbon plateau at 12 600, 10 000 and 9500 14C yr BP corresponded to periods of generally lower lake‐level. This suggests that an increase in solar activity may have contributed to both climatic dryness and a decrease in atmospheric radiocarbon content. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
A chironomid–July air temperature inference model based on chironomid assemblages in the surface sediments of 81 Swiss lakes was used to reconstruct Late Glacial July air temperatures at Lac Lautrey (Jura, Eastern France). The transfer‐function was based on weighted averaging–partial least squares (WA‐PLS) regression and featured a leave‐one‐out cross‐validated coefficient of determination (r2) of 0.80, a root mean square error of prediction (RMSEP) of 1.53 ° C, and was applied to a chironomid record consisting of 154 samples covering the Late Glacial period back to the Oldest Dryas. The model reconstructed July air temperatures of 11–12 ° C during the Oldest Dryas, increasing temperatures between 14 and 16.5 ° C during the Bølling, temperatures around 16.5–17.0 ° C for most of the Allerød, temperatures of 14–15 ° C during the Younger Dryas and temperatures of ca. 16.5 ° C during the Preboreal. The Lac Lautrey record features a two‐step July air temperature increase after the Oldest Dryas, with an abrupt temperature increase of ca. 3–3.5 ° C at the Oldest Dryas/Bølling transition followed by a more gradual warming between ca. 14 200 and 13 700 BP. The transfer‐function reconstructs a less rapid cooling at the Allerød/Younger Dryas transition than other published records, possibly an artefact caused by the poor analogue situation during the earliest Younger Dryas, and an abrupt warming at the Younger Dryas/Holocene transition. During the Allerød, two centennial‐scale 1.5–2.0 ° C coolings are apparent in the record. Although chronologically not well constrained, the first of these cold events may be synchronous with the beginning of the Gerzensee Oscillation. The second is inferred just before deposition of the Laachersee tephra at Lac Lautrey and is therefore coeval with the end of the Gerzensee Oscillation. In contrast to the Greenland oxygen isotope records, the Lac Lautrey palaeotemperature reconstruction lacks a clearly defined Greenland Interstadial (GI) event 1d and the decreasing temperature trend during the Bølling/Allerød Interstadial. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents an event stratigraphy based on data documenting the history of vegetation cover, lake‐level changes and fire frequency, as well as volcanic eruptions, over the Last Glacial–early Holocene transition from a terrestrial sediment sequence recovered at Lake Accesa in Tuscany (north‐central Italy). On the basis of an age–depth model inferred from 13 radiocarbon dates and six tephra horizons, the Oldest Dryas–Bølling warming event was dated to ca. 14 560 cal. yr BP and the Younger Dryas event to ca. 12 700–11 650 cal. yr BP. Four sub‐millennial scale cooling phases were recognised from pollen data at ca. 14 300–14 200, 13 900–13 700, 13 400–13 100 and 11 350–11 150 cal. yr BP. The last three may be Mediterranean equivalents to the Older Dryas (GI‐1d), Intra‐Allerød (GI‐1b) and Preboreal Oscillation (PBO) cooling events defined from the GRIP ice‐core and indicate strong climatic linkages between the North Atlantic and Mediterranean areas during the last Termination. The first may correspond to Intra‐Bølling cold oscillations registered by various palaeoclimatic records in the North Atlantic region. The lake‐level record shows that the sub‐millennial scale climatic oscillations which punctuated the last deglaciation were associated in central Italy with different successive patterns of hydrological changes from the Bølling warming to the 8.2 ka cold reversal. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
A Lateglacial and early Holocene sequence of coleopteran assemblages is described from La Taphanel in the Massif Central, France. The site is a sediment-filled small lake at an altitude of almost 1000 m. The insect fauna provides evidence for a detailed palaeoecological reconstruction, and in particular enables a reconstruction of climatic changes at the close of the last glaciation. A sudden climatic warming occurs at about 13000 yr BP followed by a temperate episode equivalent in time to the Bølling period. There is clear evidence of a short cold period between the Bølling and Allerød that is approximately equivalent to the Older Dryas period. The Allerød phase is decidedly cooler than the Bølling, as is shown by the Coleoptera from several sites in northwest Europe. A clear Younger Dryas signal is provided by the Coleoptera, with climates similar in severity to those of the glacial period. The climatic improvement at the start of the Holocene is also sudden, so that by Preboreal times temperatures were equivalent to those of the present day.  相似文献   

8.
