首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Between 1980 and 1984 extensive studies were carried out in the Baltic Sea on trace metals (Cd, Co, Cu, Fe, Hg, Mn, Ni, Pb and Zn) in water, suspended matter and sediments. The results enabled the influence of different factors on metal distribution patterns to be considered. The vertical profiles of dissolved and particulate metals in waters of the central deep basins reflect influences caused by oxygen deficiency and anoxic conditions in near-bottom water layers. Peculiarities at Station BY15 in the Gotland Deep included high dissolved Fe, Mn and Co concentrations and remarkable enrichment of Zn (0.64%), Cd (51 μg g−1) and Cu (0.15%) in particulate matter from the anoxic zone. Manganese-rich particles were accumulated above this layer.In fine-grained soft sediments below anoxic deep waters, maximum contents of Cd, Cu and Zn were observed, relative to other coring sites, between Bothnian Bay and Lübeck Bight. The Hg content in sediments probably reflects the joint flocculation with organic matter. Land-based sources seem to play the leading part for maximum lead contents.  相似文献   

2.
Z. Seisuma  I. Kulikova 《Oceanology》2012,52(6):780-784
The comparison of spatial and temporal distribution of Hg, Cd, Pb, Cu, Ni, Zn, Mn and Fe concentrations in sediments from the Gulf of Riga and open Baltic Sea along the coastal zone is presented for the first time. There were considerable differences in Pb, Zn, Mn and Fe levels in sediment at various stations of the Gulf of Riga. A significant difference of Cd, Pb, Cu, Ni, Zn levels was found in sediments of various stations in the open Baltic coast. The amount of Cd, Pb, Cu, Ni, Zn and Fe levels also differed significantly in the sediments of the Gulf of Riga in different years. A considerable yearly difference in amount of Hg, Cd, Pb, Cu, Ni and Mn levels was found in sediments in the open Baltic coast. The essential highest values of Pb and Zn in coastal sediments of the open Baltic Sea are stated in comparison with the Gulf of Riga. The concentrations of other metals have only a tendency to be higher in coastal sediments of the open Baltic Sea in comparison with the Gulf of Riga. Natural and anthropogenic factors were proved to play an important role in determining resultant metals concentrations in the regions.  相似文献   

3.
Dissolved and particulate trace metals (Cu, Cd, Pb, Zn, Ni, Fe and Mn) measured at six stations along the Scheldt estuary in October/November 1978 are compared with more recent data. Based on Ca content in the suspended matter, three distinct geochemical regions could be distinguished: the upper estuary (salinity 1–7) dominated by fluvial mud, mid-estuary (salinity 7–17) where the composition of the suspended matter remained relatively constant, and the lower estuary where marine mud prevailed. Re-suspension of sediments is the major factor controlling the composition of the particles in the upstream region. Anoxic conditions prevailed in the upper part of the estuary extending to a salinity of 15 in 1978, while at present the seaward boundary of the anoxic water body is located at less saline waters. Furthermore, the present-day metal load is much lower than in 1978. As a consequence of the changed situation, maxima in dissolved concentrations of redox-sensitive metals in the mid/lower estuary have moved as well, which affects the trace metal re-distribution pattern. In the anoxic zone, exchange processes between dissolved and particulate metal fractions were strongly redox regulated, with Fe and Mn as excellent examples. Iron was removed from the dissolved phase in the early stages of mixing resulting in an increase in the suspended particulate matter of the leachable ‘non-residual' Fe fraction from 2 to 3.5%. Due to its slower kinetics, removal of Mn from solution occurred in mid-estuary where oxygen concentrations increased. Cu, Cd and Zn on the contrary were mobilised from the suspended particles during estuarine mixing. External inputs of Pb, and to a lesser extent of Cu, in the lower estuary resulted in the increase of their particulate and the dissolved concentrations. Calculated Kd (distribution coefficient) values were used to assess the redistribution between the dissolved and particulate phase of the investigated metals. Due to the existence of the anoxic water body in the upper estuary, the importance of redox processes in determining the Kd values could be demonstrated. The sequence of Kd values in the upper estuary (Fe, Cd, Zn, Pb > Cu > Ni, Mn) is significantly different from that in the lower estuary (Fe > Mn > Pb, Ni, Zn, Cu, Cd). Thus, in such a dynamic estuary single metal-specific Kd values cannot be used to describe redistribution processes.  相似文献   

