首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hollow-stem augers are a widely used drilling method for constructing monitoring wells in unconsolidated materials. The drilling procedures used when constructing monitoring wells with hollow-stem augers, however, are neither standardized nor thoroughly documented in the published literature.
Variations in drilling procedures and techniques may occur as a result of the: (1) type of auger drill equipment and formation samplers used; (2) hydrogeologic conditions at the site, especially where heaving sands occur; and (3) known or suspected presence of contaminated zones, where there is a potential for the vertical movement of contaminants within the borehole.
In a saturated zone in which heaving sands occur, changes in equipment and drilling techniques are required to provide a positive pressure head of water within the auger column. This may require the addition of clean water or other drilling fluid inside the augers.
When monitoring the quality of ground water below a known contaminated zone, hollow-stem auger drilling may not be advisable unless protective surface casing can be installed. Depending on the site hydrogeology, conventional hollow-stem auger drilling techniques alone may not be adequate for the installation of the protective surface casing. A hybrid drilling method may be needed that combines conventional hollow-stem auger drilling with a casing driving technique that advances the borehole and surface casing simultaneously.  相似文献   

2.
The reliability of filter pack and annular seal emplacements, and the degree of integrity of installed seals, are two of the most important factors to be considered when both installing and later utilizing ground water monitoring wells.
Numerous, and often costly, problems of using existing methods of installing filter packs and annular seals during the construction of ground water monitoring wells have led to the development of a technique of installing these monitoring well components using a dry injection system.
The dry injection system has been used to construct monitoring wells in extremely complex overburden/bedrock environments with a variety of drilling techniques. The system has shown that a high degree of reliability in the, construction of monitoring wells and greater confidence in obtaining representative ground water samples can be achieved over existing methods of filter pack and annular seal emplacement. The system has also been more cost effective than existing methods, especially for deep boreholes and multilevel monitoring system installations.  相似文献   

3.
Noncontaminating procedures were used during the hollow-stem auger installation of 12 observation wells on three hazardous waste sites in Kansas. Special precautions were taken to ensure that water samples were representative of the ground water in the aquifer and were not subjected to contamination from the land surface or cross contamination from within borehole. Precautions included thorough cleaning of the hollow-stem auger and casing, keeping drill cuttings from falling back into the borehole while drilling, and not adding water to the borehole. These procedures were designed to prevent contamination of the ground water during well installation.
Because the use of water during well installation could contaminate the aquifer or dilute contaminants already present in the aquifer, two methods of well installation that did not introduce outside water to the borehole were used. The first method involved using a slotted 3/4-inch coupling that was attached to the bit plate of the hollow-stem auger, allowing formation water to enter the auger, thereby preventing sand-plug formation. This method proved to be adequate, except when drilling through clay layers, which tended to clog the slotted coupling. The second method involved screened well swab that allowed only formation water to enter the hollow-stem auger and prevented sand from plugging the hollow-stem auger when the bit plate was removed.  相似文献   

4.
Grout continuity and the location of the bentonite seal and sand pack in PVC-cased monitoring wells can be evaluated with cased-hole geophysical density logs. This method relies upon density contrasts among various completion conditions and annular materials. Notably, the lack of annular material behind pipe (i.e., void space) creates a low-density zone that is readily detected by borehole density measurements.
Acoustic cement bond logging has typically been applied to the evaluation of cement in the annular space of completed oil and gas production wells, and in some cases to ground water monitoring wells. These logs, however, can only be obtained in the fluid-filled portion of the borehole, and their interpretation is severely hindered by the presence of the micro-annulus between casing and cement. The influence of the micro-annulus on cement bond logs can be mitigated in steel-cased wells by pressurizing the wellbore during acquisition of the log, but this procedure is not feasible in PVC-cased monitoring wells. The micro-annulus does not affect cased-hole density logs or their interpretation.
Empirical measurements made in the laboratory with density probes provide information on their depths of investigation and response to specific completion conditions. These empirical data, and general knowledge of the density of annular completion materials (sand, bentonite, cement), are used to support interpretations of cased-hole density logs acquired in the field. Three field examples demonstrate the applicability of geophysical density logs to the evaluation of PVC-cased monitoring well completions.  相似文献   

