首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 445 毫秒
1.
We present observational imaging evidence for the existence of metric radio bursts closely associated with the front edge of coronal mass ejections (CMEs). These radio bursts drift in frequency similarly to type II bursts. They are weak and usually go undetected on spectrograph data. We find the same measured projected velocity for the displacement of, respectively, the radio source (when observed at two or more frequencies) and the CME leading edge. The position of the emitting source coincides with the CME leading edge. Among the events analyzed, the fastest of them, with a velocity over 1400 km s-1, was associated with interplanetary type II bursts.  相似文献   

2.
The planetary radio astronomy experiment on the Voyager spacecraft observed several type II solar radiobursts at frequencies below 1.3 MHz; these correspond to shock waves at distances between 20R and 1 AU from the Sun. We study the characteristics of these bursts and discuss the information that they give on shock waves in the interplanetary medium and on the origin of the high energy electrons which give rise to the radioemission. The relatively frequent occurence of type II bursts at large distances from the Sun favors the hypothesis of the emission by a longitudinal shockwave. The observed spectral characteristics reveal that the source of emission is restricted to only a small portion of the shock. From the relation between type II bursts, type III bursts and optical flares, we suggest that some of the type II bursts could be excited by type III burst fast electrons which catch up the shock and are then trapped.  相似文献   

3.
Large-scale, wave-like disturbances in extreme-ultraviolet (EUV) and type II radio bursts are often associated with coronal mass ejections (CMEs). Both phenomena may signify shock waves driven by CMEs. Taking EUV full-disk images at an unprecedented cadence, the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory has observed the so-called EIT waves or large-scale coronal propagating fronts (LCPFs) from their early evolution, which coincides with the period when most metric type II bursts occur. This article discusses the relation of LCPFs as captured by AIA with metric type II bursts. We show examples of type II bursts without a clear LCPF and fast LCPFs without a type II burst. Part of the disconnect between the two phenomena may be due to the difficulty in identifying them objectively. Furthermore, it is possible that the individual LCPFs and type II bursts may reflect different physical processes and external factors. In particular, the type II bursts that start at low frequencies and high altitudes tend to accompany an extended arc-shaped feature, which probably represents the 3D structure of the CME and the shock wave around it, and not just its near-surface track, which has usually been identified with EIT waves. This feature expands and propagates toward and beyond the limb. These events may be characterized by stretching of field lines in the radial direction and may be distinct from other LCPFs, which may be explained in terms of sudden lateral expansion of the coronal volume. Neither LCPFs nor type II bursts by themselves serve as necessary conditions for coronal shock waves, but these phenomena may provide useful information on the early evolution of the shock waves in 3D when both are clearly identified in eruptive events.  相似文献   

4.
We have performed a comparative analysis of the fine structure of two decametric type II bursts observed on July 17 and August 16, 2002, with the 1024-channel spectrograph of the UTR-2 radio telescope in the frequency range 18.5–29.5 MHz and with the IZMIRAN spectrograph in the frequency range 25–270 MHz. The August 16 burst was weak, ~2–5 s.f.u., but exhibited an unusual fine structure in the form of broadband fibers (Δf e > 250–500 kHz) that drifted at a rate characteristic of type II bursts and consisted of regular narrow-band fibers (Δf e > 50–90 kHz at 24 MHz) resembling a rope of fibers. The July 17 burst was three orders of magnitude more intense (up to 4500 s.f.u. at 20 MHz) and included a similar fiber structure. The narrow fibers were irregular and shorter in duration. They differed from an ordinary rope of fibers by the absence of absorption from the low-frequency edge and by slow frequency drift (slower than that of a type II burst). Both type II bursts were also observed in interplanetary space in the WIND/WAVES RAD2 spectra, but without any direct continuation. Analysis of the corresponding coronal mass ejections (CMEs) based on SOHO/LASCO C2 data has shown that the radio source of the type II burst detected on August 16 with UTR-2 was located between the narrow CME and the shock front trailing behind that was catching up with the CME. The July 17 type II fiber burst also occurred at the time when the shock front was catching up with the CME. Under such conditions, it would be natural to assume that the emission from large fibers is related to the passage of the shock front through narrow inhomogeneities in the CME tail. Resonant transition radiation may be the main radio emission mechanism. Both events are characterized by the possible generation of whistlers between the leading CME edge and the shock front. The whistlers excited at shock fronts manifest themselves only against the background of enhanced emission from large fibers (similar to the continuum modulation in type IV bursts). The reduction in whistler group velocity inside inhomogeneities to 760 km s?1 may be responsible for the unusually low drift rate of the narrow fibers. The magnetic field inside inhomogeneities determined from fiber parameters at 24 MHz is ~0.9 G, while the density should be increased by at least a factor of 2.  相似文献   

