首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
城市污染河道沉积物可提取态氮的提取方式比较   总被引:4,自引:0,他引:4  
许宽  刘波  王国祥  周锋  凌芬  杜旭 《湖泊科学》2012,24(4):541-545
以城市污染河道——南京仙林大学城九乡河表层沉积物为研究对象,探讨沉积物常用提取剂(1 mol/L KCl、2 mol/L KCl、4 mol/L KCl和0.01 mol/L CaCl2)在不同液土比(5∶1、10∶1、50∶1和100∶1)条件下,对城市污染河道沉积物可提取态氮(NH4+-N、NO3--N)测定的影响.结果表明:KCl的提取效果要优于CaCl2,二者NH4+-N提取量分别为312.17~479.23、177.52~339.31 mg/kg,NO3--N提取量分别为4.49~21.56、4.25~8.53 mg/kg;可提取态氮提取量随液土比增高而增大,其中1 mol/L KCl组,液土比100∶1时NH4+-N和NO3--N提取量分别比液土比5∶1时增加41.97%和187.08%;NH4+-N提取量随提取剂浓度增高而增大,NO3--N随提取剂浓度增高而降低;采用1 mol/L KCl提取剂、液土比100∶1的组合联合提取城市污染河道沉积物中的NH4+-N、NO3--N,提取效果较好.  相似文献   

2.
Abstract

A field experiment was conducted on a sloping grassland soil in southwest England to investigate the downslope transport of nitrogen in soil water following the application of cattle manure, slurry and inorganic fertilizer. Transport of nitrogen (N) species was monitored on hydrologically isolated plots. Manure (50 t ha?1), slurry (50 m3 ha?1) and fertilizer (250 kg N ha?1) were applied in February/March 1992. Subsurface water movement, by both matrix and preferential flow, was the dominant flow route during the experiment. Subsurface and surface nutrient flow pathways were monitored by analysing soil water and surface runoff for NO3-N, NH4-N and total N. Subsurface flow chemistry was dominated by NO3-N, with concentrations usually between 2 and 5 mg NO3 ?N dm?3. Differences between fertilizer and manure treatments and the untreated control were not significant. Significantly elevated NO3-N concentrations were observed in soil water in the buffer zone, indicating the importance of a buffer zone at least 10 m wide between manure spreading zones and an adjacent water course.  相似文献   

3.
胡维平  濮培民  李万春 《湖泊科学》1998,10(S1):507-518
A model on a physico-biological engineering experiment for purifying water in Wulihu Bay of Lake Taihu by using Trapa natans var. bispinosa was constructed. The state variables in water in the physico-biological engineering were ammonium nitrogen (NH4+-N); nitrate nitrogen (NO3--N); nitrite nitrogen (NO2--N); phosphate phosphorus (PO43--P); dissolved oxygen (DO); nitrogen (N) and phosphorus (P) in detritus; biomass density, N and P in phytoplankton and in Trapa natans var. bispinosa, N and P in the substance adsorbed by the membrane of the engineering and the rootstocks of Trapa natans var. bispinosa. The state variables in bottom mud layer were PO43--P in the core water,exchangeable P and N. The external forcing functions were solar radiation, water temperature, NH4+-N; NO3--N; NO2--N; PO43--P; N and P in detritus; DO; phytoplankton concentrations in inflow water and the retention time of the water in physico-biological engineering channel. The main physical, chemical and biological processes considered in the model were:growth of Trapa natans var. bispinosa and phytoplankton; oxidation of NH4+-N and NO2--N, of detritus break down; N and P sorption by the enclosure cloth of the experimental engineering and by the rootstocks of Trapa natans var. bispinosa in water; reaeration of water; uptake of P, NH4+-N, NO3--N by phytoplankton and Trapa natans var. bispinosa:mortality of the phytoplankton and Trapa natans var. bispinosa:settling of detritus; and nutrient release from sediment. Comparison of calculated results and observed results showed that the model was constructed reasonably for the experiment. The mechanism of purifying lake water in the experiment engineering was discussed by the use of the model.  相似文献   

