首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
该文根据CloudSat卫星搭载的毫米波雷达(CPR)和CALIPSO卫星搭载的激光雷达(CALIOP)联合探测反演2007—2010年南京地区的冰云物理特性,并通过毫米波雷达和激光雷达的对比分析,结果表明:冰云变化趋势随年份先增加后减少,且春夏季发生概率均大于秋冬季;云底高度主要分布在7~8 km之间,云顶高度主要分布在8~12 km之间,云底和云顶高度的最大平均值均出现在2009年,分别为10.07 km、11.69 km,平均值均随年份呈先减后增再减的趋势;冰云冰水含量值主要分布在0~0.005 0 g/m~3内,其值大小与出现的概率呈负相关,平均值随年份呈先增后减再增的趋势;粒子有效半径主要集中在20.0~50.0μm内,均值随年份呈逐渐递减的趋势。  相似文献   

2.
基于Cloud Sat-CALIPSO(Cloud Sat–Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations)卫星观测资料,分析了全球总云量和8类云的云量、云底高、云顶高、云厚度的水平和垂直分布。分析结果表明,全球平均总云量为66.7%,其中卷云(Ci)和层积云(Sc)云量之和与其他6类云量总和相当,是全球云量最多的两类云。积状云云量呈现从赤道向极地递减的特征,层状云则相反,反映了二者不同的生成环境,同时下垫面地形和天气系统也严重影响云的分布。8类云的高度及厚度特征有显著差异。Ci的云底高度和云顶高度都较高,厚度则较薄;高层云(As)和高积云(Ac)的云底高度和云顶高度都位于大气中层,但As比Ac出现的高度高且厚度大;层云(St)、层积云和积云(Cu)的云底高度和云顶高度都很低,属于薄的低云;雨层云(Ns)和深对流云(DC)云底较低但云顶伸展很高,归属于厚云类。总体而言,海洋上云底高度较陆地低;赤道等大气不稳定地区,云底较高,云厚度较大;高原地区则表现出"高云不高,低云不低,云厚较薄"的特征。  相似文献   

3.
杨冰韵  刘健  贾煦 《大气科学》2020,44(5):1013-1022
卷云在大气辐射中扮演着重要角色,对天气系统和气候变化产生重要影响。相比传统地基观测手段,卫星遥感更容易探测到高层卷云的信息,本文利用CALIOP主动遥感仪器可获取较为准确的薄卷云特性的特点,针对MODIS被动遥感探测器反演的薄卷云云顶高度的偏差开展订正研究。研究选取2013~2017年京津冀地区MODIS云产品,结合CALIPSO卫星的卷云云顶高度数据,基于交叉验证的方法得到线性拟合方案,对MODIS卷云云顶高度进行订正。订正后的MODIS与CALIPSO卷云云顶高度差值的分布区间由?3~2 km变为?2.0~2.5 km,峰值由?0.8 km左右变为0.2 km左右。订正效果随云顶高度和云光学厚度的不同有所变化,其中较低层卷云和光学薄卷云的订正效果更明显。  相似文献   

4.
云顶温度和云顶高度作为基本的云参数,在云的热辐射强迫估计,航空气象保障,数值天气预报,天气气候研究等方面具有十分重要的意义。FY-3D/MERSI-II云顶温度产品基于云在红外波段的发射率假设,利用两个红外分裂窗通道(11.0 μm、12.0 μm)结合一维变分方法寻找最优云顶温度层,再利用数值天气预报廓线产品插值反演对应的云顶高度和压强。利用AQUA/MODIS所提供的云产品数据对FY-3D/MERSI-II云顶温度、云顶高度、云顶压强产品进行精度检验,结果表明:FY-3D/MERSI-II水云云顶温度精度为-1.2±4.6 K,云顶高度精度为1.4±1.8 km,云顶压强精度为-140.9±114.5 hPa;厚冰云云顶温度精度为7.0±6.0 K,云顶高度精度为-1.0±0.9 km,云顶压强精度为37.1±36.0 hPa;混合云云顶温度精度为1.5±8.5 K,云顶高度精度为0.8±2.2 km,云顶压强精度为-87.4±157.8 hPa,单层卷云和多层云的反演偏差较大。辐射传输模式在云顶性质反演中有十分关键的作用,但目前对冰云特别是卷云的性质认识不足,因此如何精确描述冰晶辐射特性,提高冰云特别是卷云辐射传输的模拟精度将是下一步的工作重点。   相似文献   