5.
State-of-the-art analytical techniques are capable of detecting contamination In the part per billion (ppb) range or lower. At these levels, a truly representative ground water sample Is essential to precisely evaluate ground water quality. The design specifications of a ground water monitoring system are critical in ensuring the collection of representative samples, particularly throughout the long-term monitoring period.
The potential interfaces from commonly used synthetic well casings require a thorough assessment of site, hydrogeology and the geochemical properties of ground water. Once designed, the monitoring system must be installed following guidelines that ensure adequate seals to prevent contaminant migration during the installation process or at some time in the future. Additionally, maintaining the system so the wells are in hydraulic connection with the monitored zone as well as periodically Inspecting the physical integrity of the system can prolong the usefulness of the wells for ground water quality. When ground water quality data become suspect due to potential interferences from existing monitoring wells, an appropriate abandonment technique must be employed to adequately remove or destroy the well while completely sealing the borehole.
The results of an inspection of a monitoring system comprised of six 4-inch diameter PVC monitoring wells at a hazardous well facility Indicated that the wells were improperly installed and in some cases provided a pathway for contamination. Subsequent down hole television inspections confirmed inaccuracies between construction logs and the existing system as well as identified defects in casing materials. An abandonment program was designed which destroyed the well casings in place while simultaneously providing a competent seal of the re-drilled borehole.  相似文献   

6.
Dual-wall reverse-circulation drilling uses flush-threaded double-wall drill pipe and high-pressure air to provide continuous return of formation and water samples. Cuttings and formation waters are not contaminated with drilling additives or mixed with other borehole material. Up-hole velocity of about 70 ft/sec provides reliable logging of water, mineral or contaminant-bearing strata. Water samples representative of specific strata may be airlifted or bailed to the surface.
In the percussion hammer system, dual-wall drill pipe is advanced through chiefly unconsolidated material by the percussion action of an above-ground pile hammer. The borehole is drilled and temporarily cased in one pass. Wells or monitoring devices are installed as the drill pipe is hydraulically retracted during construction. A rotary head may be adapted as an option to allow dual-wall rotary drilling into consolidated or crystalline formations through a percussion hammer drill string temporarily left in place as a conductor.
The complex geology and variety of geoenvironmental problems in southern California has provided a testing ground for dual-wall drilling on hazardous material site investigations. Several case histories have demonstrated the capabilities and versatility of this method, including: (1) the installation of 4-inch and 6-inch diameter gasoline monitoring and recovery wells through gravels and cobbles at a filling station where hollow-stem auger drilling failed; (2) the confirmation of a dry borehole initially drilled by direct rotary at a landfill; and (3) multiple installations of monitoring devices through municipal refuse at a city of Los Angeles landfill.  相似文献   

7.
Twenty monitoring wells were installed in fine-grained glacial till at two sites in southeastern Wisconsin to study the effects of monitoring well construction, installation, and development on the amount of fine-grained suspended material in the well. The types of well screens used were continuous slot, factory slot, factory slot with a filter wrap, and porous piezometer tips. Some of the wells were installed before the open borehole began to fill with water; others were installed after the water levels in the lower section of the borehole had begun to rise. About half of the wells were developed by surging while the others were simply bailed without surging. Installation of the wells in the initially dry holes resulted in wells that yielded samples with very low turbidity compared to wells installed in wet holes. Water samples from wells that were surged were more turbid than those that were not. The type of construction materials investigated had no effect on the turbidity of samples from the wells.  相似文献   