4.
Metal concentrations of Cu, Fe, Mn, Ni, Pb and Zn in an infaunal facultative deposit-feeding bivalve, the Baltic clam Macoma balthica, in the Gulf of Gdansk (southern Baltic Sea) were assessed and compared to selected concentrations of metals in the environment. Between October 1996 and September 1997, dissolved and easy extractable (by 1M HCl) metal fractions of total suspended particulate matter (TPM) in the overlying water and of surficial sediments (<63 microm) were measured monthly at five sublittoral sites in the Gulf of Gdansk, and accumulated tissue metal concentrations in M. balthica were determined simultaneously. The study highlights the importance of sediment geochemistry as a factor modifying ambient trace metal bioavailabilities. Surficial sediments appeared to contribute most to the accumulation of Cu and Pb in M. balthica, reflecting the high metal availability in the Gulf. Assimilation of Cu from sediments is controlled by Mn components possibly through an inhibitory effect of Mn oxyhydroxides, while Pb accumulation from sediments depends on the organic content of the sediment. A dual metal uptake pathway, with a suspended particulate-bound fraction and surficial sediments, was apparent for Mn and Zn. Partitioning of Mn in sediments was related to the concentration of labile Fe, with increased levels of Fe tending to inhibit the accumulation of Mn by the clam. Tissue accumulated Zn might have been altered by the clam's internal regulation, making Zn tissue concentrations, to some degree, independent of its environmental level. The principal source of Ni accumulated by the clams exists in the soluble phase.  相似文献   

5.
We report a simplified synthesis, and some performance characteristics, for 8-hydroxyquinoline (8-HOQ) covalently bonded to a chemically resistant TosoHaas TSK vinyl polymer resin. The resin was used to concentrate trace metals from stored, acidified seawater samples collected from Jellyfish Lake, an anoxic marine lake in the Palau Islands. The Mn, Fe, and Zn profiles determined from the 8-HOQ resin extraction were similar to those determined using Chelex-100 resin. The Zn and Cd profiles did not exhibit removal by sulfide “stripping” in contrast to other anoxic marine basins. The profiles of Co and Ni also exhibited elevated concentrations in the anoxic hypolimnion. The solution speciation and saturation states for the metals were calculated using revised metal-bisulfide stability constants. The calculations suggest that the MS(HS) species dominates the solution speciation for Mn, Co, Ni, Zn, Cd, and Pb. Cu(I) is modeled as the CuS or Cu(HS)2 species, while Fe(II) behaves as the free Fe2+ cation. The Mn, Co, Ni, Cu and Cd concentrations appeared to be at least 10-fold undersaturated, while the Fe(II), Zn, and Pb concentrations were close to saturation with respect to their metal sulfides.  相似文献   

6.
The biogeochemical behavior of the group of heavy metals and metalloids in the water (including their dissolved and suspended particulate forms), bottom sediments, and zoobenthos was studied in the Ob River estuary-Kara Sea section on the basis of the data obtained during cruise 54 of the R/V Akademik Mstislav Keldysh in September–October 2007. The changes in the ratios of the dissolved and suspended particulate forms of Fe, Mn, Zn, Cu, Pb, Cd, and As were shown, as well as the growth of the fraction of adsorbed forms in the near-bottom suspended particulate matter under the mixing of the riverine and marine waters. The features of the metals’ accumulation in the typical benthic organisms of the Ob River estuary and the Kara Sea were revealed, and their concentrating factors were calculated based on the specific conditions of the environment. It was shown that the shells of the bivalves possessing a higher biomass compared to the other groups of organisms in the Ob River estuary play an important role in the deposition of heavy metals. The mollusks of the Ob River estuary accumulate Cd and Pb at the background level, whereas the Cu and Zn contents appear to be over the background level.  相似文献   

