首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extensive valley fills have formed at the base of the escarpment in granitic catchments along the south coast of NSW. On the 1865 portion plan, the valley fill surface in the upper part of Wolumla Creek, in the Bega River catchment, was intact, but within a few decades of European settlement of the area the valley fill had been incised. Today the incised channel is up to 10 m deep and 100 m wide. The catchment drains an area of just 18.2 km2. Based on detailed field mapping, with extensive drilling and angering, the volume of the intact valley fill in upper Wolumla Creek in 1865 was approximately 5000 × 103 m3. Between 1865 and the present day, approximately 3500 × 103 m3 of this material has been removed, leaving roughly 1500× 103 m3 of material stored on the valley margins. During an initial period of discontinuous gullying, approximately 230 × 103 m3 of sand accumulated as a floodout. Subsequently, the incised channel became continuous, cutting through the floodout; over 50 per cent of floodout deposits were removed. Flushing of the materials released from upland valley fills has been very efficient in the Wolumla Creek catchment, with a sediment delivery ratio of around 70 per cent. The efficient downstream transfer of deposits reflects bedrock confinement in downstream reaches. Extensive volumes of material have accumulated along the lower reaches of the catchment, exacerbating the transformation to the geomorphic character of the lower Bega River.  相似文献   

2.
The catchment of the River Partnach, a torrent situated in a glacial valley in the Northern Calcareous Alps of Bavaria/Germany, was affected by a high‐magnitude flood on 22/23 August 2005 with a peak discharge of more than 16 m3s‐1 at the spring and about 50 m3s‐1 at the catchment outlet. This flood was caused by a long period of intense rainfall with a maximum intensity of 230 mm per day. During this event, a landslide dam, which previously held a small lake, failed. The flood wave originating from the dam breach transported a large volume of sediment (more than 50 000 m3) derived from bank erosion and the massive undercutting of a talus cone. This caused a fundamental transformation of the downstream channel system including the redistribution of large woody debris and channel switching. Using terrestrial survey and aerial photography, erosional and depositional consequences of the event were mapped, pre‐ and post‐event surfaces were compared and the sediment budget of the event calculated for ten consecutive channel reaches downstream of the former lake. According to the calculations more than 100 000 tonnes of sediment were eroded, 75% of which was redeposited within the channel and the proximal floodplain. A previous large flood which occurred a few weeks prior to the August 2005 event had a significant effect on controlling the impact of this event.  相似文献   

3.
Abstract

This research deals with the surface dynamics and key factors – hydrological regime, sediment load, and erodibility of floodplain facies – of frequent channel shifting, intensive meandering, and lateral instability of the Bhagirathi River in the western part of the Ganga-Brahmaputra Delta (GBD). At present, the floodplain of the Bhagirathi is categorized as a medium energy (specific stream power of 10–300 W m?2), non-cohesive floodplain, which exhibits a mixed-load and a meandering channel, an entrenchment ratio >2.2, width–depth ratio >12, sinuosity >1.4, and channel slope <0.02. In the study area, since 1975, four meander cutoffs have been shaped at an average rate of one in every 9–10 years. In the active meander belt and sand-silt dominated floodplains of GBD, frequent shifting of the channel and meander migration escalate severe bank erosion (e.g. 2.5 × 106 m3 of land lost between 1999 and 2004) throughout the year. Remote sensing based spatio-temporal analysis and stratigraphic analysis reveal that the impact of the Farakka barrage, completed in 1975, is not the sole factor of downstream channel oscillation; rather, hydrogeomorphic instability induced by the Ajay–Mayurakshi fluvial system and the erodibility of floodplain sediments control the channel dynamics of the study area.  相似文献   

4.
The 270 km long section of the Upper Yellow River at the First Great Bend is comprised of single channel and multiple channel systems that alternate among anastomosing, anabranching, meandering and braided reaches. The sequence of downstream pattern changes is characterized as: anastomosing-anabranching, anabranching-meandering, meandering-braided and braided-meandering. Remote sensing images, DEM data and field investigations are used to assess ahd interpret controls on these reach transitions. Channel slope and bed sediment size are key determinants of transitions in channel planform. Anas- tomosing reaches have a relatively high bed slope (0.86‰) and coarser sediment bed material (d50 = 3.5 mm). In contrast, meandering reaches have a low slope (0.30‰) and fine sediment bed material (d50 = 0.036 mm). The transition from a meandering to braided pattern is characterized by an increase in channel width-depth ratio, indicating the important role of bank strength (i.e. cohesive versus non-cohesive versus channel boundaries). Interestingly, the braided-meandering and meandering-braided transitions are coincident with variable flow inputs from tributary rivers (Baihe and Heihe rivers respectively). Theoretical analysis of the meandering-braided transition highlights the key control of channel width-depth ratio as a determinant of channel planform.  相似文献   