4.
为研究太湖流经不同类型缓冲带的入湖河流水体氮污染特征,于2011年9 12月连续对流经4种不同类型缓冲带入湖河流沿程共32个样点进行采样,分析各样点的氮浓度及变化趋势.结果表明,流经农田型缓冲带入湖河流中总氮浓度由缓冲带外进入缓冲带内不断减小,到入湖河口处有轻微上升;流经养殖塘型、村落型缓冲带入湖河流中总氮浓度由缓冲带外进入缓冲带内变化不大,到接近入湖河口时浓度显著升高;流经生态型缓冲带入湖河流中各氮元素形态沿程不断降低.在流经4种类型湖泊缓冲带入湖河流中,流经农田型、养殖塘型和生态型缓冲带的入湖河流以硝态氮为氮元素的主要存在形态,而流经村落型缓冲带的入湖河流中硝态氮和铵态氮同为氮元素的主要存在形态.总氮浓度、铵态氮浓度与缓冲带类型均呈极显著正相关关系,外源污染排入对流经缓冲带的入湖河流中氮元素总量及形态产生较大影响.流经生态型缓冲带入湖河流净化效果最佳,总氮、硝态氮和铵态氮浓度削减率分别为60%、53%和61%.  相似文献   

5.
以太湖重度蓝藻水华发生的西北湖区为研究对象,从河口至湖心区设置5个采样点,于2012年10月至2013年10月逐月采集表层水体样品,测定了水温、溶解氧和浮游细菌丰度,并分析了浮游植物群落结构的组成、溶解性无机氮(DIN)和有机氮(DON)浓度以及氮磷比.研究结果表明,太湖西北湖区浮游植物主要由蓝藻、硅藻、绿藻和隐藻组成.可能由于风、浪等混合作用使太湖西北湖区不同采样点之间蓝藻细胞密度没有显著差异.蓝藻生物量在浮游植物中所占比例最高为34%±15%,春季部分点位隐藻生物量高于50%,表明隐藻与蓝藻的相互竞争趋势显著.CCA排序图结果表明,DIN、DON浓度以及总氮∶总磷比(TN∶TP比)是影响西北湖区浮游植物优势属分布的重要环境因子.5个采样点铵态氮(NH_4~+-N)与DIN浓度具有显著差异,与DON浓度没有显著差异.夏季蓝藻水华暴发期间,可能由于蓝藻的吸收利用引起NH_4~+-N和硝态氮(NO_3~--N)浓度迅速降低.此外,由于NH_4~+-N浓度还可能受到沉积物NH_4~+-N释放的影响,因此,蓝藻细胞密度与NO_3~--N的相关系数和显著水平均高于NH_4~+-N.夏季TN∶TP比和DIN∶TP比降至最低,表明该湖区浮游植物,尤其是蓝藻的生长可能受到氮限制.蓝藻细胞密度与DON浓度呈显著负相关,表明在氮限制条件下,DON可能是蓝藻氮素利用的重要补充.  相似文献   

6.
The changes of NH3-N, NO3-N, NO2-N and TN/TP were studied during growth and non-growth season in 33 subtropical shallow lakes in the middle and lower reaches of the Yangtze River. There were significant positive correlations among all nutrient concentrations, and the correlations were better in growth season than in non-growth season. When TP>0.1 mgL?1, NH3-N increased sharply in non-growth season with increasing TP, and NO3-N increased in growth season but decreased in non-growth season with TP. These might be attributed to lower dissolved oxygen and low temperature in non-growth season of the hypereutrophic lakes, since nitrification is more sensitive to dissolved oxygen and temperature than antinitrification. When 0.1 mgL?1>TP>0.035 mgL?1, TN and all kinds of inorganic nitrogen were lower in growth season than in non-growth season, and phytoplankton might be the vital regulating factor. When TP<0.035 mgL?1, inorganic nitrogen concentrations were relatively low and NH3-N, NO2-N had significant correlations with phytoplankton, indicating that NH3-N and NO2-N might be limiting factors to phytoplankton. In addition, TN/TP went down with decline in TP concentration, and TN and inorganic nitrogen concentrations were obviously lower in growth season than in non-growth season, suggesting that decreasing nitrogen (especially NH3-N and NO3-N) was an important reason for the decreasing TN/TP in growth season. The ranges of TN/TP were closely related to trophic level in both growth and non-growth seasons, and it is apparent that in the eutrophic and hypertrophic state the TN/TP ratio was obviously lower in growth season than in non-growth season. The changes of the TN/TP ratio were closely correlated with trophic levels, and both declines of TN in the water column and TP release from the sediment were important factors for the decline of the TN/TP ratio in growth season.  相似文献   

