首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Ground‐penetrating radar surveys, coring and the analyses of satellite and aerial images have been carried out to study differences in the evolution of meander bends formed in various geological conditions. The research was conducted in the lower course of the Obra River (western Poland) characterized by a complex geology: particular sections of the valley were formed in glacial, stagnant water and fluvioglacial deposits. The research was conducted in four detailed study sites representing different formation conditions for the meander bends. Four types of meanders were distinguished: laterally migrating bends characterized by frequent changes of migration direction accompanied by river bed avulsions and cutoffs; bends with traces of continuous migration limited by stagnant water basin deposits; confined meanders in a narrow valley formed in glacial till characterized by the occurrence of mid‐channel islands; and meanders with traces of complex changes of the river bed migration influenced by anthropogenic intervention followed by intensive overbank deposition. Moreover, traces of an early development of the Obra valley and remains of multi‐channel pattern were discovered. The results also show that despite being formed in different geological conditions, a similar number of the meander migration phases were recorded in the floodplain architecture during the last 7000 years at each of the sites. It is also found that the development of the studied meanders was slow compared with cases of actively migrating meandering rivers.  相似文献   

2.
This paper explores the effects of hillslope mobility on the evolution of a 10-km2 drainage basin located at the northern border of the Swiss Alps. It uses geomorphologic maps and the results of numerical models that are based on the shear stress formulation for fluvial erosion and linear diffusion for hillslope processes. The geomorphic data suggest the presence of landscapes with specific cross-sectional geometries reflecting variations in the relationships between processes in channels and on hillslopes. In the headwaters, the landscape displays parabolic cross-sectional geometries indicating that mass delivered to channels by hillslope processes is efficiently removed. In the trunk stream portion, the landscape is (i) V-shaped if the downslope flux of mass is balanced by erosion in channels (i.e. if mass delivered to channels by hillslope processes is efficiently removed) and (ii) U-shaped if in-channel accumulation of hillslope-derived material occurs. This latter situation indicates a non-balanced mass flux between processes in channels and on hillslopes.Information about the spatial pattern of the postglacial depth of erosion allows comparative estimates to be made about the erosional efficiency for the various landscapes that were mapped in the study area. The data suggest that the erosional potential and sediment discharge are reduced for the situation of a non-balanced mass flux between processes in channels and on hillslopes. These findings are also supported by the numerical model. Indeed, the model results show that high hillslope mobility tends to reduce the hillslope relief and to inhibit dissection and formation of channels. In contrast, stable hillslopes tend to promote fluvial incision, and the hillslope relief increases. The model results also show that very low erosional resistance of bedrock promotes backward erosion and steepening of channel profiles in headwaters. Beyond that, the model reveals that sediment discharge generally increases with decreasing erosional resistance of bedrock, but that this increase decays exponentially with increasing magnitudes of fluvial and hillslope mobilities. Very high hillslope diffusivities even tend to reduce the erosional potential of the whole watershed. It appears that besides rates of base-level lowering, factors limiting sediment discharge might be the nonlinear relationships between processes in channels and on hillslopes.  相似文献   