7.
A total of 150 samples were collected at a 10-days' anchor station in the Bornholm basin (55° 31.1′N, 15° 32.1′E) and analyzed for dissolved (< 0.4 μm) and particulate trace metals. For dissolved Mn, large gradients have been found in the vertical distribution with minimum concentrations (< 0.2 μgl?1) in the halocline zone and considerably higher values in the deep waters (up to 50 μgl?1). Ultrafiltration studies indicate that dissolved Mn is probably present as Mn2+ in the oxygenated bottom layer. The primary production process was not evident in the particulate Mn profile; the suspended particulate material (SPM), however, shows a considerable enrichment with depth, apparently due to Mn-oxide precipitation.The distribution of dissolved Fe was rather homogeneous, with average concentrations throughout the water column between 0.86 and 1.1 μgl?1, indicating that the oxidation of Fe2+ ions released from the sediments must already be complete in the very near oxidation boundary layer. Relatively high concentrations of particulate Fe were actually measured in the bottom layer, with the maximum mean of 11.2 μgl?1 at 72 m. Similarly to Mn, the profile of particulate Fe does not reflect the SPM curve of the eutrophic layer. On average, about 70% of the total Fe in surface waters was found to be particulate.The average concentrations of dissolved Zn, Cd and Cu were found to be rather homogeneous in the water column but showed a relatively high variability with time. A simplified model on trace-metal uptake by phytoplankton indicates no significant change in dissolved metal concentrations during the period of investigation. On average, only 1.7% Zn, 3.3% Cd and 9.8% Cu of the total metal concentrations were found in particulate form. SPM analyses showed significant correlations of Zn, Cd and Cu with Fe, indicating that particulate iron is an important carrier for particulate trace metals in Baltic waters.  相似文献   

8.
The U-Tapao Canal is the main source of freshwater draining into the outer part of Songkhla Lake, which is the most important estuarine lagoon in Thailand. Songkhla Lake is located in southern Thailand between latitudes 7°08' and 7°50' N and longitudes 100°07' and 100°37' E. Acetic acid (HOAc)-soluble Cu, Fe, Mn, Pb, and Zn and the total concentration of these metals along with Al concentration, organic carbon, carbonate, sand, silt, and clay contents were determined in 4 sediment cores obtained at selected intervals from the mouth of the canal to 12 km upstream. Readily oxidizable organic matter in the cores varies from 1.52% to 7.30% and is generally found to decrease seaward. Total concentrations of Al (61.7–99.0 g kg−1; 2.29–3.67 mol kg−1), Cu (12.4–28.2 mg kg−1; 195–444 μmol kg−1), Fe (25.2–42.0 g kg−1; 451–752 mmol kg−1), Mn (0.22–0.49 g kg−1; 4.0–8.9 mmol kg−1), Pb (16.7–43.1 mg kg−1; 80.6–208 μmol kg−1), and Zn (48.6–122.7 mg kg−1; 0.74–1.88 mmol kg−1) vary to a certain extent vertically and seaward in the U-Tapao Canal core sediments. These concentrations are at or near natural levels and show no indication of anthropogenic contamination.Overall, the data show that total metal concentrations in the surface and near surface core sediments are enriched in varying degrees relative to Al in the order of Zn>Mn>Pb>Fe>Cu. Chemical partitioning shows that the enrichment in the surface and near surface sediments is related to the relatively high proportion of the total metal concentrations (Mn>Zn>Fe>Cu>Pb) that occur in the acetic acid-soluble (nondetrital) fraction, and they generally decrease with depth. Nondetrital Cu, Pb, and Zn likely derive from those metals held in ion exchange positions, certain carbonates, and from easily soluble amorphous compounds of Mn and perhaps those of Fe. Diagenetic processes involving Mn and to a lesser extent, Fe compounds, as well as the vertical changes in the oxidizing/reducing boundaries, appear to be the most important factors controlling the behavior of the metals in these cores. Organic matter and the aluminosilicate minerals, however, appear to be less important carriers of the metals studied.  相似文献   