5.
半干旱地区卷云特征的激光雷达探测   总被引:1,自引:1,他引:0  
刘瑞金  张镭  王宏斌 《大气科学》2011,35(5):863-870
利用兰州大学半干旱气候与环境观测站( SACOL) 2007年4~1 1月微脉冲激光雷达(MPL-4 B)观测资料,统计分析了卷云的高度、厚度及其变化特征.采用透过率方法计算了卷云光学厚度,得到了卷云光学厚度与卷云厚度和云底高度的相关关系.结果表明,SACOL卷云出现的平均海拔高度为10.16±1.32 km;卷云厚度...  相似文献   

6.
大兴安岭是我国重要生态资源保护区,深入分析该区域云物理特性参量分布特征,对了解复杂地形区域气候变化及人工影响天气等具有重要意义。基于CloudSat-CALIPSO(CloudSat-Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations)卫星观测资料,分析了大兴安岭地区云层的宏、微观物理特征,结果表明:大兴安岭地区年平均云出现频率为59.5%,主要以高层云、卷云和层积云为主,春夏季云发生频率高于秋冬季。云层主要以薄云为主,61.41%的云厚度不超过2 km,云顶高度、云底高度分别呈现双峰型和单峰型分布形式。云垂直结构特征为单层云的出现频率最高,占到总云量的69.19%,随着云层数的增加,云的发生频率逐渐降低。大兴安岭地区云中液态水含量丰富,年平均值达244.41 mg·m^(-3),约为冰水含量年平均值的4倍,有83.2%的云水含量集中在低空5 km以下的区域。水滴粒子有效粒径和数浓度的年平均值分别为15.86μm和34.47个·cm^(-3),均小于冰晶粒子平均值。云中含水量和有效粒径随高度呈现单峰型分布形式,而云滴粒子数浓度则在低空呈现为双峰型分布形式。  相似文献   

7.
青藏高原(下称高原)地区是中国气候的敏感区,为准确认识其上空的卷云特征,利用MODIS的M YD06二级云产品数据,对高原地区卷云的概率分布、云顶高度、粒子有效半径以及光学厚度进行了统计分析。结果表明:(1)卷云在3月和4月出现概率最高,10 12月出现概率最低。在全年中,卷云概率分布为双峰型,1 4月为一个高峰期,7 8月为另一个高峰期;两个低值期出现在5 6月和912月。(2)6月和10月卷云云顶高度的概率分布会产生显著的变化。卷云云顶高度平均最大值出现在7 8月,最小值出现在1 2月。(3)卷云的粒子有效半径主要分布在5~40μm之间,15~25μm间概率最大。卷云粒子尺度平均最大值出现在8 9月,最小值出现在12月至次年2月。(4)卷云的光学厚度主要分布在0~40之间,0~10间概率最大。卷云光学厚度最大值出现在8 9月,最小值出现在12月至次年2月。  相似文献   

8.
青藏高原(下称高原)地区是中国气候的敏感区,为准确认识其上空的卷云特征,利用MODIS的M YD06二级云产品数据,对高原地区卷云的概率分布、云顶高度、粒子有效半径以及光学厚度进行了统计分析。结果表明:(1)卷云在3月和4月出现概率最高,10 12月出现概率最低。在全年中,卷云概率分布为双峰型,1 4月为一个高峰期,7 8月为另一个高峰期;两个低值期出现在5 6月和912月。(2)6月和10月卷云云顶高度的概率分布会产生显著的变化。卷云云顶高度平均最大值出现在7 8月,最小值出现在1 2月。(3)卷云的粒子有效半径主要分布在5~40μm之间,15~25μm间概率最大。卷云粒子尺度平均最大值出现在8 9月,最小值出现在12月至次年2月。(4)卷云的光学厚度主要分布在0~40之间,0~10间概率最大。卷云光学厚度最大值出现在8 9月,最小值出现在12月至次年2月。  相似文献   

