首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A new parallel solution technique is developed for the fully implicit three‐dimensional two‐phase flow model. An expandedcell‐centered finite difference scheme which allows for a full permeability tensor is employed for the spatial discretization, and backwardEuler is used for the time discretization. The discrete systems are solved using a novel inexact Newton method that reuses the Krylov information generated by the GMRES linear iterative solver. Fast nonlinear convergence can be achieved by composing inexact Newton steps with quasi‐Newton steps restricted to the underlying Krylov subspace. Furthermore, robustness and efficiency are achieved with a line‐search backtracking globalization strategy for the nonlinear systems and a preconditioner for each coupled linear system to be solved. This inexact Newton method also makes use of forcing terms suggested by Eisenstat and Walker which prevent oversolving of the Jacobian systems. The preconditioner is a new two‐stage method which involves a decoupling strategy plus the separate solutions of both nonwetting‐phase pressure and saturation equations. Numerical results show that these nonlinear and linear solvers are very effective.  相似文献   

2.

We present a compact, high-order Richards’ equation solver using a local discontinuous Galerkin finite element method in space and a dual-time stepping method in time. Dual-time stepping methods convert a transient problem to a steady state problem, enabling direct evaluation of residual terms and resolve implicit equations in a step-wise manner keeping the method compact and amenable to parallel computing. Verification of our solver against an analytical solution shows high-order error convergence and demonstrates the solvers ability to maintain high accuracy using low spatial resolution; the method is robust and accurately resolves numerical solutions with time steps that are much larger than what is normally required for lower-order implicit schemes. Resilience of our solver (in terms of nonlinear convergence) is demonstrated in ponded infiltration into homogeneous and layered soils, for which HYDRUS-1D solutions are used as qualitative references to gauge performance of two slope limiting schemes.

  相似文献   

3.
Biot's equations of wave propagation through fluid-saturated porous elastic media are discretized spatially using the finite element method in conjunction with Galerkin's procedure. Laplace transformation of the discretized equations is used to suppress the time variable. Introducing Laplace transforms of constituent velocities at nodal points as additional variables, the quadratic set of equations in the Laplace transform parameter is reduced to a linear form. The solution in the Laplace transform space is inverted, term by term, to get the complete time history of the solid and fluid displacements and velocities. Since the solution is exact in the time domain, the error in the calculated response is entirely due to the spatial approximation. The procedure is applied to one-dimensional wave propagation in a linear elastic material and in a fluid-saturated elastic soil layer with ‘weak’, ‘strong’ as well as ‘moderate’ coupling. With refinement of the spatial mesh, convergence to the exact solution is established. The procedure can provide a useful benchmark for validation of approximate temporal discretization schemes and estimation of errors due to spatial discretization.  相似文献   

4.
A systematic analysis shows how results from the finite difference code SEAWAT are sensitive to choice of grid dimension, time step, and numerical scheme for unstable flow problems. Guidelines to assist in selecting appropriate combinations of these factors are suggested. While the SEAWAT code has been tested for a wide range of problems, the sensitivity of results to spatial and temporal discretization levels and numerical schemes has not been studied in detail for unstable flow problems. Here, the Elder-Voss-Souza benchmark problem has been used to systematically explore the sensitivity of SEAWAT output to spatio-temporal resolution and numerical solver choice. A grid size of 0.38 and 0.60% of the total domain length and depth respectively is found to be fine enough to deliver results with acceptable accuracy for most of the numerical schemes when Courant number (Cr) is 0.1. All numerical solvers produced similar results for extremely fine meshes; however, some schemes converged faster than others. For instance, the 3rd-order total variation-diminishing method (TVD3) scheme converged at a much coarser mesh than the standard finite difference methods (SFDM) upstream weighting (UW) scheme. The sensitivity of the results to Cr number depends on the numerical scheme as expected.  相似文献   

5.
In this paper, we formulate and test numerically a fully-coupled discontinuous Galerkin (DG) method for incompressible two-phase flow with discontinuous capillary pressure. The spatial discretization uses the symmetric interior penalty DG formulation with weighted averages and is based on a wetting-phase potential/capillary potential formulation of the two-phase flow system. After discretizing in time with diagonally implicit Runge-Kutta schemes, the resulting systems of nonlinear algebraic equations are solved with Newton’s method and the arising systems of linear equations are solved efficiently and in parallel with an algebraic multigrid method. The new scheme is investigated for various test problems from the literature and is also compared to a cell-centered finite volume scheme in terms of accuracy and time to solution. We find that the method is accurate, robust, and efficient. In particular, no postprocessing of the DG velocity field is necessary in contrast to results reported by several authors for decoupled schemes. Moreover, the solver scales well in parallel and three-dimensional problems with up to nearly 100 million degrees of freedom per time step have been computed on 1,000 processors.  相似文献   