9.
Results of trace metal analyses performed on two species of Euphausiacea, Meganyctiphanes norvegica and Stylocheiron longicorne, and one species of Decapoda, Sergestes arcticus, collected off the east coast of Corsica, are reported. Analyses were carried out by atomic absorption spectrophotometry and by differential pulse anodic stripping voltammetry.S. arcticus contained lower concentrations of phosphorus (which was also analysed as a biological indicator), cadmium (0.33 μg g−1), copper (17.7 μg g−1), lead (2.13 μg g−1) and zinc (51 μg g−1) than the two Euphausiacea (0.50 μg Cd g−1, 25.4 μg Cu g−1, 4.03 μg Pb g−1 and 59 μg Zn g−1). Moreover, manganese concentrations were low in all the samples.When the results presented here are compared with previous results on phytoplankton and mesozooplankton, there appears to be no trend of trace metal enrichment from phytoplankton to the Decapoda.  相似文献   

10.
Marine colloidal material (1 kDa–0.2 μm) was isolated by cross-flow ultrafiltration followed by diafiltration and freeze-drying from surface waters of the Gulf of Mexico and the Middle Atlantic Bight (MAB), as well as from estuarine waters of Galveston Bay. Elemental characterization of isolated colloidal material included organic carbon (OC) and selected trace metal (Cu, Pb, Zn, Cd, Co, Ni, Cr, Be, Fe, Al, Mn, V, Ba, and Ti) determinations. It was found that levels of these metals in marine colloids ranged from <0.1 to 50 μg/g colloidal matter, except for Fe which generally had a concentration >120 μg/g. Most metals (Cu, Pb, Zn, Ni, Al, Mn, V, and Ti) had an average concentration >1 μg/g while concentrations of Cd, Co and Be were usually <1 μg/g. Metal concentrations (μg/g) in isolated colloids were, in general, higher in Galveston Bay than in the Gulf of Mexico, suggesting either high abundance of trace metals in estuarine waters or differences in organic matter composition. Higher colloidal metal concentrations in the MAB than in the Gulf of Mexico might be due to higher terrestrial inputs in the MAB. Colloidal metal concentrations (μg/g) were generally lower than those in average soils, continental crust and suspended particles. However, metal/aluminum ratios (Me/Al) in isolated marine colloids were significantly higher than those for average soils and continental crust. Most importantly, colloids had a metal composition and metal/OC ratio (Me/C) similar to humic substances and marine plankton, suggesting that marine colloids largely originate from planktonic sources and are composed of predominately organic components. The Me/C ratios of Galveston Bay colloids followed the sequence of Cu>Ni, Cr, Zn>Mn>Co>Pb, Cd, which is similar to the Irving–Williams order except for Mn, suggesting that the interaction of metals with marine colloids is determined by the affinity of metals for specific organic ligands.  相似文献   

11.
The distribution, partitioning and concentrations of trace metals (Cd, Cr, Cu, Fe, Mn, Pb and Zn) in seawater, including dissolved and particulate phases, and in copepods in the ocean outfall area off the northern coast of Taiwan were investigated. Normalization of metal concentrations to the background metal concentration to yield relative enrichment factors (EF), which were used to evaluate the contamination of dissolved and particulate trace metals in seawater around the ocean outfall. The EF results indicated that the outfall area was significantly contaminated by dissolved Fe and Zn, and by particulate Fe, Cr, Cu, Pb and Zn. In addition, most trace metals were chiefly in the particulate phase. The average percentage of total metal concentrations (dissolved plus particulate phases) bound by suspended particulate matter followed the sequence Al(95%) = Mn(95%) > Pb(88%) > Cu(86%) > Fe(72%) > Zn(32%) > Cr(17.5%) > Cd(3.4%). Therefore, metal contamination is better evaluated in solid phase than in the dissolved phase. The concentration ranges of trace metals in the copepods, Temora turbinata, Oncaea venusta and Euchaeta rimana, near the outfall were: Cd, 0.23-1.81 microg g(-1); Cr, 16.5-195 microg g(-1); Cu, 14-160 microg g(-1); Fe, 256-7255 microg g(-1); Mn, 5.5-80.8 microg g(-1); Pb, 2.6-56.2 microg g(-1); Zn, 132-3891 microg g(-1); and Al, 0.21-1.13%. Aluminum, and probably Fe, seemed to be the major elements in copepods. The concentrations of trace metals in copepods, especially Temora turbinata, near the outfall were generally higher than those obtained in the background station. The mean increase in bioconcentration factor of metals in copepods ranged from 4 to 7 and followed the sequence Al(6.4) > Cu(6.2) > Fe(6.0) > Zn(5.7) > Pb(5.6) > Cr(5.5) > Cd(5.1) > Mn(4.7). Therefore, marine copepods in the waters of northern Taiwan can accumulate trace metals over background concentrations and act as contamination indicators.  相似文献   