7.
A study was made of the nitrogen (N) inputs to, and exports from, a stream draining a pasture catchment near Hamilton, New Zealand, in order to plan measures for minimizing N losses to natural waters. An estimated 7 kg N ha?1 was exported from the catchment during 1981 of which 86 per cent was in reduced forms (Kjeldahl-N, TKN) and the remainder as nitrate-N (NO3-N). Virtually all of the reduced N inputs came from saturated overland flow whereas NO3-N inputs were dominantly subsurface derived. The TKN exported by individual storm events could be predicted (R2 = 0.97) from peak flow and from the peak flow rate in the seven days preceding the storm. A TKN balance for eight events showed that except for large floods (return period approximately a year) the stream system was a net sink for TKN. During large floods, scouring of the organic rich seepage areas resulted in the stream system itself being a net source of TKN. Microbial assays for nitrification and denitrification activity indicated that the main nitrate source was the well-aerated greywacke and ash soils and that the permanently saturated seepage zones were a significant nitrate sink. An in-stream nitrate addition experiment showed that up to 20mg N m?2 h?1 was removed from the stream. Simultaneous measurements of in situ denitrification activity demonstrated that only about 1 per cent of this removal could be accounted for by denitrification. It was inferred that plant uptake was responsible for the remainder. Retention of near-stream seepage areas is suggested as a measure for minimizing NO3-N export, whilst removal of stock from seasonally saturated areas during periods of saturatior should reduce soil loss and hence TKN inputs to the stream.  相似文献   

8.
邓焕广  张智博  刘涛  殷山红  董杰  张菊  姚昕 《湖泊科学》2019,31(4):1055-1063
为了解城市湖泊不同水生植被区水体温室气体的溶存浓度及其影响因素,于2015年4-11月按每月2次的频率采用顶空平衡法对聊城市铃铛湖典型植被区——菹草区、莲藕区和睡莲区表层水中CO2、CH4和N2O的溶存浓度进行监测,计算水中温室气体的饱和度和排放通量,并测定水温(T)、pH、溶解氧(DO)、叶绿素a及营养盐浓度等理化指标,以探究水体环境因子对温室气体溶存浓度的影响.结果表明,铃铛湖各植被区水体温室气体均处于过饱和状态,是大气温室气体的"源";莲藕区CH4浓度、饱和度和排放通量均显著高于菹草区,而各植被区N2O和CO2均无显著性差异;不同植被区湖水中DO、总氮(TN)、总磷(TP)和硝态氮(NO3--N)浓度具有显著差异,其中DO、TN和NO3--N浓度均表现为菹草区最高,莲藕区最低,而TP浓度则正好相反;各植被区温室气体浓度和水环境参数间的相关分析和多元回归分析的结果表明,水生植物可通过影响水体的理化性质对温室气体的产生和排放产生显著差异影响,在菹草区亚硝态氮(NO2--N)、NO3--N、T和DO是控制水体温室气体浓度的主要因子;睡莲区为TP和pH;莲藕区则为pH、NO2--N和DO.  相似文献   

9.
郑鑫  王文静  盛彦清 《湖泊科学》2023,35(6):1917-1926
水体富营养化极易引起湖泊水库如藻类水华等水生态系统环境问题。氮素作为初级生产力的限制性生源要素之一,认识其在水华形成过程中潜在作用至关重要。本研究选取胶东半岛低碳高氮水库水体进行模拟实验,通过添加不同剂量硝态氮,探究高硝态氮输入对库区水体藻类和细菌群落结构的影响。结果表明:(1)当硝态氮作为唯一氮源,随着培养时间延长,硝态氮浓度显著下降,亚硝态氮和氨氮浓度逐渐升高,表明微藻和细菌共同作用可能将硝态氮转化为亚硝态氮和氨氮;(2)当硝态氮浓度为6 mg/L时,藻类叶绿素a浓度达到最高值,随着硝态氮浓度升高,叶绿素a浓度则会降低;(3)添加硝态氮后,蓝藻门成为优势藻类,绿藻门次之;变形菌门相对丰度显著升高。研究结果为低碳高氮类水体暴发蓝绿藻水华及有效防控提供理论依据和技术支撑。  相似文献   