5.
We study interplanetary (IP) solar radio type II bursts from 2011?–?2014 in order to determine the cause of the intense enhancements in their radio emission. Type II bursts are known to be due to propagating shocks that are often associated with fast halo-type coronal mass ejections (CMEs). We analysed the radio spectral data and the white-light coronagraph data from 16 selected events to obtain directions and heights for the propagating CMEs and the type II bursts. CMEs preceding the selected events were included in the analysis to verify whether CME interaction was possible. As a result, we were able to classify the events into five different groups. 1) Events where the heights of the CMEs and type II bursts are consistent, indicating that the shock is located at the leading front of the CME. The radio enhancements are superposed on the type II lanes, and they are probably formed when the shock meets remnant material from earlier CMEs, but the shock continues to propagate at the same speed. 2) Events where the type II heights agree with the CME leading front and an earlier CME is located at a height that suggests interaction. The radio enhancements and frequency jumps could be due to the merging process of the CMEs. 3) Events where the type II heights are significantly lower than the CME heights almost from the start. Interaction with close-by streamers is probably the cause for the enhanced radio emission, which is located at the CME flank region. 4) Events where the radio enhancements are located within wide-band type II bursts and the causes for the radio enhancements are not clear. 5) Events where the radio enhancements are associated with later-accelerated particles (electron beams, observed as type III bursts) that stop at the type II burst emission lane, and no other obvious reason for the enhancement can be identified.Most of the events (38%) were due to shock–streamer interaction, while one quarter of the events was due to possible CME–CME interaction. The drift rates, bandwidth characteristics, or cross-correlations of various characteristics did not reveal any clear association with particular category types. The chosen atmospheric density model causes the largest uncertainties in the derived radio heights, although in some cases, the emission bandwidths also lead to relatively large error margins.Our conclusion is that the enhanced radio emission associated with CMEs and propagating shocks can have different origins, depending on their overall configuration and the associated processes.  相似文献   

6.
We investigate the correlation of the occurrence of the herringbone phenomenon in type II solar radio bursts with various flare properties. We show that herringbone is strongly correlated with the intensity of the type II burst: whereas about 21% of all type II bursts show herringbone, about 60% of the most intense bursts contain herringbone. This fact can explain most of the correlations between herringbone and other properties such as intense type III bursts, type IV emission, and high type II starting frequencies. We also show that when this is taken into account, there is no need to postulate two classes of type II burst in order to explain why there appears to be a difference in herringbone occurrence between the set of type II bursts associated with the leading edges of coronal mass ejections, and those not so associated. We argue that the data are consistent with the idea that all coronal type II bursts are due to blast waves from flares.  相似文献   

7.
We report the direct observation of motion associated with a solar flare at a speed of 26,000 km s-1. The motion is seen from a radio source at 0.33 GHz, which suddenly starts moving during the flare. At its peak, the radio source covers a quiet region of dimension 500&arcsec;. Emission from any given location is sporadic. The disturbance itself does not seem to radiate, but it excites coronal features that continue to radiate after it passes. The inferred velocity is larger than any previously inferred velocity of a disturbance in the solar atmosphere apart from freely streaming beams of accelerated electrons. The observed motion of the source at a fixed frequency, low polarization, and moderate bandwidth are more consistent with the typical properties of moving type IV radio bursts than with classical coronal shock-associated type II bursts, but any disturbance at such a high velocity must be highly supersonic and should drive a shock. We speculate that the disturbance is associated with the realignment of magnetic fields connecting different portions of an active region.  相似文献   

8.
We analyze the radioheliograph and SMM-C/P observations of 1986 November 3 mass ejection event. The metric radio emissions are the only detected activity associated with the mass ejection, but are adequate to study the evolution of the event. The start time of the ejection seems to precede a possible flare behind the limb indicated by the early type III bursts. We discuss the physical relation between various types of bursts and the CME. We interpret moving type IV bursts as a plasma emission process. It is also shown using white-light coronagraph data that the density in the source region of the moving type IV is sufficient to support second harmonic plasma emission at the observed frequency of 50 MHz.  相似文献   

9.
The peak times of impulsive microwave bursts are compared with those of shock-associated (SA) kilometric radio events. The first peaks in these two frequency regimes are usually well-correlated in time, but the last peaks of the SA events observed at 1 MHz occur an average of 20 min after the last impulsive microwave peaks. In some cases, the SA events overlap in time with the post-burst increases of microwave bursts; sometimes there is general correspondence in their intensity time profiles. These observations suggest that the earlier components of the SA events are usually caused by electrons accelerated in or near the microwave source region. We discuss the possibility that the later components of some SA events could be associated with nonthermal electrons responsible for microwave post-burst increases, although they have traditionally been attributed to electrons accelerated at type II burst producing shocks in the upper corona.  相似文献   