8.
A New Multilevel Ground Water Monitoring System Using Multichannel Tubing   总被引:5,自引:0,他引:5  
A new multilevel ground water monitoring system has been developed that uses custom-extruded flexible 1.6-inch (4.1 cm) outside-diameter (O.D.) multichannel HOPE tubing (referred to as Continuous Multichannel Tubing or CMT) to monitor as many as seven discrete zones within a single borehole in either unconsolidated sediments or bedrock. Prior to inserting the tubing in the borehole, ports are created that allow ground water to enter six outer pie-shaped channels (nominal diameter = 0.5 inch [1.3 cm]) and a central hexagonal center channel (nominal diameter = 0.4 inch [1 cm]) at different depths, facilitating the measurement of depth-discrete piezometric heads and the collection of depth-discrete ground water samples. Sand packs and annular seals between the various monitored zones can be installed using conventional tremie methods. Alternatively, bentonite packers and prepacked sand packs have been developed that are attached to the tubing at the ground surface, facilitating precise positioning of annular seals and sand packs. Inflatable rubber packers for permanent or temporary installations in bedrock aquifers are currently undergoing site trials. Hydraulic heads are measured with conventional water-level meters or electronic pressure transducers to generate vertical profiles of hydraulic head. Ground water samples are collected using peristaltic pumps, small-diameter bailers, inertial lift pumps, or small-diameter canister samplers. For monitoring hydrophobic organic compounds, the CMT tubing is susceptible to both positive and negative biases caused by sorption, desorption, and diffusion. These biases can be minimized by: (1) purging the channels prior to sampling, (2) collecting samples from separate 0.25-inch (0.64 cm) O.D. Teflon sampling tubing inserted to the bottom of each sampling channel, or (3) collecting the samples downhole using sampling devices positioned next to the intake ports. More than 1000 CMT multilevel wells have been installed in North America and Europe to depths up to 260 feet (79 m) below ground surface. These wells have been installed in boreholes created in unconsolidated sediments and bedrock using a wide range of drilling equipment, including sonic, air rotary, diamond-bit coring, hollow-stem auger, and direct push. This paper presents a discussion of three field trials of the system, demonstrating its versatility and illustrating the type of depth-discrete data that can be collected with the system.  相似文献   

9.
A ground water monitoring program should include an investigation of all possible areas of concern. To be completely effective, the program should include soil sampling, soil analysis and water-quality examination of both the saturated and unsaturated zones. A well-tooled drill rig can take all the proper soil samples, perform all necessary tests and install a functional monitoring well. With the introduction of the fluoropolymer (Teflon(r)) sleeve lysimeter, a single monitoring well can be constructed to monitor both the saturated and unsaturated zones in one installation. The monitoring well screen and casing may also be completely constructed of fluoropolymer.
The sleeve lysimeter is designed with a threaded hollow inner diameter, allowing it to be attached between the joints of a casing string. This hollow I.D. acts as an extension of the casing; the lysimeter surrounds the casing. This creates an isolated vessel for sampling the vadose zone. Access to the screened monitoring well below is unaffected. Tests have shown that when properly installed, these porous fluoropolymer filter units can collect samples with no interaction between the filter and collected fluids.  相似文献   

10.
The screened auger is a laser-slotted, hollow-stem auger through which a representative sample of ground water is pumped from an aquifer and tested for water-quality parameters by appropriate field-screening methods. Screened auger sampling can be applied to ground water quality remedial investigations, providing:(1) a mechanism for determining a monitoring well's optimal screen placement in a contaminant plume; and (2) data to define the three-dimensional configuration of the contaminant plume.
Screened auger sampling has provided an efficient method for investigating hexavalent chromium and volatile organic compound contamination in two sandy aquifers in Cadillac, Michigan. The aquifers approach 200 feet in thickness and more than 1 square mile in area. A series of screened auger borings and monitoring wells was installed, and ground water was collected at 10-foot intervals as the boreholes were advanced to define the horizontal and vertical distribution of the contaminant plumes. The ability of the screened auger to obtain representative ground water samples was supported by the statistical comparison of field screening results and subsequent laboratory analysis of ground water from installed monitoring wells.  相似文献   

11.
The majority of slug tests done at sites of shallow groundwater contamination are performed in wells screened across the water table and are affected by mechanisms beyond those considered in the standard slug‐test models. These additional mechanisms give rise to a number of practical issues that are yet to be fully resolved; four of these are addressed here. The wells in which slug tests are performed were rarely installed for that purpose, so the well design can result in problematic (small signal to noise ratio) test data. The suitability of a particular well design should thus always be assessed prior to field testing. In slug tests of short duration, it can be difficult to identify which portion of the test represents filter‐pack drainage and which represents formation response; application of a mass balance can help confirm that test phases have been correctly identified. A key parameter required for all slug test models is the casing radius. However, in this setting, the effective casing radius (borehole radius corrected for filter‐pack porosity), not the nominal well radius, is required; this effective radius is best estimated directly from test data. Finally, although conventional slug‐test models do not consider filter‐pack drainage, these models will yield reasonable hydraulic conductivity estimates when applied to the formation‐response phase of a test from an appropriately developed well.  相似文献   