10.
水生植被对于维持水生态系统结构和功能稳定性具有举足轻重的作用,而重建水生植物被认为是污染湖泊生态修复的重要手段.氮素是水生态系统重要的限制性元素之一,根着挺水植物生长发育无疑将深刻地影响着沉积物氮的迁移转化过程,但水生植物不同生长阶段对沉积物氮的需求和植物代谢强度均不同,目前对挺水植物完整生长过程中沉积物氮组分及含量变化认识仍十分不足.本研究通过为期120d的沉积物柱芯培养和水槽模拟试验,探究巢湖芦苇恢复完整生长过程中沉积物总氮(TN)、无机氮(TIN)与可转化态氮(TF-N)的变化及其关键调控因子.结果表明,芦苇完整生长过程将持续激发沉积物氮活性,沉积物TIN与TF-N含量逐渐增加,而沉积物TN和非可转化态氮(NTF-N)含量显著降低.模拟试验期间,指数型增长的芦苇生物量提高了沉积物铵态氮(NH_4~+-N)和硝态氮(NO_3~--N)含量,但亚硝态氮(NO_2~--N)含量却逐渐降低;与第0天相比,第120天沉积物离子交换态氮(IEF-N)、碳酸盐结合态氮(CF-N)、铁锰氧化态氮(IMOF-N)和有机态及硫化物结合态氮(OSF-N)含量分别增加了 1.10、3.40、3.60和1.40倍,这主要受芦苇吸收利用、根系代谢强化根际沉积物氧化还原电势和改变pH微环境共同驱动.在第120天,沉积物NH_4~+-N和NO_3~--N含量急剧升高,分别是第90天的9.43和2.22倍,表明芦苇衰亡凋落过程将向沉积物释放大量的TIN,故需要综合采取湖泊物理—生态工程手段来有效管控芦苇枯落物,从而提升水生植被修复效果并构建长效稳态机制.  相似文献   

11.
Alan R. Hill 《水文研究》2012,26(20):3135-3146
The effect of preferential flow in soil pipes on nitrate retention in riparian zones is poorly understood. The characteristics of soil pipes and their influence on patterns of groundwater transport and nitrate dynamics were studied along four transects in a 1‐ to >3‐m deep layer of peat and marl overlying an oxic sand aquifer in a riparian zone in southern Ontario, Canada. The peat‐marl deposit, which consisted of several horizontal layers with large differences in bulk density, contained soil pipes that were generally 0.1 to 0.2 m in diameter and often extended vertically for 1 to >2 m. Springs that produced overland flow across the riparian area occurred at some sites where pipes extended to the peat surface. Concentrations of NO3?–N (20–30 mg L?1) and dissolved oxygen (DO) (4–6 mg L?1) observed in peat pipe systems and surface springs were similar to values in the underlying sand aquifer, indicating that preferential flow transported groundwater with limited nitrate depletion. Low NO3?–N concentrations of <5 mg L?1 and enriched δ15N values indicated that denitrification was restricted to small areas of the peat where pipes were absent. Groundwater DO concentrations declined rapidly to <2 mg L?1 in the peat matrix adjacent to pipes, whereas high NO3?–N concentrations of >15 mg L?1 extended over a larger zone. Low dissolved organic carbon values at these locations suggest that supplies of organic carbon were not sufficient to support high rates of denitrification, despite low DO conditions. These data indicate that it is important to develop a greater understanding of pipes in peat deposits, which function as sites where the transport of large fluxes of water with low biogeochemical reaction rates can limit the nitrate removal capacity of riparian zones. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Measured, calculated and simulated values were combined to develop an annual nitrogen budget for Loch Vale Watershed (LVWS) in the Colorado Front Range. Nine-year average wet nitrogen deposition values were 1·6 (s=0·36) kg NO3-N ha−1, and 1·0 (s=0·3) kg NH4-N ha−1. Assuming dry nitrogen deposition to be half that of measured wet deposition, this high elevation watershed receives 3·9 kg N ha−1. Although deposition values fluctuated with precipitation, measured stream nitrogen outputs were less variable. Of the total N input to the watershed (3·9 kg N ha−1 wet plus dry deposition), 49% of the total N input was immobilized. Stream losses were 2·0 kg N ha−1 (1125 kg measured dissolved inorganic N in 1992, 1–2 kg calculated dissolved organic N, plus an average of 203 kg algal N from the entire 660 ha watershed). Tundra and aquatic algae were the largest reservoirs for incoming N, at approximately 18% and 15% of the total 2574 kg N deposition, respectively. Rocky areas and forest stored the remaining 11% and 5%, respectively. Fully 80% of N losses from the watershed came from the 68% of LVWS that is alpine. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
Peatlands provide a setting that is well suited for cranberry agriculture in the Northeastern United States. However, misconceptions exist about the amounts and forms of nitrogen (N) and phosphorus (P) export from cranberry farms. In this study, we report inorganic and organic forms of N and P export from five peatlands cultivated for cranberry production in southeastern, Massachusetts, United States. We then compare N loading rates among cranberry farms in southeastern Massachusetts, row crop farms in the Midwestern United States, and uncultivated peatlands in the United States and United Kingdom. Based on a fluvial mass balance analysis, we find that nonriparian cranberry farms export 2.56 kg of P ha−1 year−1of total P and 12.1 kg of N ha−1 year−1of total N. Total N export from riparian or “flow through” farms is two times higher than nonriparian farms due to less retention of N fertilizer in the vadose zone of riparian farms. Gross total N export from riparian and nonriparian cranberry farms consists of 35% particulate organic N, 26% dissolved organic N, 31% ammonium (NH4+), and 8% nitrate (NO3). The low proportions of NO3 export (13% of total dissolved N [TDN]) for cranberry farms differ from NO3 export for row crop farms (75% of TDN; p < .001) but not for uncultivated peatlands (17% of TDN; p = .61). Despite being highly modified by fertilizers and artificial drainage, low NO3 export (2.2 kg of N ha−1 year−1) from cranberry farms is consistent with field measurements of rapid N turnover in uncultivated peatlands. This finding suggests that state-funded wetland restoration efforts to restore denitrification in retired cranberry farms may be limited by NO3 rather than soil moisture or organic matter.  相似文献   