10.
介绍云南和北京天文台射电频谱仪观测到的3个对偶的米波--微波Ⅲ型爆发,估计了双向电子束起源的频率和高度,3个事件分别揭示了在正向和反向漂移爆发之间的分界频率(约为250,1300和2900MHz),它们指出了一个致密的电子加速源,在这个源中产生了向上和向下两个方向注入的电子束,从这些事例可以表明不同事件的双向电子束的分界频率有一个相当大的范围(250-2900MHz),而它们的起源范围却是在一个很小的(大约4-100MHz)和不同的频段范围内。最后讨论了日冕磁结构的拓扑范围、电子加速源构造的空间尺度、电子束运动速度和对偶Ⅲ型爆发的产生机制。  相似文献   

11.
Klassen  A.  Karlický  M.  Aurass  H.  Jiřička  K. 《Solar physics》1999,188(1):141-154
Due to the emission of shock-accelerated electrons, broadband radio observations display propagating super Alfvénic shock waves in the low corona ('type II bursts'). We study the 9 July 1996 flare (AR NOAA 7978) focusing on the aspect of shock generation. This event's radio spectrogram shows two different type II bursts in sequence. Radio imaging data (Paris, Meudon Observatory) reveal that both bursts appear at different sites above the H flare. The driver of the first type II burst seems to propagate with twice the speed of the second one. The projected source site of the first type II burst (seen earlier and at higher frequencies) is spatially situated further away from the H flare site than the source of the second type II burst. We try to understand this by comparing with Yohkoh soft X-ray images. The first shock source occurs near the top of high soft X-ray loop structures. Its driver can be a guided fast mode magnetic disturbance. The second type II source appears in-between two high soft X-ray loop systems. This might be a piston-driven disturbance powered by an evaporation front. We get a consistent picture only by assuming a very inhomogeneous Alfvén speed in the active region's atmosphere.  相似文献   

12.
We discuss the spectra and positions of the meter-decameter wavelength radio sources associated with the 5 September 1973 flare. We discuss the evolution of the size of the type II burst source and show that it fluctuates by a factor of 10, or larger. Consequently, the potential and kinetic energies associated with the shock are uncertain by the same factor. By comparing the positions of the type II and type III sources we conclude that while the shock wave associated with the type II was guided along high loops, the type III electrons were injected along open field lines which diverged within a short height in the corona. The characteristics of a particularly interesting type III burst with a low-frequency cut-off are discussed. We argue that nearby loops were not disrupted by the shock and that the energetic electrons produced during the event must have been injected at several sites and guided along open field lines at large distances from the flare to produce type III bursts.  相似文献   

13.
We report on the structure and geometry of coronal magnetic fields inferred from the observations of meter-decimeter type III and moving type IV radio bursts, associated with a Hα flare. This is the first report of type III radio bursts from the Nançay radioheliograph after it acquired the two-dimensional multifrequency capability. Dispersion of the radio source positions with frequency suggests that open and closed field lines are considerably inclined to the radial direction which is consistent with the connectivity observed in the magnetogram. We suggest that multiple arch systems are involved in the type IV emission. From the polarization and dispersion characteristics of the type IV source, we infer that the emission is due to fundamental plasma emission.  相似文献   

14.
Fifteen type II solar radio events have been identified in the 2 MHz to 30 kHz frequency range by the radio astronomy experiment on the ISEE-3 satellite over the period from September 1978 to December 1979. These data provide the most comprehensive sample of type II radio bursts hitherto observed at kilometer wavelengths. Dynamic spectra of a number of events are presented. Where possible, the 15 events have been associated with an initiating flare, ground-based radio data, the passage of a shock at the spacecraft and the sudden commencement of a geomagnetic storm. The general characteristics of kilometric type II bursts are discussed.Research Associate, University of Maryland, U.S.A.  相似文献   

15.
太阳米波和分米波的射电观测是对太阳爆发过程中耀斑和日冕物质抛射现象研究的重要观测手段。米波和分米波的太阳射电暴以相干等离子体辐射为主导,表现出在时域和频域的多样性和复杂性。其中Ⅱ型射电暴是激波在日冕中运动引起电磁波辐射的结果。在Ⅱ型射电暴方面,首先对米波Ⅱ型射电暴的激波起源问题和米波Ⅱ型射电暴与行星际Ⅱ型射电暴的关系问题进行了讨论;其次,结合Lin-Forbes太阳爆发理论模型对Ⅱ型射电暴的开始时间和起始频率进行讨论:最后,对Ⅱ型射电暴信号中包含的两种射电精细结构,Herringbone结构(即鱼骨结构)和与激波相关的Ⅲ型射电暴也分别进行了讨论。Ⅲ型射电暴是高能电子束在日冕中运动产生电磁波辐射的结果。在Ⅲ型射电暴方面,首先介绍了利用Ⅲ型射电暴对日冕磁场位形和等离子体密度进行研究的具体方法;其次,对利用Ⅲ型射电暴测量日冕温度的最新理论进行介绍;最后,对Ⅲ型射电暴和Ⅱ型射电暴的时间关系、Ⅲ型射电暴和粒子加速以及Ⅲ型射电暴信号中包含的射电精细结构(例如斑马纹、纤维爆发及尖峰辐射)等问题进行讨论并介绍有关的最新研究进展。  相似文献   