High‐resolution gravity cores and box cores from the North Icelandic shelf have been studied for palaeoceanographic history based on lithological and biostratigraphical foraminiferal data. Results from two outer shelf cores covering the last 13.6 k 14C yr BP are presented in this paper. The sediments accumulated in north–south trending basins on each side of the Kolbeinsey Ridge at water depths of ca. 400 m. Sedimentation rates up to 1.5 m kyr−1 are observed during the Late‐glacial and Holocene. The Vedde and Saksunarvatn tephras are present in the cores as well as the Hekla 1104. A new tephra, KOL‐GS‐2, has been identified and dated to 13.4 k 14C yr BP, and another tephra, geochemically identical to the Borrobol Tephra, has been found at the same level. At present, the oceanographic Polar Front is located on the North Icelandic shelf, which experiences sharp oceanographic surface boundaries between the cold East Icelandic Current and the warmer Irminger Current. Past changes in sedimentological and biological processes in the study area are assumed to be related to fluctuations of the Polar Front. The area was deglaciated before ca. 14 kyr BP, but there is evidence of ice rafting up to the end of the GS‐1 (Greenland Stadial 1, Younger Dryas) period, increasing again towards the end of the Holocene. Foraminiferal studies show a relatively strong GS‐2 (pre‐13 kyr BP) palaeo‐Irminger Current, followed by severe cooling and then by unstable conditions during the remainder of the GI‐1 (Greenland Interstadial 1, Bølling–Allerød) and GS‐1 (Younger Dryas). Another cooling event occurred during the Preboreal before the Holocene current system was established at about 9 kyr BP. After a climatic optimum between 9 and 6 kyr BP the climate began to deteriorate and fluctuate. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
A pollen‐inferred vegetation shift, from pioneer birch–pine woodland to mixed pine–summergreen oak forests, in the southern Alpine forelands, is commonly attributed to a centennial‐scale warming that occurred between the Gerzensee Oscillation (GO) and the Younger Dryas. Two microtephra layers bracketing the Younger Dryas onset (the Laacher See Tephra and the Vedde Ash) improve the chronology at Lago Piccolo di Avigliana (northern Italy) and allowed accurate correlation with Central European records where the GO is clearly detected. We used pollen percentages, pollen accumulation rates (PARs) and plant macrofossils to assess the population dynamics of Quercus, and leaf‐cuticle analysis for a better taxonomic identification of Quercus. Our results indicate that the species that was locally present was probably Quercus robur. PARs suggest that the population expansion started as early as the Bølling and followed an exponential increase through time. We attribute this gradual shift to increasing summer temperatures and longer growing seasons which contrast with a gradually decreasing temperature trend as recorded in Greenland ice cores and in Central Europe. Breaks or set‐backs in the PAR record may indicate the biotic response to minor Lateglacial cooling events of different life‐history stages in the Quercus population. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Analyses of two infilled lakes in Blekinge, southeast Sweden, indicate the presence of at least three tephra horizons of Termination 1 and early Holocene age. Geochemical analyses confirm the presence of the Borrobol Tephra, the Askja Tephra (10,000 14C yr B.P.), and one previously unreported tephra of Icelandic origin. Extending the limits of the Borrobol Tephra to Scandinavia illustrates that this ash is far more widespread than previously realized and is therefore, an important marker horizon for determining the rate and timing of the initial warming at the start of Greenland Interstade 1 (GI-1) within Europe. The relatively unknown Askja Tephra and the newly discovered Hässeldalen Tephra are stratigraphically placed at the Younger Dryas/Preboreal transition. This paper demonstrates the suitability and success associated with the extraction techniques for tracing microtephra horizons in areas distal to volcanic sources.  相似文献   

11.