14.
Trevor Klein  Laura Toran 《水文研究》2016,30(17):2948-2957
The hydrologic and biogeochemical processes that control nutrient export in urban streams are not well understood. Attenuation can occur by tributary dilution, groundwater discharge, and biological processing both in the water column and the hyporheic zone. A wastewater treatment plant on Pennypack Creek, an urban stream near Philadelphia, PA, provided high nitrate concentrations for analysis of downstream attenuation processes. Longitudinal sampling for an 8‐km reach revealed decreases in nitrate concentration of 2 mg l?1 at high flow and 4.5 mg l?1 during low flow. During high flow, δ15N‐NO3 increased from 9.5 to 10.5‰ and during low flow increased from 10.1 to 11.1‰. Two reaches were sampled at fine spatial intervals (approximately 200 m) to better identify attenuation processes. Mixing analysis indicated that groundwater discharge and biological processing both control nitrate concentration and isotope signatures. However, fine‐scaled sampling did not reveal spatially discrete zones; instead, these processes were occurring simultaneously. While both processes attenuate nitrate, they have opposite isotope signatures, which may have muted changes in δ15N‐NO3. At high flow, a decrease in Cl/NO3 ratios helped distinguish groundwater discharge occurring along both finely sampled reaches. At low flow, biological processing seemed to be occurring more extensively, but the δ15N‐NO3 signature was not consistent with either a single process or a sequential combination of groundwater dilution and biological nitrate attenuation. The collocation of processes makes it more difficult to assess biological processing hot spots and predict how urbanization and subsequent stream restoration influence nitrate attenuation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Three main reservoirs were identified that contribute to the shallow subsurface flow regime of a valley drained by a fourth‐order stream in Brittany (western France). (i) An upland flow that supplied a wetland area, mainly during the high‐water period. It has high N‐NO3? and average Cl? concentrations. (ii) A deep confined aquifer characterized by low nitrate and low chloride concentrations that supplied the floodplain via flow upwelling. (iii) An unconfined aquifer under the riparian zone with high Cl? and low N‐NO3? concentrations where biological processes removed groundwater nitrate. This aquifer collected the upland flow and supplied a relict channel that controlled drainage from the whole riparian zone. Patterns of N‐NO3? and Cl? concentrations along riparian transects, together with calculated high nitrate removal, indicate that removal occurred mainly at the hillslope–riparian zone interface (i.e. first few metres of wetland), whereas dilution occurred in lower parts of the transects, especially during low‐water periods and at the beginning of recharge periods. Stream flow was modelled as a mixture of water from the three reservoirs. An estimation of these contributions revealed that the deep aquifer contribution to stream flow averaged 37% throughout the study period, while the contribution of the unconfined reservoir below the riparian zone and hillslope flow was more variable (from ca 6 to 85%) relative to rainfall events and the level of the riparian water table. At the entire riparian zone scale, NO3? removal (probably from denitrification) appeared most effective in winter, despite higher estimated upland NO3? fluxes entering the riparian zone during this period. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
To investigate the origin and behaviour of nitrate in alluvial aquifers adjacent to Nakdong River, Korea, we chose two representative sites (Wolha and Yongdang) having similar land‐use characteristics but different geology. A total of 96 shallow groundwater samples were collected from irrigation and domestic wells tapping alluvial aquifers. About 63% of the samples analysed had nitrate concentrations that exceeded the Korean drinking water limit (44·3 mg l?1 NO3?), and about 35% of the samples had nitrate concentrations that exceeded the Korean groundwater quality standard for agricultural use (88·6 mg l?1 NO3?). Based on nitrogen isotope analysis, two major nitrate sources were identified: synthetic fertilizer (about 4‰ δ15N) applied to farmland, and animal manure and sewage (15–20‰ δ15N) originating from upstream residential areas. Shallow groundwater in the farmland generally had higher nitrate concentrations than those in residential areas, due to the influence of synthetic fertilizer. Nitrate concentrations at both study sites were highest near the water table and then progressively decreased with depth. Nitrate concentrations are also closely related to the geologic characteristics of the aquifer. In Yongdang, denitrification is important in regulating nitrate chemistry because of the availability of organic carbon from a silt layer (about 20 m thick) below a thin, sandy surface aquifer. In Wolha, however, conservative mixing between farmland‐recharged water and water coming from a village is suggested as the dominant process. Mixing ratios estimated based on the nitrate concentrations and the δ15N values indicate that water originating from the village affects the nitrate chemistry of the shallow groundwater underneath the farmland to a large extent. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
This paper characterizes a seasonally inundated Danish floodplain wetland in a state close to naturalness and includes an analysis of the major controls on the wetland water and nitrogen balances. The main inputs of water are precipitation and percolation during ponding and unsaturated conditions. Lateral saturated subsurface flow is low. The studied floodplain owes its wetland status to the hydraulic properties of its sediments: the low hydraulic conductivity of a silt–clay deposit on top of the floodplain maintains ponded water during winter, and parts of autumn and spring. A capillary fringe extends to the soil surface, and capillary rise from groundwater during summer maintains near‐saturated conditions in the root zone, and allows a permanently very high evapotranspiration rate. The average for the growing season of 1999 is 3·6 mm day?1 and peak rate is 5·6 mm day?1. In summer, the evapotranspiration is to a large degree supplied by subsurface storage in a confined peat layer underlying the silt–clay. The floodplain sediments are in a very reduced state as indicated by low sulphate concentrations. All nitrate transported into the wetland is thus denitrified. However, owing to modest water exchange with surrounding groundwater and surface water, denitrification is low; 71 kg NO3–N ha?1 during the study period of 1999. Reduction of nitrate diffusing into the sediments during water ponding accounts for 75% of nitrate removal. Biomass production and nitrogen uptake in above‐ground vegetation is high—8·56 t dry matter ha?1 year?1 and 103 kg N ha?1 year?1. Subsurface ammonium concentrations are high, and convective upward transport into the root zone driven by evapotranspiration amounted to 12·8 kg N ha?1year?1. The floodplain wetland sediments have a high nitrogen content, and conditions are very favourable for mineralization. Mineralization thus constitutes 72% of above‐ground plant uptake. The study demonstrates the necessity of identifying controlling factors, and to combine surface flow with vadose and groundwater flow processes in order to fully comprehend the flow and nitrogen dynamics of this type of wetland. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Subsurface brines with high nitrate (NO3?) concentration are common in desert environments as atmospheric nitrogen is concentrated by the evaporation of precipitation and little nitrogen uptake. However, in addition to having an elevated mean concentration of ~525 mg/L (as N), NO3? in the coastal sabkhas of Abu Dhabi is enriched in 15N (mean δ15N ~17‰), which is an enigma. A NO3? solute mass balance analysis of the sabkha aquifer system suggests that more than 90% of the nitrogen is from local atmospheric deposition and the remainder from ascending brine. In contrast, isotopic mass balances based on Δ17O, δ15N, and δ18O data suggest approximately 80 to 90% of the NO3? could be from ascending brine. As the sabkha has essentially no soil, no vegetation, and no anthropogenic land or water use, we propose to resolve this apparent contradiction with a density‐driven free‐convection transport model. In this conceptual model, the density of rain is increased by solution of surface salts, transporting near‐surface oxygenated NO3? bearing water downward where it encounters reducing conditions and mixes with oxygen‐free ascending geologic brines. In this environment, NO3? is partially reduced to nitrogen gas (N2), thus enriching the remaining NO3? in heavy isotopes. The isotopically fractionated NO3? and nitrogen gas return to the near‐surface oxidizing environment on the upward displacement leg of the free‐convection cycle, where the nitrogen gas is released to the atmosphere and new NO3? is added to the system from atmospheric deposition. This recharge/recycling process has operated over many cycles in the 8000‐year history of the shallow aquifer, progressively concentrating and isotopically fractionating the NO3?.  相似文献   