12.
Water column samples have been collected in the outer channel of the Ferrol Ria (NW Spain) during four occasions over a tidal cycle. The objective was to study the exchange of dissolved and particulate Cd, Cu, Pb and Zn and particulate Al, Fe and Si between the ria and the adjacent coastal waters. This study provides the first extensive dataset on dissolved and particulate metal concentrations in the water column of a Galician ria. Typical concentrations of dissolved Cd (96 ± 31 pM), Cu (8 ± 4 nM), Pb (270 ± 170 pM) and Zn (21 ± 10 nM) were similar than in other European Atlantic shelf and coastal waters. The fraction of metals in the particulate phase followed the trend: Pb > Cu Zn > Cd. The outgoing water from the ria was enriched in dissolved and particulate Cu, Pb and Zn compared with incoming waters, whereas Cd concentrations were similar for both waters. The suspended particulate matter was composed of a mixture of marine and continental material. The latter end-member was found to arise from the metal-rich ria bed sediments, which is diluted by the dominant metal-poor marine end-member. The net output flux of Cu from the channel is balanced by the freshwater inputs to the ria, and the net Zn flux gave a positive output to coastal waters. For Pb, the net flux to the coastal waters is less than that input from the rivers, as a result of its particle reactivity and deposition in sediments. On the contrary, a net input flux of dissolved Cd from coastal waters was observed, highlighting the oceanic source of this metal in the Galician rias. Results from the budget calculations are in agreement with the differential geochemical behavior of these elements in coastal waters.  相似文献   

13.
Concentrations of Cd, Cu, Cr, Co, Ni, Zn, Fe, Mn, Pb, As, and Sb were determined in sediment trap and bottom sediment samples collected seasonally from a station on the eastern Turkish coast of the Black Sea. Cd, Pb and Mn concentrations were highest in the sediment trap samples except during the summer period, whereas Co, Ni, Zn and Fe levels were much lower than corresponding levels found in the surface sediments. Cu, Cr, As and Sb levels showed no definite trend with sediment type. In general, with the exception of Cr, relatively lower metal concentrations in the sediment trap material were determined in the summer period. The highest mass flux, 56.5 g m−2 day−1, was measured during autumn. The highest flux of heavy metals also occurred during autumn and was strongly dependent on particle mass flux. Based on these results, we suggest that the downward vertical transport of particulate heavy metals in this region is related to the high degree of land erosion and the resultant particulate flux dynamics, which occur here. It was noteworthy that the highest concentrations of Cd, Cu, Co, Zn, Fe and Sb in particles were measured during winter a finding which suggests that enhanced fossil fuel combustion, which occurs during this period in adjacent urban and industrial areas plays an important role in the metal composition of sinking particles in nearshore waters.  相似文献   