6.
应用有限单元法进行地下水模拟及管理,由于把本来连续的时间和空间离散化,因而会造成一定误差,有时这种误差是不容忽视的.通过计算实例,分析了不同的空间、时间离散格式而产生的误差,应用迭加原理及特征值有限单元法,将因空间和时间离散而产生的误差区分开来,并探讨了减小误差的方法.  相似文献   

7.
Accurate prediction of the interactions between the nonlinear soil skeleton and the pore fluid under loading plays a vital role in many geotechnical applications. It is therefore important to develop a numerical method that can effectively capture this nonlinear soil‐pore fluid coupling effect. This paper presents the implementation of a new finite volume method code of poro‐elasto‐plasticity soil model. The model is formulated on the basis of Biot's consolidation theory and combined with a perfect plasticity Mohr‐Coulomb constitutive relation. The governing equation system is discretized in a segregated manner, namely, those conventional linear and uncoupled terms are treated implicitly, while those nonlinear and coupled terms are treated explicitly by using any available values from previous time or iteration step. The implicit–explicit discretization leads to a linearized and decoupled algebraic system, which is solved using the fixed‐point iteration method. Upon the convergence of the iterative method, fully nonlinear coupled solutions are obtained. Also explored in this paper is the special way of treating traction boundary in finite volume method compared with FEM. Finally, three numerical test cases are simulated to verify the implementation procedure. It is shown in the simulation results that the implemented solver is capable of and efficient at predicting reasonable soil responses with pore pressure coupling under different loading situations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A numerical model describing the flow of multiphase, immiscible fluids in a deformable, double‐porosity featured soil has been developed. The model is focused on the modelling of the secondary porosity features in soil, which is more relevant to groundwater contamination problems. The non‐linear saturation and relative permeabilities were expressed as functions of the capillary pressures. The governing partial differential equations in terms of soil displacement and fluid pressures were solved numerically. Galerkin's weighted‐residual finite element method was employed to obtain the spatial discretization whereas temporal discretization was achieved using a fully implicit scheme. The model was verified against established, peer‐reviewed works, and the assumption that the immiscible fluids (non‐aqueous phase liquids) will flow preferentially through the secondary porosity features in soil was validated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Several finite element schemes for analysis of seepage in porous elastic media, based on different spatial and temporal discretization, were implemented in computer programs. Their numerical performance is evaluated by comparison with the exact solution for Terzaghi's problem of one-dimensional consolidation.  相似文献   

10.
In this paper a finite volume (FV) numerical method is implemented to solve a Biot consolidation model with discontinuous coefficients. Our studies show that the FV scheme leads to a locally mass conservative approach which removes pressure oscillations especially along the interface between materials with different properties and yields higher accuracy for the flow and mechanics parameters. Then this numerical discretization is utilized to investigate different sequential strategies with various degrees of coupling including: iteratively, explicitly and loosely coupled methods. A comprehensive study is performed on the stability, accuracy and rate of convergence of all of these sequential methods. In the iterative and explicit solutions four splits of drained, undrained, fixed-stress and fixed-strain are studied. In loosely coupled methods three techniques of the local error method, the pore pressure method, and constant step size are considered and results are compared with other types of coupling methods. It is shown that the fixed-stress method is the best operator split in comparison with other sequential methods because of its unconditional stability, accuracy and the rate of convergence. Among loosely coupled schemes, the pore pressure and local error methods which are, respectively, based on variation of pressure and displacement, show consistency with the physics of the problem. In these methods with low number of total mechanical iterations, errors within acceptance range can be achieved. As in the pore pressure method mechanics time step increases more uniformly, this method would be less costly in comparison with the local error method. These results are likely to be useful in decision making regarding choice of solution schemes. Moreover, the stability of the FV method in multilayered media is verified using a numerical example.  相似文献   