The late‐glacial Bølling period was first identified by Johs. Iversen on the basis of pollen results from Lake Bølling Sø in Denmark. Because there were no radiocarbon dates from the sequence the Bølling Chronozone (12 000–13 000 14C yr BP) was later established on the basis of dates from other sites. A new project is reinvestigating the sediments from the Bølling Sø sequence with AMS radiocarbon dating and multiproxy analyses. Here we present results of AMS radiocarbon dating, macrofossil analyses, cladoceran analyses (Cladocera concentrations and chydorid ephippia) and Pediastrum analyses (concentrations). The AMS dates on land plant remains show that the lower part of the sequence is around 12 500 14C yr BP, and thus clearly pre‐dates the Allerød chronozone. However, construction of a chronology for the sequence was problematic, partly because of reworking of macroscopic plant remains. The climate ameliorated after glacial conditions to such an extent that growth of plants could begin at ca. 12 500 14C yr BP, but the results of multiproxy analyses show little evidence for a further warming period during the pre‐Allerød part of the sequence. Lake productivity was low, and tree birch rare or maybe absent. This may reflect widespread occurrence of dead ice, unstable soils, heavy in‐wash of minerogenic matter to the lake, resulting in turbid water and rapid sedimentation. The early pioneer vegetation was characterised by Salix polaris and Dryas octopetala, and by herbs. The Allerød Chronozone, and especially its initial part, appears to have been relatively warm but reduced cladoceran concentrations and increased proportion of chydorid ephippia suggest that climate cooled in the middle Allerød and that the late Allerød was colder than the early part. The early Younger Dryas was probably colder than the late Younger Dryas. Clear warming is apparent at the beginning of the Holocene, where the first macrofossil evidence of trees (Betula pubescens, Populus tremula) is found. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Coccoliths were studied from the ODP Hole 1002C and core PL07‐39PC in the Cariaco Basin. Increases in Emiliania huxleyi are synchronous with decreases of Gephyrocapsa oceanica and vice versa. A new index (GEX) based on the relative abundances of these two taxa is proposed, and correlates with various other proxies. It is shown that GEX can serve as upwelling proxy. This confirms that the Intertropical Convergence Zone shifted north during the Bølling/Allerød, south during the Younger Dryas and back north during the Preboreal. The upwelling proxy shows few discrepancies with the terrigenous record. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The presence of marl deposits belonging to the Lateglacial period in a former lake basin at Lundin Tower in Fife, Scotland has allowed palaeoenvironmental investigations by means of carbonate δ13C and δ18O, and organic matter δ13C, in addition to palynology. The variations that emerge reveal strong similarities between the pollen and isotope records and these are interpreted as reflecting climatic shifts. The classic Late-glacial pattern of Oldest Dryas–Bølling–Older Dryas–Allerød–Younger Dryas may be evident and other climatic oscillations are shown to have occurred not only during the Allerød but also in the Preboreal. The problem of the time discordance between isotopic change and pollen representation is addressed through explanations involving lags in plant colonization. A comparison of the δ18O records from 43 sites across Europe reveals two different regional patterns, which raises fundamental questions over the nature of Late-glacial palaeoclimates.  相似文献   

14.
A minerogeniclayer occurs in early postglacial organic sediments from five maar lakes (West Eifel Volcanic Field, Germany). The mineralogy and stratigraphic position of this tephra suggests that it is related to the youngest German volcano, Ulmener Maar, nearby. Radiocarbon dating of wood from the base of the Ulmener Maar Tephra at two locations provide ages in agreement with an accelerator mass spectrometer 14C date for the minerogenic layer from sediments of Lake Holzmaar situated 13 km south-west of Ulmener Maar. The mean radiocarbon age is 9 560 years BP. Dating by varve chronology provides an age of 10017 years VT (varve time in years before 1950) or 10 895 years corrected VT. Based on palynology the Ulmener Maar Tephra was deposited at the end of the Preboreal. High values of natural remnant magnetization intensity, typical of pyroclastic material, confirm that this minerogenic layer differs in composition from other clastic deposits of the sedimentary record. Geochemical analyses reveal increased values of total trace elements for the Laacher See Tephra and Ulmener Maar Tephra. An isopach map based on thickness variations of the Ulmener Maar Tephra at five investigated maar lakes indicates that the tephra was mainly transported to the south west.  相似文献   

15.