3.
This article analyzes the water and suspended solid fluxes through a straightened meander of the southern branch of the Danube Delta (the St. George branch) during episodic flooding. The Mahmudia study site corresponds to a vast natural meander which was cut off in 1984–1988 by an artificial canal opened to shipping. The meander correction accelerated fluxes through the artificial canal and dramatically enhanced deposition in the former meander. After his formation, the cutoff meander acted as sediment storage locations, essentially removing channel and point bar sediments from the active sediment budget of the main channel. Increases in slope and stream power in reaches upstream and downstream have also occurred, but to a lesser degree. During the one-hundred-year recurrent flood in April 2006, bathymetry, flow velocity and discharge data were acquired across several sections of both natural and artificial channels with an acoustic Doppler current profiler (aDcp Workhorse Sentinel 600 kHz, Teledyne RDI) in order to investigate the distribution of the flow and sediment and his impact on sedimentation in a channelized reach and its adjacent cutoff. The contrasting hydro-sedimentary processes at work in both channels and bifurcation/confluence nodal points are analyzed from the measured flux distribution, morphological profiles and velocity and concentration patterns. In the cutoff, a diminishing of the intensity of the flow velocity (c. 50%) and of the SSC was observed correlated with the aggradation of the river bed. In the bifurcation/confluence nodal points and in the artificial canal were observed the most intensive hydrodynamic activity (high flow velocity, SSC concentration, degradation of the river bad). Both the event-scale and long-term morphological trends of the alluvial system are discussed analyzing the boundary shear stress and SSC variability. Excess boundary shear stress in the sub-reaches directly affected by cutoffs resulted in scour that increased downstream bed material load. These high sediment loads play a key role in driving morphological adjustments towards equilibrium in the cutoff channel.The approach followed in this paper combines detailed episodic in-situ aDcp measurements and robust numerical 1D modeling in order to provide a practical comprehension of the relevant morphodynamical processes. The 1D model reproduces robustly the continuity of hydrodynamical variables along the streamwise axes of the two-channel network. The simulated are used in the paper for highlighting reach-scale morphological processes, at both event and long-term scales.  相似文献   

4.
Gregory R. Brooks   《Geomorphology》2003,54(3-4):197-215
The Holocene evolution of the shallow alluvial valley occupied by the Red River was investigated at two successive river meanders near St. Jean Baptiste, Manitoba. A transect of five boreholes was sited across the flood plain at each meander to follow the path of lateral channel migration. From the cores, 24 wood and charcoal samples were AMS radiocarbon dated. The dates from the lower half of the alluvium in each core are interpreted to represent the age of the lateral accretion deposits within the flood plain at the borehole sites. The ages of these deposits increase progressively from 900 to 7900 and 1000 to 8100 cal years B.P. along each transect, respectively, from the proximal to distal portions of the flood plain. At the upstream meander, the average rate of channel migration was initially 0.35 m/year between 7900 and 7400 cal years B.P., then decreased to 0.18 m/year between 7400 and 6200 cal years B.P., and subsequently varied between 0.04 and 0.08 m/year. Net channel incision of the river since 8100 cal years B.P. is estimated to have ranged between 0.4 and 0.8 m/ky. The pre-6000-years-B.P. interval of greater channel migration is hypothesized to reflect a higher phase of sediment supply that was associated with the establishment of the river system on the former bed of glacial Lake Agassiz. Since 1000 years B.P., the outward migration of the meanders has caused a gradual enlarging of 0.7–2% in the cross-sectional area of the shallow valley at the two meanders. When considered proportionally over timescales of up to several centuries, the widening of the valley cross-section is very low to negligible and is deemed an insignificant factor affecting the modern flood hazard on the clay plain.  相似文献   

5.
6.
J. M. Hooke   《Geomorphology》2004,61(3-4):225-238
The creation of cutoffs and of oxbow lakes is a well-known phenomenon of meandering rivers, but views on the extent to which they are inherent in meander behaviour have varied. Assumptions of meander behaviour have shifted from those of stability and equilibrium to recognition of gradual evolution and increased complexity of form. Alternative explanations of cutoff occurrence are discussed here in relation to a remarkable set of cutoffs that occurred in one reach of the River Bollin, UK, for which long-term historical evidence of meander evolution existed and which has been monitored for change and processes over the last 20 years. The cutoffs occurred during the high floods of winter 2000–2001. A series of hypotheses is examined, including the occurrence of floods and effects of hydrological changes. Although the flood events actually caused the cutoffs, the long-term pattern accords with ideas of chaotic behaviour and sinuosity of a river reaching a critical state at which clustering of meander cutoffs takes place. It is suggested that the occurrence of the cutoffs can be explained as inherent in meander behaviour.  相似文献   