11.
Equilibrium chemistry computations and reactive transport modelling require the intensive use of a linear solver under very specific conditions. The systems to be solved are small or very small (4 × 4 to 20 × 20, occasionally larger) and are very ill-conditioned (condition number up to 10100). These specific conditions have never been investigated in terms of the robustness, accuracy, and efficiency of the linear solver. In this work, we present the specificity of the linear system to be solved. Several direct and iterative solvers are compared using a panel of chemical systems, including or excluding the formation of mineral species. We show that direct and iterative solvers can be used for these problems and propose computational keys to improve the chemical solvers.  相似文献   

12.
储层流固耦合的数学模型和非线性有限元方程   总被引:2,自引:0,他引:2  
张广明  刘合  张劲  吴恒安  王秀喜 《岩土力学》2010,31(5):1657-1662
根据饱和多孔介质固体骨架的平衡方程和多孔介质中流体的连续性方程,建立了储层流固耦合数学模型。模型中引入了Jaumann应力速率公式描述多孔介质固体骨架的大变形效应,并考虑了地应力、初始孔隙压力、初始流体密度和初始孔隙度对耦合模型的影响。基于与微分方程等价的加权余量公式,在空间域采用有限元离散,对时间域进行隐式差分格式离散,导出了以单元节点位移和单元节点孔隙压力为未知量的储层流固耦合的非线性有限元增量方程。该模型在石油工程中有广泛的应用,为储层流固耦合的数值模拟奠定了理论基础。  相似文献   

13.
We consider a non-linear extension of Biot’s model for poromechanics, wherein both the fluid flow and mechanical deformation are allowed to be non-linear. Specifically, we study the case when the volumetric stress and the fluid density are non-linear functions satisfying certain assumptions. We perform an implicit discretization in time (backward Euler) and propose two iterative schemes for solving the non-linear problems appearing within each time step: a splitting algorithm extending the undrained split and fixed stress methods to non-linear problems, and a monolithic L-scheme. The convergence of both schemes are shown rigorously. Illustrative numerical examples are presented to confirm the applicability of the schemes and validate the theoretical results.  相似文献   

14.
The purpose of this paper is to investigate the estimation of dynamic elastic behavior of the ground using the Kalman filter finite element method. In the present paper, as the state equation, the balance of stress equation, the strain–displacement equation and the stress–strain equation are used. For temporal discretization, the Newmark ¼ method is employed, and for the spatial discretization the Galerkin method is applied. The Kalman filter finite element method is a combination of the Kalman filter and the finite element method. The present method is adaptable to estimations not only in time but also in space, as we have confirmed by its application to the Futatsuishi quarry site. The input data are the measured velocity, acceleration, etc., which may include mechanical noise. It has been shown in numerical studies that the estimated velocity, acceleration, etc., at any other spatial and temporal point can be obtained by removing the noise included in the observation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Brenner  K.  Chorfi  N.  Masson  R. 《Computational Geosciences》2022,26(1):147-169

This work deals with sequential implicit schemes for incompressible and immiscible two-phase Darcy flows which are commonly used and well understood in the case of spatially homogeneous capillary pressure functions. To our knowledge, the stability of this type of splitting schemes solving sequentially a pressure equation followed by the saturation equation has not been investigated so far in the case of discontinuous capillary pressure curves at different rock type interfaces. It will be shown here to raise severe stability issues for which stabilization strategies are investigated in this work. To fix ideas, the spatial discretization is based on the Vertex Approximate Gradient (VAG) scheme accounting for unstructured polyhedral meshes combined with an Hybrid Upwinding (HU) of the transport term and an upwind positive approximation of the capillary and gravity fluxes. The sequential implicit schemes are built from the total velocity formulation of the two-phase flow model and only differ in the way the conservative VAG total velocity fluxes are approximated. The stability, accuracy and computational cost of the sequential implicit schemes studied in this work are tested on oil migration test cases in 1D, 2D and 3D basins with a large range of capillary pressure parameters for the drain and barrier rock types. It will be shown that usual splitting strategies fail to capture the right solutions for highly contrasted rock types and that it can be fixed by maintaining locally the pressure saturation coupling at different rock type interfaces in the definition of the conservative total velocity fluxes. The numerical investigation of the sequential schemes is also extended to the widely used finite volume Two-Point Flux Approximation spatial discretization.