19.
湖光岩玛珥湖水体中营养盐的时空分布特征及其影响因素   总被引:1,自引:0,他引:1  
湖光岩玛珥湖是世界上最大的玛珥湖,它几乎是封闭的,受外界的干扰小.目前有关玛珥湖的研究主要集中在古气候及生态环境研究方面,而有关玛珥湖营养盐在一年中的生物地球化学循环的研究较少,因此研究湖光岩玛珥湖营养盐的生物地球化学过程具有重要意义.于2015年10月-2016年9月对湖光岩玛珥湖全水柱的营养盐及其他相关参数进行逐月调查,分析营养盐的结构特征、垂直分布特征和时间变化情况,并讨论营养盐时空变化的影响因素.结果表明,湖光岩玛珥湖水中的无机氮(DIN)以铵态氮(NH4+-N)为主(>60%),其次是硝态氧(NO3--N),亚硝态氮(NO2--N)所占比利最低.湖光岩玛珥湖水中的硅酸盐(SiO32--Si)浓度较高,水体浮游植物生长受磷限制.冬季风期间,水体垂直混合较均匀,导致营养盐的垂直分布比较均匀;夏季风期间,水体层化,营养盐浓度在浅层水体较低,在深层水体较高.湖光岩玛珥湖表层水中的NO3--N、NH4+-N和SiO32--Si具有明显的时间变化规律:NO3--N浓度从10月-次年3月升高,从3-9月降低;NH4+-N浓度从10月-次年5月降低;SiO32--Si浓度从11月-次年5月降低,从5-9月持续升高.营养盐浓度的时间变化受有机质的矿化分解、水体的季节性混合、浮游植物的吸收、降雨的输入等多种因素的综合影响.  相似文献   