12.
Hole stability problems occurring during construction of monitoring wells in coarse, unconsolidated alluvium can be overcome by using a drill-through casing driver mounted on a standard top-head drive rotary rig. Steel casing is driven contemporaneously with drilling, providing continuous hole stability. Samples of aquifer material and ground water can be taken at discrete depths as drilling proceeds. Monitoring well completion is accomplished by: (1) using the steel casing as an open-ended piezometer; (2) installing a telescoping well screen; (3) plugging the casing end and perforating desired intervals, (4) installing one or more smaller diameter wells, and then (5) pulling back the steel casing. Advantages of this drilling method include maintenance of hole stability during drilling and well completion, faster borehole construction time than traditional methods in coarse alluvial deposits and other poorly sorted formations, and collection of representative samples of the geologic formations and ground water; additionally, drilling fluids are not required.  相似文献   

13.
A new tool called ESASS (Enhanced Screen Auger Sampling System) was developed by the U.S. Geological Survey. The use of ESASS, because of its unique U.S. patent design (U.S. patent no. 7,631,705 B1), allows for the collection of representative, depth‐specific groundwater samples (vertical profiling) in a quick and efficient manner using a 0.305‐m long screen auger during hollow‐stem auger drilling. With ESASS, the water column in the flights above the screen auger is separated from the water in the screen auger by a specially designed removable plug and collar. The tool fits inside an auger of standard inner diameter (82.55 mm). The novel design of the system constituted by the plug, collar, and A‐rod allows the plug to be retrieved using conventional drilling A‐rods. After retrieval, standard‐diameter (50.8 mm) observation wells can be installed within the hollow‐stem augers. Testing of ESASS was conducted at one waste‐disposal site with tetrachloroethylene (PCE) contamination and at two reference sites with no known waste‐disposal history. All three sites have similar geology and are underlain by glacial, stratified‐drift deposits. For the applications tested, ESASS proved to be a useful tool in vertical profiling of groundwater quality. At the waste site, PCE concentrations measured with ESASS profiling at several depths were comparable (relative percent difference <25%) to PCE concentrations sampled from wells. Vertical profiling with ESASS at the reference sites illustrated the vertical resolution achievable in the profile system; shallow groundwater quality varied by a factor of five in concentration of some constituents (nitrate and nitrite) over short (0.61 m) distances.  相似文献   

14.
15.
Monitoring well sand packs are theoretically capable of retarding metal ions and organic contaminants. If this retardation does indeed occur it may have a significant effect on the purging requirements of newly installed monitoring wells. Calculations based on mass balance and retardation concepts demonstrate that if common guidelines for well purging are followed, contaminants may not be detected or may be detected in lower concentrations than are actually present in the ground water. This problem is greatest in relatively shallow wells installed in low to moderate permeability materials. In most cases, the effect of solute retardation in the sand pack can be avoided simply by additional purging prior to the first sampling of the monitoring well. Common purging guidelines can then be applied to subsequent samplings. The methodology outlined in this paper can be used to calculate the purging requirements of existing monitoring wells or it may be applied to alternative monitoring well designs to test which will require the smallest volume of purged water.  相似文献   

16.
The Ellog auger drilling method is an integrated approach for hydrogeological data collection during auger drilling in unconsolidated sediments. The drill stem is a continuous flight, hollow-stem auger with integrated electrical and gamma logging tools. The geophysical logging is performed continuously while drilling. Data processing is carried out in the field, and recorded log features are displayed as drilling advances. A slotted section in the stem, above the cutting head, allows anaerobic water and soil-gas samples to be taken at depth intervals of approximately 0.2 m. The logging, water, and gas sampling instrumentation in the drill stem is removable; therefore, when the drill stem is pulled back, piezometers can be installed through the hollow stem. Cores of sediments can subsequently be taken continuously using a technique in which the drill bit can be reinserted after each coring. The Ellog auger drilling method provides detailed information on small-scale changes in lithology, sediment chemistry, and water, as well as gas compositions in aquifer systems–data essential to hydrogeological studies.  相似文献   