  相似文献   

16.
Two finite element algorithms suitable for long term simulation of geothermal reservoirs are presented. Both methods use a diagonal mass matrix and a Newton iteration scheme. The first scheme solves the 2N unsymmetric algebraic equations resulting from the finite element discretization of the equations governing the flow of heat and mass in porous media by using a banded equation solver. The second method, suitable for problems in which the transmissibility terms are small compared to the accumulation terms, reduces the set of N equations for the Newton corrections to a symmetric system. Comparison with finite difference schemes indicates that the proposed algorithms are competitive with existing methods.  相似文献   

17.
Locally conservative flux-continuous, full-tensor, discretization schemes are presented for general unstructured grids. The schemes are control-volume distributed, where flow variables and rock properties are assigned to the polygonal control-volumes derived from the primal grid. A relationship between these finite volume schemes and the mixed finite element method is established. An extension for unstructured grids is described that leads to a general symmetric positive definite discretization matrix for both quadrilateral and triangular grids. A novel flow based gridding approach for unstructured mesh generation is also proposed for heterogeneous reservoir domains. Results computed with the flux continuous schemes on unstructured flow-based grids demonstrate the advantages of the methods.  相似文献   

18.
We present Folder, a numerical toolbox for modelling deformation in layered media subject to layer parallel shortening or extension in two dimensions. The toolbox includes a range of features that ensure maximum flexibility to configure model geometry, define material parameters, specify numerical parameters, and choose the plotting options. Folder builds on an efficient finite element method model and implements state of the art iterative and time integration schemes. We describe the basic Folder features and present several case studies of single and multilayer stacks subject to layer parallel shortening and extension. Folder additionally comprises an application that illustrates various analytical solutions of growth rates calculated for the cases of layer parallel shortening and extension of a single layer with interfaces perturbed with a single sinusoidal waveform. We further derive two novel analytical expressions for the growth rate in the cases of layer parallel shortening and extension of a linear viscous layer embedded in a linear viscous medium of a finite thickness. These solutions help understand mechanical instabilities in layered rocks and provide a unique opportunity for benchmarking of numerical codes. We demonstrate how Folder can be used for benchmarking of numerical codes. We test the accuracy of single-layer folding simulations using various 1) spatial and temporal resolutions, 2) iterative algorithms for non-linear materials, and 3) time integration schemes. The accuracy of the numerical results is quantified by: 1) comparing them to analytical solutions, if available, or 2) running convergence tests. As a result, we provide a map of the most optimal choice of grid size, time step, and number of iterations to keep the results of the numerical simulations below a given error for a given time integration scheme. Folder is an open source MATLAB application and comes with a user-friendly graphical interface. Folder is suitable for both educational and research purposes.  相似文献   

19.
In this paper, a new continuum approach for the coupled hydromechanical analysis of fractured porous media is proposed. The methodology for describing the hydraulic characteristics invokes an enriched form of Darcy's law formulated in the presence of an embedded discontinuity. The constitutive relations governing the hydromechanical response are derived by averaging the fluid pressure gradient and the discontinuous displacement fields over a selected referential volume of the material, subject to some physical constraints. The framework incorporates an internal length scale which is explicitly embedded in the definition of gradient operators. The respective field equations are derived following the general form of balance equations in interacting continua. The conventional finite element method is then employed for the spatial discretization, and the generalized Newmark scheme is used for the temporal discretization. The proposed methodology is verified by some numerical examples dealing with a steady-state flow through fractured media as well as a time-dependent consolidation in the presence of a discontinuity.  相似文献   

20.
Some of the available stochastic finite element methods are adapted and evaluated for the analyses of response of soils with uncertain properties subjected to earthquake induced random ground motion. In this study, the dynamic response of a soil mass, with finite element discretization, is formulated in the frequency domain. The spectral density function of the response variables are obtained from which the evaluation of the root-mean-squared and the most probable extreme values of the response are made. The material non-linearities are incorporated by using strain compatible moduli and damping of soils using an equivalent linear model for stress–strain behaviour of soils and an iterative solution of the response. The spatial variability of the shear modulus is described through a random field model and the earthquake included motion is treated as a stochastic process. The available formulations of direct Monte-Carlo simulation, first-order perturbation method, a spectral decomposition method with Neumann expansion and a spectral decomposition method with Polynomial Chaos are used to develop stochastic finite element analyses of the seismic response of soils. The numerical results from these approaches are compared with respect to their accuracy and computational efficiency. © 1998 John Wiley & Sons Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号