7.
Stratigraphic, geomorphic, and paleoecological data were collected from upland watersheds in the Great Basin of central Nevada to assess the relationships between late Holocene climate change, hillslope processes and landforms, and modern channel dynamics. These data indicate that a shift to drier, warmer climatic conditions from approximately 2500 to 1300 YPB led to a complex set of geomorphic responses. The initial response was massive hillslope erosion and the simultaneous aggradation of both side-valley alluvial fans and the axial valley system. The final response was fan stabilization and axial channel incision as fine-grained sediments were winnowed from the hillslope sediment reservoirs, and sediment yield and runoff processes were altered. The primary geomorphic response to disturbance for approximately the past 1900 years has been channel entrenchment, suggesting that the evolutionary history of hillslopes has produced watersheds that are prone to incision. The magnitude of the most recent phase of channel entrenchment varies along the valley floor as a function of geomorphic position relative to side-valley alluvial fans. Radial fan profiles suggest that during fan building, fan deposits temporarily blocked the flow of sediment down the main stem of the valley, commonly creating a stepped longitudinal valley profile. Stream reaches located immediately upvalley of these fans are characterized by low gradients and alternating episodes of erosion and deposition. In contrast, reaches coincident with or immediately downstream of the fans exhibit higher gradients and limited valley floor deposition. Thus, modern channel dynamics and associated riparian ecosystems are strongly influenced by landforms created by depositional events that occurred approximately 2000 years ago.  相似文献   

8.
Ireneusz Malik   《Geomorphology》2008,93(3-4):421-436
Small gullies occur in forested gully systems on the undulating loess plateau in southern Poland. The old gully hillslopes are mainly covered with 200-year old beech trees in contrast with the surface of the summit plateau, which is cultivated agricultural land. Beech roots are exposed in the gullies through erosion. Wood vessels in the root tree rings divide into early wood and late wood and, after the roots are exposed, start to make fewer vessels. These anatomical changes in root tree rings allow us to date erosion episodes.Small gullies form in a different manner on the valley floor and on hillslopes. In valley bottoms, erosion features are often formed at some distance from one another, and in time small gullies combine to form a single, longer one. Depending on local conditions, such as the hillslope profile, hillslopes may exhibit headward erosion or may be eroded downwards. Hilllope gullies may be transformed into side valleys as a result of gradual widening and deepening.Dating the exposure of roots indicates that small gullies had already formed in the valley system by 1949. Intensive gully erosion was recorded between 1984 and 2002, during intense precipitation in 1984 and, of particular note, during the extraordinary flood of 1997 which affected all of Central Europe. The mean rate of small gully erosion in the old gully system studied is 0.63 m/year. On hillslopes the mean gully erosion rate is 0.21–0.52 m/year, and on the valley bottoms 0.18–1.98 m/year. High bottom erosion rates resulted from the emergence of long gullies during the erosion episodes in 1984 and 1997. Sheet flow in valley floors intensifies at times of heavy rainfall which causes long gullies to form.Taking into account the fact that conditions favoured erosion, the rate at which the old gullies under forest were transformed should be considered slow. New side gullies form slowly within the valley and it appears that if erosion progressed at the rate observed, new side valleys would take a few hundred years to form.  相似文献   

9.
Bald cypress (Taxodium distichum) regeneration was examined in the bottomland forest of the lower Hatchie River in western Tennessee. Bald cypress is found mostly in abandoned meanders. Its absence along the active channel indicates that colonization begins after the meander cuts off, creating an oxbow lake. Analysis of the size, the age, and the spatial structure of the stands indicates that the individuals first establish along the margins of the lake, and then colonize the interior as the lake fills in and new surfaces are exposed. Bald cypress will dominate abandoned meanders for several centuries. However, it will not regenerate in stands with a well-developed forest canopy. Bald cypress is eventually replaced by shade tolerant species and, therefore, only rarely occurs on older surfaces. Channel migration and the subsequent creation of oxbows will maintain bald cypress as a major component of bottomland forests. However, many of the major streams in the lower Mississippi River alluvial valley have been channelized. Maintenance of a straightened channel will exclude the creation of oxbows. Therefore, a primary regeneration opportunity for bald cypress disappears in many areas. [Key words: channel migration, exact probabilities, floodplain forest, oxbow lakes, Taxodium distichum, Tennessee.]  相似文献   