9.
利用2003-2016年的CERES SSF(Clouds and the Earth"s Radiant Energy System Single Scanner Foorprint) 数据,对东亚不同区域的单层卷云物理特性进行研究。结果表明:(1)单层卷云量在东亚地区为25%-46%,低值区分布在青藏高原和云贵高原;单层卷云云厚多为1.2-2.4 km,除南部地区外,东亚其他区域的单层卷云在冬季较厚。(2)东亚地区单层卷云冰粒子等效半径范围集中在22-32 μm,东部海域年平均值在14年中均为最大。冰水柱含量范围集中在12-30 g/m2,西部地区为主要高值区,14年的年平均值均大于24 g/m2。(3)单层卷云光学厚度的高值区(1.7-2.1)分布在青藏高原及其附近,低值多出现在西太平洋上空。东亚五个子区域的云光学厚度均在春季较大。  相似文献   

10.
郑倩  孙杭媛  潘欣  顾振海  黄亿  叶飞 《气象科学》2022,42(3):390-401
利用2008年9月—2016年8月的CloudSat卫星资料对发生在我国低纬度陆地区域(5°~36.5°N,78°~124°E)的卷云物理特征进行统计分析,并分别讨论东部沿海、中部、西部3个子区域的卷云物理特征的季节变化。结果表明:卷云的整层发生率西部地区整体低于中部与东部沿海地区。3个子区域整层发生率均在夏季最高、冬季最低。卷云的主要发生高度在5.04~18.71 km,垂直分布中卷云发生率的最大值出现在春季中部地区,为15.34%,高度为9.83 km。冰水路径最大值出现在夏季的东部沿海,液水路径最大值在秋季的西部地区。冰水含量、冰粒数浓度、冰粒有效半径的主要分布高度与卷云的发生高度一致,液水含量、液滴数浓度、液滴有效半径的主要分布高度在5.04~9.35 km。3个子区域卷云冰水含量、冰粒数浓度、冰粒有效半径垂直分布中大多集中在中上部;液水含量垂直分布主要集中在分布高度的中下部。四季卷云雷达反射率因子的最大值在-19.89~-16.78 dBZ,分布高度在7.19~10.55 km。  相似文献   

11.
从电力气象服务需求出发,利用2001—2010年5—9月河北省南电网逐日电力日峰负荷、日谷负荷与对应时间的气象资料,探讨晴热天气和闷热天气对电力日峰负荷、日谷负荷的影响特征。分析发现持续3 d以上的闷热天气相对晴热天气使电力日峰负荷、日谷负荷增长更显著;日最高气温32℃是引起河北省南电网日峰负荷增长的初始气温敏感点,35℃为强气温敏感点,38℃为极强气温敏感点,日最低气温25℃为引起日谷负荷增加的敏感气温临界点;建立了引入积温热累积效应的日峰负荷、日谷负荷多元回归气象预测模型,经2011—2013年应用检验,日峰负荷、日谷负荷预测平均相对误差分别为4.8%和3.5%,提高了预测准确率,对电力调度具有参考价值。  相似文献   