5.
Fluvial process and morphology of the Brahmaputra River in Assam, India   总被引:1,自引:0,他引:1  
The Brahmaputra River finds its origin in the Chema Yundung glacier of Tibet and flows through India and Bangladesh. The slope of the river decreases suddenly in front of the Himalayas and results in the deposition of sediment and a braided channel pattern. It flows through Assam, India, along a valley comprising its own Recent alluvium. In Assam the basin receives 300 cm mean annual rainfall, 66–85% of which occurs in the monsoon period from June through September. Mean annual discharge at Pandu for 1955–1990 is 16,682.24 m3 s 1. Average monthly discharge is highest in July (19%) and lowest in February (2%). Most hydrographs exhibit multiple flood peaks occurring at different times from June to September. The mean annual suspended sediment load is 402 million tons and average monthly sediment discharge is highest in June (19.05%) and lowest in January (1.02%). The bed load at Pandu was found to be 5–15% of the total load of the river. Three kinds of major geomorphic units are found in the basin. The river bed of the Brahmaputra shows four topographic levels, with increasing height and vegetation. The single first order primary channels of this braided river split into two or more smaller second order channels separated by bars and islands. The second order channels are of three kinds. The maximum length and width of the bars in the area under study are 18.43 km and 6.17 km, respectively. The Brahmaputra channel is characterised by mid-channel bars, side bars, tributary mouth bars and unit bars. The geometry of meandering tributary rivers shows that the relationship between meander wavelength and bend radius is most linear. The Brahmaputra had been undergoing overall aggradation by about 16 cm during 1971 to 1979. The channel of the Brahmaputra River has been migrating because of channel widening and avulsion. The meandering tributaries change because of neck cut-off and progressive shifting at the meander bends. The braiding index of the Brahmaputra has been increasing from 6.11 in 1912–1928 to 8.33 in 1996. During the twentieth century, the total amount of bank area lost from erosion was 868 km2. Maximum rate of shift of the north bank to south resulting in erosion was 227.5 m/year and maximum rate of shift of the south bank to north resulting in accretion was 331.56 m/year. Shear failure of upper bank and liquefaction of clayey-silt materials are two main causes of bank erosion.  相似文献   

6.
The paper presents results of a study on the sediment supply and movement of highly turbid sediment plume within Malindi Bay in the Northern region of the Kenya coast. The current velocities, tidal elevation, salinity and suspended sediment concentrations (TSSC) were measured in stations located within the bay using Aanderaa Recording Current Meter (RCM-9), Turbidity Sensor mounted on RCM-9, Divers Gauges and Aanderaa Temperature-Salinity Meter. The study established that Malindi Bay receives a high terrigenous sediment load amounting to 5.7 × 106 ton·yr?1. The river freshwater supply into the bay is highly variable ranging from 7 to 680 m3·s?1. The high flows that are > 150 m3·s?1 occurred in May during the South East Monsoon (SEM). Relatively low peak flows occurred in November during the North East Monsoon (NEM) but these were usually <70 m3·s?1. The discharge of highly turbidity river water into the bay in April and May occurs in a period of high intensity SEM winds that generate strong north flowing current that transports the river sediment plume northward. However, during the NEM, the river supply of turbid water is relatively low occurring in a period of relatively low intensity NEM winds that result in relatively weaker south flowing current that transports the sediment plume southward. The mechanism of advection of the sediment plume north or south of the estuary is mainly thought to be due to the Ekman transport generated by the onshore monsoon winds. Limited movement of the river sediment plume southward towards Ras Vasco Da Gama during NEM has ensured that the coral reef ecosystem in the northern parts of Malindi Marine National Park has not been completely destroyed by the influx of terrigenous sediments. However, to the north there is no coral reef ecosystem. The high sediment discharge into Malindi Bay can be attributed to land use change in the Athi-Sabaki River Basin in addition to rapid population increase which has led to clearance of forests to open land for agriculture, livestock grazing and settlement. The problems of heavy siltation in the bay can be addressed by implementing effective soil conservation programmes in the Athi-Sabaki Basin. However, the soil conservation programmes in the basin are yet to succeed due to widespread poverty among the inhabitants and the complications brought about by climate change.  相似文献   