10.
This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an inexpensive way to develop a roadmap for understanding sediment dynamics at a watershed scale.  相似文献   

11.
In an actively deforming orogen, maintenance of a topographic steady state requires that hillslope erosion, river incision, and rock uplift rates are balanced over timescales of 105–107 years. Over shorter times, <105 years, hillslope erosion and bedrock river incision rates fluctuate with changes in climate. On 104-year timescales, the Marsyandi River in the central Nepal Himalaya has oscillated between bedrock incision and valley alluviation in response to changes in monsoon intensity and sediment flux. Stratigraphy and 14C ages of fill terrace deposits reveal a major alluviation, coincident with a monsoonal maximum, ca. 50–35 ky BP. Cosmogenic 10Be and 26Al exposure ages define an alluviation and reincision event ca. 9–6 ky BP, also at a time of strong South Asian monsoons. The terrace deposits that line the Lesser Himalayan channel are largely composed of debris flows which originate in the Greater Himalayan rocks up to 40 km away. The terrace sequences contain many cubic kilometers of sediment, but probably represent only 2–8% of the sediments which flushed through the Marsyandi during the accumulation period. At 104-year timescales, maximum bedrock incision rates are 7 mm/year in the Greater Himalaya and 1.5 mm/year in the Lesser Himalayan Mahabarat Range. We propose a model in which river channel erosion is temporally out-of-phase with hillslope erosion. Increased monsoonal precipitation causes an increase in hillslope-derived sediment that overwhelms the transport capacity of the river. The resulting aggradation protects the bedrock channel from erosion, allowing the river gradient to steepen as rock uplift continues. When the alluvium is later removed and the bedrock channel re-exposed, bedrock incision rates probably accelerate beyond the long-term mean as the river gradient adjusts downward toward a more “equilibrium” profile. Efforts to document dynamic equilibrium in active orogens require quantification of rates over time intervals significantly exceeding the scale of these millennial fluctuations in rate.  相似文献   

12.
Transient landscape disequilibrium is a common response to climatic fluctuations between glacial and interglacial conditions. Such landscapes are best suited to the investigation of catchment-wide response to changes in incision. The geomorphology of the Trub and Grosse Fontanne, adjacent stream systems in the Napf region of the Swiss Molasse, was analyzed using a 2-m LIDAR DEM. The two catchments were impacted by the Last Glacial Maximum, LGM, even though the glaciers never overrode this region. They did, however, cause base levels to drop by as much as 80 m. Despite their similar tectonic, lithologic and climatic settings, these two basins show very different responses to the changing boundary conditions. Stream profiles in the Trub tend to be smooth, while in the Fontanne, numerous knickzones are visible. Similarly, cut-and-fill terraces are abundant in the Trub watershed, but absent in the Fontanne, where deep valleys have been incised. The Trub appears to be a coupled hillslope–channel system because the morphometrics throughout the basin are uniform. The morphology of hillslopes upstream of the knickzones in the Fontanne is identical to that of the Trub basin, but different downstream of the knickzones, suggesting that the lower reaches of the Fontanne have been decoupled from the hillslopes. However, the rapid incision of the Fontanne is having little effect on the adjacent upper hillslopes.We tested this interpretation using cosmogenic 10Be-derived basin-averaged denudation rates and terrace dating. The coupled nature of the Trub basin is supported by the similarity of denudation rates, 350 ± 50 mm ky− 1, at a variety of spatial scales. Upstream of the knickzones, rates in the Fontanne, 380 ± 50 mm ky− 1, match those of the Trub. Downstream of the knickzones, denudation rates increase to 540 ± 100 mm ky− 1. The elevated rates in the downstream areas of the Fontanne are due to rapid incision causing a decoupling of the hillslope from the channel. Basin response time and the magnitude of base level drop exert the principal control over the difference in geomorphic response between the two basins. The timing of the filling of the Trub valley, 17 ± 2 ka, and the initial incision of the Fontanne, 16 ± 3 ka, were calculated, verifying that these are responses to late glacial perturbations. Unique lithologic controls allow for one of the fastest regolith production rates yet to be reported,  380 mm ky− 1.  相似文献   