12.
全国综合气象信息共享系统的设计与实现   总被引:9,自引:6,他引:3       下载免费PDF全文
为满足对海量气象数据管理和服务的需求,国家气象信息中心设计开发了全国综合气象信息共享系统 (CIMISS)。该文描述了系统基本设计思路、功能结构、基础平台体系结构、信息流程,阐述了系统为用户提供的基础数据使用环境。系统由数据收集与分发系统、数据加工处理系统、数据存储管理系统、数据共享服务系统、业务监控系统5个业务子系统组成,承担数据收集、加工处理、存储管理、共享服务和业务监控任务。系统设计和开发采用了一系列现代信息技术,包括基于消息和文件共享的平台内信息交换、气象数据标准化分类、数据处理作业调度和算法的动态扩展、元数据的设计和应用、公共配置信息管理、全流程业务监视和调度控制、面向服务的多维度数据存储策略、全局数据访问视图和统一访问接口设计等。该系统为我国国家级和省级气象业务提供了统一规范的气象数据使用环境。  相似文献   

13.
叙述了GMS-5卫星资料的变化,特别是展宽数字资料信息格式的变化,以及新获得的红外和水汽图象的应用。  相似文献   

14.
将气象数据分为离散数据、格网数据和要素数据,在此基础上,建立了气象数据库,包括气象资料信息数据库、社会资料信息库、基础地理数据库和气象空间数据库,并详细分析了气象数据的组织结构、表达和处理方法,最后提出了基于GIS的气象数据管理与表达的处理方法.  相似文献   

15.
资料插值的进展   总被引:17,自引:2,他引:17  
蔡秀华  曹鸿兴 《气象》2005,31(8):3-7
对气候学中资料插值、数值天气预报中的客观分析和气候模拟中的降尺度技术作了统一论述,重点是气候资料插值的原理和进展。由于应用领域不同,这些技术也是很不相同的,但它们的动力学和统计学原理是相近或一致的。近十年来三种插值技术,尤其在建立计算机自动化插值系统方面,都取得了长足进展。  相似文献   

16.
分析了山东省高空资料审核中出现的问题及原因,并对特殊情况和异常数据提出了处理办法。  相似文献   

17.
GMS-5卫星资料的变化和应用   总被引:1,自引:1,他引:1  
徐建平  许健民 《气象》1995,21(6):53-56
叙述了GMS-5卫星资料的变化,特别是展宽数字资料信息格式的变化,以及新获得的红外和水汽图象的应用。  相似文献   

18.
分析了山东省高空资料审核中出现的问题及原因,并对特殊情况和异常数据提出了处理办法.  相似文献   

19.
杨明  陈晔峰  陈晴  肖云  高祝宇  曾悠 《气象科技》2017,45(6):1017-1021
针对气象数据种类多、信息量大、精度高等特点,传统的关系型数据库系统在存储处理、数据读取等方面存在负载饱和、读写性能不理想等问题,利用云数据存储技术,结合气象数据特征,设计了基于云数据存储平台的气象数据存储和处理方法。通过分析气象数据的结构化、半/非结构化特征,采用云关系型数据库存储结构气象数据;采用NoSQL对象库存储半/非结构化气象数据;在数据的存储过程中,应用了气象数据分块压缩技术,进行气象数据存储和传输。结果表明,所讨论的方法具有很好的存储传输效率,能够满足大规模气象数据在业务应用中对存储查询和处理速度的要求。  相似文献   

20.
地面观测资料在西南地区数值预报中的敏感性试验   总被引:1,自引:0,他引:1  
张利红  杜钦  陈静  肖玉华 《气象》2009,35(6):26-35
利用3.0版的GRAPES同化系统,针对西南地区2005年7月的夏季降水,开展地面观测资料的同化敏感性试验,对整月天气进行了每日一次的48小时预报,并对该月发生在川渝地区"7.8"大暴雨过程进行对比分析.试验结果表明,在地形复杂的西南地区,利用等压面的GRAPES 3DVAR同化系统同化地面观测资料对降水预报的影响随进入同化系统的地面观测资料疏密程度和同化内容的不同而不同;当模式采用较高分辨率时,同化的地面观测资料越多,对降水预报的改善作用越明显;同化地面观测资料的风速信息可以降低降水预报的空报率,但对漏报率和TS评分改善作用不明显;在几种同化方案中,利用GRAPES 3DVAR同化系统同化地面观测资料的相对湿度和位势高度信息,对降水预报的改善效果最明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号