20.
Shi Qi  Wei Liu  Heping Shu  Fei Liu  Jinzhu Ma 《水文研究》2020,34(20):3941-3954
The sources and storage of soil NO3 in the western Tengger Desert, Northwest China, were explored using water chemistry analysis and stable isotope techniques. In line with the expansion and development of oases, part of the desert has been transformed into cultivated land and artificial forest land. The mean soil NO3 contents found in areas of cultivated land and artificial forest were 123.06 mg kg−1 and 1.26 mg kg−1, far higher and slightly lower than the background desert soil values, respectively. The δ15N-NO3 and δ18O-NO3 values in cultivated soils ranged from 1.00 to 11.81 ‰, and from −1.85 to 8.99 ‰, respectively, and the mean mNO3/Cl value in cultivated soils was 2.3. These figures would appear to demonstrate that the rapid increase in the nitrate content in soils is principally due to the use of nitrogen fertilizer. Such increases in soil NO3 storage is likely to promote the leaching of nitrogen into the groundwater where coarsely textured soils exist, the pollution of water sources used for irrigation water, and extreme precipitation events. The δ15N-NO3 and δ18O-NO3 values in groundwater ranged from 3.72 to 6.54 ‰, and from −0.19 to 12.06 ‰, respectively, mainly reflecting the nitrification of soil nitrogen. These values appeared similar to those measured in the soil water in adjacent areas of cultivated land and vegetated desert, indicating that the groundwater has been affected by both natural and artificial NO3. Artificial afforestation of desert regions would therefore seem to be a useful way of reducing the threat posed by anthropogenic sources to the circulation of NO3-N within arid regions, as well as promoting wind sheltering and sand fixation. This study explored the NO3 storage and groundwater quality responses to oasis development in arid areas in an attempt to provide effective information for local agricultural organizations and agricultural nitrogen management models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号