14.
In September 1993 (M26) and June/July 1996 (M36), a total of 239 surface samples (7 m depth) were collected on two transects across the open Atlantic Ocean (224 samples) and northwest European shelf edge area. We present an overview of the horizontal variability of dissolved Cd, Co, Zn, and Pb in between the northwest and northeast Atlantic Ocean in relation to salinity and the nutrients. Our data show a preferential incorporation of Cd relative to P in the particulate material of the surface ocean when related to previously published parallel measurements on suspended particulate matter from the same cruise. There is a good agreement with results recently estimated from a model by Elderfield and Rickaby (Nature 405 (2000) 305), who predict for the North Atlantic Ocean a best fit for αCd/P=[Cd/P]POM/[Cd/P]SW of 2.5, whereas the approach of our transect shows a αCd/P value of 2.6. The Co concentrations of our transects varied from <5 to 131 pmol kg−1, with the lowest values in the subtropical gyre. There were pronounced elevations in the low-salinity ranges of the northwest Atlantic and towards the European shelf. The Co data are decoupled from the Mn distribution and support the hypothesis of marginal inputs as the dominant source. Zinc varied from a minimum of <0.07 nmol kg−1 to a maximum of 1.2 and 4.8 nmol kg−1 in regions influenced by Labrador shelf or European coastal waters, respectively. In subtropical and northeast Atlantic waters, the average Zn concentration was 0.16 nmol kg−1. Zinc concentrations at nearly three quarters of the stations between 40°N and 60°N were <0.1 nmol kg−1. This suggests that biological factors control Zn concentrations in large areas of the North Atlantic surface waters. The Pb data indicated that significant differences in concentration between the northwest and northeast Atlantic surface waters presently (1996) do not exist for this metal. The transects in 1993 and 1996 exhibited Pb concentrations in the northeast Atlantic surface waters of 30 to 40 pmol kg−1, about a fifth to a quarter of the concentrations observed in 1981. This decline is supported by our particle flux measurements in deep waters of the same region.  相似文献   

15.
The concentrations of suspended matter and particulate Cd, Cu, Pb and Zn were determined for 36 samples collected at 6 stations in the Antarctic Ocean during December, 1970 and January, 1971 using membrane filters. The concentration of suspended matter was determined gravimetrically and trace metal levels were determined using anodic stripping voltammetry. For waters deeper than 100 m the concentration of suspended matter was < 100 μg l?1. Concentrations up to 542 μg l?1 were recorded between surface and 100 m. Individual concentrations of the metals were scattered with depth. Average concentrations of particulate metals were: Cd, 3.5 ng l?1; Cu, 100 ng l?1; Pb, 35 ng l?1; and Zn, 230 ng ;l?1 These measurements represent non-steady state conditions of early Antarctic summer as the ice pack disintegrates and biological activity increases.  相似文献   

16.
陈水土  杨慧辉 《台湾海峡》1993,12(4):376-384
根据1987年3月至1988年12月九龙江口,厦门西港海域的调查资料,初步探讨该海域Fe,Mn,Cu,Zn,Ni,Co,Pb,Cd等重金属元素的生物地球化学特性,及其与磷的生物地球化学的关系。结果表明该海域重金属元素的分布主要受九龙江径流的影响。在河水与海水混合过程中,悬浮颗粒态重金属元素发生明显转移,Fe,Mn,Co,Zn等元素自悬浮颗粒物上解吸,Cu可能被吸附,颗粒态重金属元素与颗粒态磷呈良好  相似文献   

17.
Purine and pyrimidine bases in marine environmental particles collected in Harima-Nada, the Seto Inland Sea, Japan, were investigated by high performance liquid chromatography.Purines and pyrimidines concentrations varied from 0.3 to 9.3 μg l−1 (n=20) for suspended matter, and 0.3 to 0.6 mg g−1 (n=10) for sinking particles. A good correlation was found between chlorophyll a and purine+pyrimidine bases in suspended matter, indicating that these bases contained in suspended matter originated from phytoplankton.A comparison between several compositional data of the suspended matter and the sinking particles, namely CN ratio, composition of purines and pyrimidines, and percentages of the nitrogen bases relative to total particulate organic nitrogen, demonstrates that the sinking particles were different from suspended matter. Also, from the variety of purine and pyrimidine concentrations of marine particle samples, it was estimated that the decomposition rate of these bases seemed more rapid than decomposition rates of amino acids reported in our earlier study.  相似文献   