13.
Landscapes in southeastern Australia have changed dramatically since the spread of European colonisation in the 19th century. Due to widespread forest clearance for cultivation and grazing, erosion and sediment yields have increased by a factor of more than 150. In the 20th century, erosion and sediment yield were reduced again due to an increasing vegetative cover. Furthermore, during the last decades, thousands of small farm dams were constructed to provide drinking water for cattle. These dams trap a lot of sediment, thereby further reducing sediment delivery from hillslopes to river channels. Changes in sediment delivery since European colonisation are documented in sediment archives. Within this study, these changing rates in hillslope erosion and sediment delivery were modelled using a spatially distributed erosion and sediment delivery model (WATEM/SEDEM) that was calibrated for Australian ecosystems using sediment yield data derived from sedimentation rates in 26 small farm dams. The model was applied to the Murrumbidgee river basin (30,000 km2) under different land-use scenarios. First, the erosion and sediment yield under pre-European land-use was modelled. Secondly, recent land-use patterns were used in the model. Finally, recent land-use including the impact of farm dams and large reservoirs was simulated. The results show that the WATEM/SEDEM model is capable of predicting the intensity of the geomorphic response to changes in land-use through time. Changes in hillslope erosion and hillslope sediment delivery rates are not equal, illustrating the non-linear response of the catchment. Current hillslope sediment supply to the river channel network is predicted to be 370% higher compared to the pre-European settlement period, yet farm dams have reduced this back to 2.5 times the pre-19th century values. The role of larger reservoirs is even more important as they have reduced the current sediment supply downstream to their pre-European values, thus completely masking the increased hillslope erosion rates from land-use change. However, the model does so far not include valley widening and sediment storage in river systems. Therefore, modelled rates of sediment delivery are lower than observed values.  相似文献   

14.
Wolfgang Rmer 《Geomorphology》2008,100(3-4):312-327
In southern São Paulo the Serra do Mar is characterized by three distinct terrain types: 1) highly dissected areas with closely spaced ridges and accordant summit heights; 2) multiconvex hills; and 3) terrains with highly elevated watershed areas, irregular summit heights, and locally subdued relief. The development of this landscape is considered to be the result of the Cenozoic block-faulting and of the influences that are exerted by the differing lithological and structural setting of block-faulted compartments on weathering and erosion processes.In areas characterized by pronounced accordant summits the close coincidence between hillslope angle and the angle of limiting stability against landsliding points to a close adjustment of hillslope gradients and the mechanical properties of the regolith. The relative height of the hillslopes is functionally related to the spacing of the valleys and the gradient of the hillslopes. In areas with a regular spacing of v-shaped valleys and uniform rocks, this leads to the intersection of valley-side slopes in summits and ridges at a certain elevation. This elevation is determined by the length and steepness of the valley-side slopes. Therefore, the heights of the summits are geometrically constrained and are likely to indicate the upper limit of summit heights or an “upper denudation level” that is adjusted by hillslope processes to the incising streams. Accordant summit heights of this type are poor indicators of formerly more extensive denudation surfaces as it is also likely that they are a result of the long-term adjustment of hillslopes to river incision.The steep mountain flanks of block-faulted compartments on the other hand, comprise regolith-covered hillslopes that are closely adjusted to the maximum stable gradient as well as rock-slopes that are controlled by the rock-mass strength. Their summits are usually not accommodated into uniform summit levels. Highly elevated watershed areas exhibiting a subdued relief are detached from the base level response. On granitoid rocks these areas are often characterized by the rocky hills and domal rock outcrops. However, differences in the elevation of interfluves and summits between rocks of differing resistance and in the elevation of lithologically distinct individual fault-blocks imply that long-term weathering and erosion has transformed and lowered these landscapes. Therefore, these areas cannot be interpreted as a remnant of a pre-uplift topography and it appears to be unlikely that the height of the summits correlates with formerly more widespread planation surfaces in the far hinterland.The studies indicate that concepts such as the parallel retreat of hillslopes cannot account for the observed differences in the landscape. It is suggested that the Serra do Mar is consumed from the Atlantic and the inland side by spatially non-uniform developmental states. These states are determined by local differences in the coupling and distance to the regional base level and sea-level or are due to lithological and structural controls between and within the block-faulted compartments.  相似文献   