Burki, V., Hansen, L., Fredin, O., Andersen, T. A., Beylich, A. A., Jaboyedoff, M., Larsen, E. & Tønnesen, J.‐ F. 2009: Little Ice Age advance and retreat sediment budgets for an outlet glacier in western Norway. Boreas, Vol. 39, pp. 551–566. 10.1111/j.1502‐3885.2009.00133.x. ISSN 0300‐9483 Bødalsbreen is an outlet glacier of the Jostedalsbreen Ice Field in western Norway. Nine moraine ridges formed during and after the maximum extent of the Little Ice Age (LIA). The stratigraphy of proglacial sediments in the Bødalen basin inside the LIA moraines is examined, and corresponding sediment volumes are calculated based on georadar surveys and seismic profiling. The total erosion rates (etot) by the glacier are determined for the periods AD 1650–1930 and AD 1930–2005 as 0.8 ± 0.4 mm/yr and 0.7 ± 0.3 mm/yr, respectively. These rates are based on the total amount of sediment delivered to the glacier margin. The values are almost one order of magnitude higher than total erosion rates previously calculated for Norwegian glaciers. This is explained by the large amount of pre‐existing sediment that was recycled by Bødalsbreen. Thus, the total erosion rate must be considered as a composite of eroded bedrock and of removed pre‐existing sediments. The total erosion rate is likely to vary with time owing to a decreasing volume of easily erodible, unconsolidated sediment and till under the glacier. A slight increase in the subglacial bedrock erosion is expected owing to the gradually increasing bedrock surface area exposed to subglacial erosion.  相似文献   

16.
We tested the response of lacustrine testate amoebae (thecamoebians) to climate and environmental changes for the Lateglacial–Holocene transition. The palaeoenvironmental history of the study site (Lake Lautrey, Jura Mountains, eastern France) was previously established based on high‐resolution multi‐proxy studies of the same core. The present study is characterised by a high taxonomic resolution (54 taxa), inclusion of small species (down to 25 µm) and high total counts (>500 individuals per sample on average). Changes in the composition of testate amoeba assemblages (dominant species and assemblage structure), as well as in the accumulation rate (tests cm?2 a?1), corresponded to major climatic phases (i.e. Oldest Dryas, Bølling–Allerød Interstadial, Younger Dryas, Preboreal) as well as changes in organic matter inputs. Furthermore, decreases in the accumulation rate characterised minor short‐lived cooling events, such as Older Dryas event or Gerzensee oscillation. However, the Preboreal oscillation, which was well registered by other proxies at Lake Lautrey, could not be recognised in the testate amoeba record. This work demonstrates that lacustrine testate amoebae can be used for palaeoclimatic and palaeoecological reconstructions. Nevertheless, a better understanding of the relation between climate, organic matter and lacustrine testate amoebae requires further high‐resolution studies based on multi‐proxy approaches and the development of appropriate modern analogues. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Bennike, O., Knudsen, K. L., Abrahamsen, N., Böcher, J., Cremer, H. & Wagner, B. 2010: Early Pleistocene sediments on Store Koldewey, northeast Greenland. Boreas, Vol. 39, pp. 603–619. 10.1111/j.1502‐3885.2010.00147.x. ISSN 0300‐9483. Marine Quaternary deposits, here named the Store Koldewey Formation, are found at ~120 m above sea level in northeast Greenland (76°N). The sequence is referred to the Olduvai normal polarity subchron at 1.95–1.78 Ma BP based on palaeomagnetic studies (palaeomagnetically reversed), amino acid epimerization ratios and evidence from marine and non‐marine fossils. The sediments and the fauna show that the sequence was deposited on a mid or inner shelf, and some elements of the marine mollusc and foraminiferal assemblages indicate water temperatures between ?1 and +1 °C and seasonal sea ice cover during deposition. Mean summer air temperatures were around 6 °C higher than at present, as demonstrated by the occurrence of southern extralimital terrestrial species. Well‐preserved remains of land plants indicate that the adjacent land area was dominated by sub‐arctic forest‐tundra with the trees Larix and Betula, shrubs, herbs and mosses. Most of the species represented as fossils have recent circumpolar geographical ranges. An extinct brachiopod species and an extinct gastropod species have been found, but the other macrofossils are referred to extant species. The brachiopod is erected as a new genus and species, Laugekochiana groenlandica. Correlation of the Koldewey Formation with the Île de France Formation farther to the north is suggested. Member A of the Kap København Formation in North Greenland is referred to the Late Pliocene, whereas Member B of the Kap København Formation is suggested to be slightly older than the Store Koldewey Formation.  相似文献   

18.