18.
The results of geochemical studies of particulate matter in the water mass over the hydrothermal field at 9°50′ N on the East Pacific Rise are presented. The particulate matter was tested in background waters, in the buoyant plume, and in the near-bottom waters. The contents of Si, Al, P, Corg, Fe, Mn, Cu, Zn, Ni, Co, As, Cr, Cd, Pb, Ag, and Hg were determined. No definite correlations were found between the ele-ments in the background waters. Many of the chemical elements correlated with Fe and associated with its oxyhydroxides in the buoyant plume. In the near-bottom waters, microelements are associated with Fe, Zn, and Cu (probably, to their sulfides formed under fluid mixing with seawater). The matter precipitated in a sed-imentation trap was similar to the near-bottom particulate matter in the elemental composition.  相似文献   

19.
Freshwater concentrations confirm the pristine character of the Lena River environment as already pointed-out in a previous study with a limited set of data (Martin et al., 1993). Total dissolved concentrations of the freshwater are 13.8 ± 1.6 nM, Cu, 4.4 ± 0.1 nM, Ni, 0.054 ± 0.047 nM, Cd, 642 ± 208 nM, Fe, 0.2–0.3 nM Pb and 1.2 ± 1.0 nM, Zn. For Zn and Pb, a simple mixing of the Lena River waters with the Arctic waters is observed. Relationships with salinity suggest that for Cu, Ni and Cd, there is a mobilization of the dissolved fraction from the suspended matter, with an increase of the dissolved concentration of 1.5, 3 and 6 times, respectively. For Fe, the total dissolved concentrations follow an exponential decrease in the mixing zone and 80% of the total “dissolved” Fe is removed from the solution. For Cu, Ni, Cd and Fe, the riverine end-members are 20 nM, 12 nM, 0.3 nM and 47 nM, respectively. When considering the input of total dissolved metals to the Arctic Ocean, the fraction attributed to the freshwaters from the Arctic rivers appears to be small (4% of the input of dissolved metal to the Arctic Ocean for Cd, 27% for Cu, 11 % for Ni and 2% for Zn). Metal concentrations in the Laptev Sea and Arctic Ocean are very similar, indicating a generally homogeneous distribution in the areas sampled.  相似文献   

20.
Data are presented for the concentrations of Al, Fe, Mn, Ni, Co, Cr, V, Cu, Zn, Pb and Cd in aerosols collected over two contrasting regions of the Indian Ocean. These are: (1) the northern Arabian Sea (AS), from which samples were collected in the northeast monsoon, during which the region receives an input of crustal material from the surrounding arid land masses; and (2) the Tropical Southern Indian Ocean (TSIO), a remote region from which samples were collected from air masses for which there were no large-scale up-wind continental aerosol sources. The TSIO samples can be divided into two populations: Population I aerosols, collected from air masses which have probably impinged on Madagascar, and Population II aerosols, which have been confined to open-ocean regions to the south of the area.The data indicate that there are strong latitudinal variations in the chemical signatures of aerosols over the Indian Ocean. The input of crustal material to the Arabian Sea gives rise to an average Al concentration of about 1000 ng m−3 of air in the northeast monsoon regime. As a result, the concentrations of all trace metals are relatively high, and the values of crustal enrichment factors are less than 10 for most metals, in the AS aerosols. In contrast, TSIO Population II ‘open-ocean southern air’ sampled during the southwest monsoon season, has an average Al concentration of only about 10 ng m−3 of air. Trace metal concentrations in the TSIO ‘open-ocean southern air’ during the southwest monsoon season are representative of ‘clean’ remote marine air and are generally similar to those reported over the central North Pacific.Mineral dust concentrations over the Indian Ocean decrease in a north to south direction, from about 15–20 μg m−3 of air in the extreme north to about 0.01–0.25 μg m−3 of air in the far south. The deposition of mineral dust over the northern Arabian Sea can account for approximately 75% of the non-carbonate material incorporated into the underlying sediments.In the Arabian Sea the dissolved atmospheric inputs of all the trace metals, with the exception of Cu and Co, exceed those from fluvial run-off by factors which range from 9.6 for Pb to 1.6 for Cr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号