15.
Source-bordering dunefields have been reported in some drylands of the planet, but scarcely in China where there are extensive drylands. This article reports them in China for the first time, and presents a model for their active origin and development on a semiarid fluvial plain by means of satellite image analyses and field investigations. Local- and regional-scale examples are chosen to analyze the spatial patterns of dunefields, as well as the relationships with the fluvial systems in the central part of Naiman Banner where the Jiaolai River runs, and the lower Laoha River, and the middle and lower Ulijimulun River (principal tributaries of the Xiliaohe River). The active origin and development of source-bordering dunefields can be divided into four stages in terms of the spatial patterns of dunefields and channel dynamics: Stage I — individual dunes on the downwind margins of river valleys where running water constantly erodes the steep slopes of valley and where the downwind slopes orient to local dominant winds; Stage II — individual local-scale dunefields formed by deflation of the steep valley slopes and extending antecedent dunes downwind, together with the downstream displacement of meanders; Stage III — individual large-scale dunefield belts along the downwind margins of river valleys formed through frequent lateral migrations of channel; Stage IV — regional-scale dunefields formed mainly by river diversions due to climatic changes or tectonic movements. On the one hand, it is the running water's lateral migration, especially meandering, that prepares suitable places for aeolian systems in terms of both wind flow fields and sand sources, and subsequently it can further cause separate local-scale source-bordering dunefields to link together as a regional-scale dunefield belt given sufficient time. On the other hand, diversions of the river are bound to occur following changing hydrologic regimes resulting from tectonic movements or significant climate change (at regional and millennium scales). As a result, when some dunefield belts as well as the adjacent channels are abandoned, new channels work elsewhere in the same way to actively form new source-bordering dunefields and even dunefield belts at a regional scale.  相似文献   

16.
Greaves Creek has cut a hanging valley through the entire Triassic sandstone sequence near Blackheath in the western Blue Mountains, New South Wales. Downstream of Beauchamp Falls, it cuts into Permian strata in the Grose Gorge. The hanging valley has a valley-in-valley structure. The narrow inner valley is bounded by high cliffs and its floor is cut by a deep narrow slot canyon where stream incision has occurred without valley widening. The course of the creek is related to joint directions. Intense jointing, minor faulting and sapping influence the stability of cliffs but up to 30m of incision has occurred without valley widening in the slot canyon. Topographic asymmetry expressed as unequal slopes of the valley sides is related to differential insolation, erosion, vegetation cover, bioturbation and fire intensity. In the western Blue Mountains and elsewhere in the Sydney Basin asymmetric slopes occur in many other valley-ridge systems, particularly those whose long axes are oriented between about east-west and north-east-south-west. Vegetation structure and floristics within Greaves Creek valley are related to physiography of the valley and to aspect through their effects on fire, moisture availability, light availability, soil depth and temperature.  相似文献   

17.
为分析西南山区梯田撂荒地块质量特征及影响因素,厘清山区梯田撂荒与可持续利用机制,本文以贵州省剑河县白都村为例,综合运用农户调查数据与无人机高分辨率影像数据探讨梯田的撂荒规模、空间分布情况及地块质量特征;构建二元Logistic回归模型,对影响梯田撂荒的各地块质量因素作用大小进行定量分析。结果表明:①白都村样本农户的梯田面积为62.518 hm^(2),多集中分布于耕作高差、坡度和耕作距离较大区域,其撂荒面积为21.354 hm^(2),撂荒率为34.16%。②梯田的地块质量因素对其撂荒的贡献程度表现为:灌溉条件>动力使用状况>田埂坍塌状况>耕作面积>综合地形条件,其中灌溉条件、动力使用状况、耕作面积与梯田撂荒均呈负相关,田埂坍塌状况和综合地形条件与梯田撂荒呈正相关。研究结果对于推进西南山区梯田的可持续利用与管理具有重要的理论及实践意义。  相似文献   