17.
A single-hole multilevel sampling piezometer system (MLSPS) has been designed by the Geological Survey of Canada (GSC) to be installed using drilling systems that continuously core (e.g., Rotosonic) or continuously sample (e.g., hollow-stem auger, Becker hammer) overburden and that have the flexibility of allowing additional coring (diamond drilling) or sampling (hammer drilling) of bedrock. The GSC-MLSPS (under license to Solinst Canada Ltd.) uses a patented GSC dry injection system for accurate emplacement of filter packs and seals. This system permits (a) the use of variable screen lengths; (b) the complete evacuation of piezometers before introduction of new ground water (no bailing); (c) the use of a number of types of hydraulic tests (e.g., slug, withdrawal/recovery, vacuum, pressure-pulse); (d) ground water sampling under a nitrogen atmosphere; (e) dissolved gas sampling; (f) a great deal of flexibility in the use of design materials; and (g) the elimination of bridging and collapse of filter packs and seals.  相似文献   

18.
A small but significant proportion of all existing monitoring wells may be affected by leakage through the casing, usually at joints. Casing leakage can render data obtained from a monitoring well unreliable. Anomalous water level, water quality, or isotope data from a particular well are an indication of possible leakage. The occurrence of a casing leak can be confirmed by means of a pressure test using water. The magnitude of the leakage flow can be estimated from the pressure test or from the observed head anomaly. Casing leaks can be largely prevented with adequate care during monitoring well installation, but the possibility that data may be affected by casing leaks should always be taken into account during hydrogeological investigations.  相似文献   

19.
Based on aquifer performance tests, 13 out of 15 wells situated at the Mixed Waste Disposal (MWD) area located at the Savannah River site. South Carolina, exhibited high skin factors and low well efficiencies indicative of severely damaged wells. The use of damaged wells in aquifer testing can lead to inaccurate determinations of aquifer properties, and such wells are unusable in future remediation programs. Moreover, damaged wells can go dry during purging, thus compromising sample collection. Pump tests, chemical analyses, and biological investigations revealed that the poor well performance at MWD was attributable to calcite precipitation on the well screen and drilling mud in the filter pack. The calcite problem resulted from improper well installation, and the drilling mud in the filter pack was due to inadequate well development.
Experimental rehabilitation procedures employed on two wells, MWD 5A and 1A, included acidification, swabbing, introduction of surfactants, and surging. Treatment of the wells substantially improved well yields, skin factors, and well efficiencies. Moreover, well rehabilitation was determined to be a reasonable alternative to drilling new wells at the MWD wellfield.  相似文献   

20.
A six year field experiment has shown that a sand-bentonite mixture used to seal monitoring wells in aquitards contributes solutes to the ground water sampled from these wells. Monitoring wells were installed at field sites with hydraulic conductivity (K) ranging from 5 × 10 -9 m/s to 3 × 1011 m/s. In most cases the boreholes remained dry during installation which allowed the placement of a dry powdered bentonite/sand mixture tagged with potassium bromide (KBr) to seal and separate sampling points. Over six years, wells were sampled periodically and ground-water samples were analyzed for Br and Cl and other major ions. Typical Br results ranged from 10 mg/1 to 35 mg/1 in the first 700 days, as compared to an estimated initial concentration in the seal material of about 75 mg/1. After six years the bromide concentrations had decreased to between 3 mg/1 and 5 mg/1. The total mass of Br removed in six years is less than 50% of that placed; therefore the contamination effects, although considerably diminished, persist. The trends of Br, Cl, Na, and SO4 indicate that varying degrees of contamination occur. These data show that the materials used to seal monitoring wells in aquitards can have a significant and long-lasting impact on the chemistry of the water in the wells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号