16.
We have selected single frequency recordings of 28 high-frequency type II bursts characterized by a starting frequency greater than 237 MHz to estimate as accurately as possible the launch-time of the flare-associated MHD shocks. We established the time associations between metric type II burst onsets and the time characteristics of the microwave and X-ray fluxes of the associated flares. The associated flares were impulsive events with rise times most often about 1 min in the hard X-ray range and 1–2 min in the microwave wavelength range. The majority of the type II bursts from our sample started about 1 min after the maximum of the microwave burst. Launch times of MHD shocks producing type II bursts were obtained using the 10 × Saito coronal model and shock velocities estimated from burst characteristics at different frequencies. Back-extrapolations of type II recordings indicate that MHD shocks are launched in the time interval prior to the maximum of the first peak in the associated microwave burst, most probably at the beginning of the rapid increase of the microwave burst.  相似文献   

17.
We recently investigated some of the hitherto unreported observational characteristics of the low frequency (85–35 MHz) type III–V bursts from the Sun using radio spectropolarimeter observations. The quantitative estimates of the velocities of the electron streams associated with the above two types of bursts indicate that they are in the range \({\gtrsim }0.13c\)–0.02c for the type V bursts, and nearly constant (\({\approx }0.4c\)) for the type III bursts. We also find that the degree of circular polarization of the type V bursts vary gradually with frequency/heliocentric distance as compared to the relatively steeper variation exhibited by the preceding type III bursts. These imply that the longer duration of the type V bursts at any given frequency (as compared to the preceding type III bursts) which is its defining feature, is due to the combined effect of the lower velocities of the electron streams that generate type V bursts, spread in the velocity spectrum, and the curvature of the magnetic field lines along which they travel.  相似文献   

18.
The observational evidence is reviewed for the occurrence of type III solar radio bursts in pairs with frequency ratio two to one. We show that the observations can be explained under the hypothesis that there is a tendency for a type III burst to be followed by a second burst within approximately one second. This explanation leads to fewer difficulties than the hypothesis that type III bursts occur in pairs, one member being emitted at the fundamental of the local coronal plasma frequency, the other at its second harmonic. We conclude that in general, type III bursts are emitted at the second harmonic of the plasma frequency and that type III theories should account for this and only under very special circumstances (which are rare) for the emission at the fundamental and the second harmonic.  相似文献   

19.
D–H type II radio bursts are widely thought to be caused by coronal mass ejections (CMEs). However, it is still unclear where the exact source of the type IIs on the shock surface is. We identify the source regions of the decameter–hectometric (D–H) type IIs based on imaging observations from SOHO/LASCO and the radio dynamic spectrum from Wind/Waves. The analysis of two well-observed events suggests that the sources of these two events are located in the interaction regions between shocks and streamers, and that the shocks are enhanced significantly in these regions.  相似文献   

20.
We present statistics relating shock-associated (SA) kilometric bursts (Cane et al., 1981) to solar metric type II bursts. An SA burst is defined here to be any 1980 kHz emission temporally associated with a reported metric type II burst and not temporally associated with a reported metric type III burst. In this way we extend to lower flux densities and shorter durations the original SA concept of Cane et al. About one quarter of 316 metric type II bursts were not accompanied by any 1980 kHz emission, another quarter were accompanied by emission attributable to preceding or simultaneous type III bursts, and nearly half were associated with SA bursts. We have compared the time profiles of 32 SA bursts with Culgoora Observatory dynamic spectral records of metric type II bursts and find that the SA emission is associated with the most intense and structured part of the metric type II burst. On the other hand, the generally poor correlation found between SA burst profiles and Sagamore Hill Observatory 606 and 2695 MHz flux density profiles suggests that most SA emission is not due to energetic electrons escaping from the microwave emission region. These results support the interpretation that SA bursts are the long wavelength extension of type II burst herringbone emission, which is presumed due to the shock acceleration of electrons.Also: Department of Physics and Astronomy, University of Maryland, College Park, MD 20742, U.S.A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号