18.
金沙江巧家—蒙姑段的阶地发育与河谷地貌演化   总被引:2,自引:0,他引:2  
金沙江水系演化与河谷发育问题长期以来是地质地貌学界关注的重大问题,目前仍存在较大争议。河流阶地及其相关沉积是河谷发育过程的产物,可以提供河谷发育的时代与形式等诸多信息。金沙江在巧家—蒙姑段河谷中,葫芦口附近发育和保存了8级基座阶地,结合光释光和电子自旋共振测年方法,依据古气候资料,推断T6~T1的下切时间分别对应于深海氧同位素(MIS)的36/35、34/33、24/23、20/19、14/13和4/3阶段,即气候由冷至暖的转型期。青岗坝附近则发育了5级由堰塞湖相沉积组成的堆积型阶地,指示了中更新世以来该段河谷在下切过程中经历了频繁的滑坡堵江堰塞,发育形式以“下切—滑坡—堰塞—堆积—下切”过程为主。此外,河流的平均下切速率自0.82 Ma以来由此前的0.56 mm/a下降至0.19 mm/a,表明中更新世以来频繁发生的堵江堰塞事件严重抑制了该段河谷的下切作用。综合流域内河流阶地序列及相关沉积的研究,金沙江下游段现代河谷的形成时代不晚于早更新世。  相似文献   

19.
Analysis of valley morphometry and bedrock strength along Big Creek, central Idaho, shows that valley floor width is strongly controlled by bedrock. We performed statistical analysis of Schmidt hammer rock strength as a function of lithology and aspect and of valley morphometry as a function of rock strength. Rock strength is significantly greater on the south side of the valley and in Eocene granodiorites. Rock strength is weakest in Eocene volcanic tuffs. Valley floor width depends negatively on weakest valley-side rock strength, and hillslope gradient on the north side of the valley depends positively on rock strength. Stream gradient does not depend on rock strength. Valley floor width appears to be controlled by bedrock strength on the weaker side of the valley, which was generally the north (south-facing) side. We speculate that a higher degree of weathering via freeze–thaw cycles contributes to lower strength on the north side. The positive dependence of hillslope gradient on rock strength on the north side provides evidence that differential weathering across lithologies determines the gradient that can be maintained as lateral migration of the stream erodes valley walls. These results suggest that in situ rock strength exerts strong influences on some measures of valley morphometry by modulating hillslope mass wasting processes and limiting lateral erosion.  相似文献   

20.
Cropland abandonment is spreading from developed countries to developing countries such as China. Cropland abandonment in China commonly occurs in mountainous areas due to their specific natural and geographical conditions. However, due to the lack of dependable monitoring methods via medium-high-resolution remote sensing images, the scale of abandoned cropland in many mountainous areas of China is unclear, and the mechanisms driving cropland abandonment have not been clearly identified. To overcome these limitations, we took Zhong County of Chongqing in China as an example, and used Landsat 8 OLI_TIRS remote sensing image data to develop a method for mapping abandoned cropland in mountainous areas based on annual land use change monitoring. At the same time, the ridge regression method was adopted to analyze the factors influencing cropland abandonment. These analyses showed that the cropland abandonment rate in Zhong County of Chongqing was as high as 7.86%, while the overall accuracy of identifying abandoned cropland was as high as 90.82%. Among the social and economic factors that affect cropland abandonment, the rural population, economic development, and livestock husbandry development were the most important ones. At the land parcel scale, large-scale cropland abandonment occurred in areas at elevations above 650 m or with slopes of more than 15°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号