Here we present the results of a detailed cryptotephra investigation through the Lateglacial to early Holocene transition, from a new sediment core record obtained from Lake Hämelsee, Germany. Two tephra horizons, the Laacher See Tephra (Eifel Volcanic Field) and the Saksunarvatn Ash (Iceland), have been previously described in this partially varved sediment record, indicating the potential of the location as an important Lateglacial tephrochronological site in northwest Europe. We have identified three further tephra horizons, which we correlate to: the c. 12.1 ka BP Vedde Ash (Iceland), the c. 11 ka BP Ulmener Maar tephra (Eifel Volcanic Field) and the c. 10.8 ka BP Askja‐S tephra (Iceland). Three additional cryptotephra deposits have been found (locally named HÄM_T1616, HÄM_T1470 and HÄM_T1456‐1455), which cannot be correlated to any known eruption at present. Geochemical analysis of the deposits suggests that these cryptotephras most likely have an Icelandic origin. Our discoveries provide age constraints for the new sediment records from Lake Hämelsee and enable direct stratigraphical correlations to be made with other tephra‐bearing sites across Europe. The new tephrostratigraphical record, within a partially varved Lateglacial sediment record, highlights the importance of Lake Hämelsee as a key site within the European tephra lattice.  相似文献   

19.
Detailed 10Be and 14C dating and supporting pollen analysis of Alpine Lateglacial glacial and landslide deposits in the Hohen Tauern Mountains (Austria) constrain a sequence‐based stratigraphy comprising a major landslide (13.0±1.1 ka) overlain by till and termino‐lateral moraines of an advancing (12.6±1.0 ka) and retreating (11.3±0.8 ka) glacier in turn overlain by a minor landslide (10.8±1.1 ka). These results define glacier activity during the Younger Dryas age Egesen stadial bracketed by landslide activities during the Bølling‐Allerød interstadial and the Preboreal. In contrast to recent studies on Holocene glaciation in the Alps, no traces of any Holocene glacier advance bigger than during the Little Ice Age are documented. Furthermore, this study demonstrates the advantages of using an allostratigraphical approach based on unconformity‐bounded sedimentary units as a tool for glacial stratigraphy in formerly glaciated mountain regions, rather than a stratigraphy based on either isolated morphological features or lithostratigraphical characteristics.  相似文献   

20.
Lyså, A., Hjelstuen, B. O. & Larsen, E. 2009: Fjord infill in a high‐relief area: Rapid deposition influenced by deglaciation dynamics, glacio‐isostatic rebound and gravitational activity. Boreas, 10.1111/j.1502‐3885.2009.00117.x. ISSN 0300‐9483. Seismic profiles and gravity cores have been collected from the previously glaciated Nordfjord system on the west coast of Norway. The results give new information about the deglaciation history of the area and contribute to our understanding of fjord fill in high relief areas. During the last deglaciation, up to 360 m of sediments was deposited in the 135 km long fjord system. Shortly after the coastal area became ice‐free, ~12 300 14C years BP, the first ice‐marginal deposits were formed, probably due to a minor glacier re‐advance. The greatest volume of sediments in the fjord was deposited during the Allerød ice recession period, the Younger Dryas re‐advance and the succeeding ice retreat period until the ice disappeared from the fjord in early Preboreal. During the Allerød, the fjord was ice‐free and glaciomarine stratified sediments were deposited. The ice margin is suggested to have been located just west of Lake Strynevatnet before the advance during the Younger Dryas. In the late phase of the Younger Dryas, and within the succeeding ~1000 years, the glacio‐isostatic rebound was rapid, and extensive re‐sedimentation took place. Slide activities continued into mid‐Holocene, albeit with less intensity and were followed by normal and calm marine conditions that prevailed until the present. One huge rock avalanche into the fjord took place between 2200 and 1800 14C yr BP, probably triggering a tsunami and several slides in the fjord. Even though glacigenic sediments totally dominate in terms of sediment volume, the present study underlines the importance of re‐sedimentation and other gravitational processes in such fjord settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号