7.
Flow structure at an asymmetrical stream confluence   总被引:2,自引:0,他引:2  
Measurements of downstream and cross-stream velocities at a small, asymmetrical stream confluence show that the structure of low-stage flows is influenced by the tributary/main stem momentum flux ratio, the total discharge of the incoming flows, and the bed morphology. Flow accelerates through the confluence during all three measured events. This acceleration is associated with a downstream reduction in channel capacity caused in part by the presence of a large bar along the inner bank of the downstream channel. As the momentum ratio increases, flow from the lateral tributary increasingly deflects flow from the main stream toward the outer channel bank within the confluence. As a result, the mixing interface between the converging flows also shifts outward. The large bar in the downstream channel deflects flow along the inner bank toward the adjacent scour hole, enhancing flow convergence downstream of the confluence and producing a region of flow separation adjacent to, or in the lee of the bar. The loci of maximum topographic deflection and flow separation vary with momentum ratio and total discharge.Secondary circulation within the downstream channel is characterized by a single large helical cell when the momentum ratio exceeds one, and weak surface-convergent helical cells on opposite sides of the mixing interface when the momentum ratio is less than one. Curvature of the flow, and thus the strength of helical motion, is greatest on the tributary side of the mixing interface. Although the flow events measured in this study did not exceed the threshold for sediment movement, the bed morphology at the confluence can be explained by the flow structure observed during these low-stage events, suggesting that formative flows may have similar downstream and cross-stream velocity fields.  相似文献   

8.
Episodic wood loading in a mountainous neotropical watershed   总被引:1,自引:0,他引:1  
The Upper Rio Chagres drains 414 km2 of steep, mountainous terrain in central Panama. A tropical air mass thunderstorm on 10 July 2007 produced a flood across the basin that peaked at 720 m3 s− 1 at a headwaters gage draining 17.5 km2 and 1710 m3 s− 1 at a downstream gage draining 414 km2. The storm also triggered numerous landslides in the upper basin, which facilitated the formation of large logjams along portions of the channel where transport capacity of wood was reduced by a change in channel geometry such as a bend or channel expansion. During field work in February 2008, we characterized three jams with surface areas of 400–2450 m2; two of these jams resulted in storage of substantial (1100–8200 m3) sediment wedges upstream. We returned to these sites in March 2009 to document changes in the logjams and sediment storage. Drawing on observations made in the basin since 2002, and site visits during 2008 and 2009, we suggest that jams such as these last two years or less. We propose that wood dynamics in the Upper Chagres alternate between brief periods of moderate wood load in the form of large logjams and much longer periods of essentially no wood load, a situation that contrasts with the more consistent wood loads in catchments of similar size in temperate environments and with limited studies of more consistent wood load in tropical catchments with no landslides.  相似文献   

9.
This study is based on the data from Zizhou and Wangjiagou experimental stations on the Loess Plateau in the major sediment‐producing areas of the middle Yellow River drainage basin. It deals with characteristics of hyperconcentrated flows in the slope‐channel systems in the gullied hilly areas on the Loess Plateau. The results show that the formation of hyperconcentrated flows is closely related to the vertical differentiation of landforms. Based on data from 21 rainfall events in the period 1963–1970, event‐averaged suspended sediment concentration for hilltop, upper hillslope, lower hillslope and gully slope was calculated as 36 kg/m3, 89 kg/m3, 304 kg/m3 and 505 kg/m3, and the frequency of hyperconcentrated flows was 0.0, 0.17, 0.74 and 1.0, respectively. Thus, hyperconcentrated flows form on the lower part of hillslopes and on the gully slopes, and develope well in gully channels of various orders. There exists a sediment storing‐releasing mechanism, resulting from different behaviours of sediment transport by non‐hyperconcentrated and hyperconcentrated flows. When water flows are nonhyperconcentrated, the relatively coarse fractions of sediment from the slopes are deposited in the channel. When hyperconcentrated flows occur, the previously deposited coarse sediment may be eroded and released from the channel. A close relationship is found between rainstorms and the formation of hyperconcentrated flows, and some thresholds of rainfall and runoff for the occurrence of hyperconcentrated flows have been identified.  相似文献   

10.
黄河内蒙古段淤积泥沙洪水冲刷效应   总被引:1,自引:1,他引:0  
汪宏芳  贾晓鹏  王海兵 《中国沙漠》2014,34(4):1143-1149
为了探讨黄河内蒙古段淤积泥沙的洪水冲刷效应,于2012年对其三湖河口水文站河道监测断面汛期(7-10月)流量、悬移质泥沙含量以及洪水期间(2012年8月20日-2012年10月1日)悬移质泥沙含量、粒度百分含量的垂直变化特征与流量的关系进行了统计和分析。结果表明:(1)该次洪水具有峰高量大、洪峰过程在河段内持续时间长、洪水起涨和消退缓慢、峰形矮胖的特点;(2)洪水过程中,小于0.05 mm的细颗粒泥沙在2 000 m3·s-1左右的流量下就能输移通过,在2 000~2 400 m3·s-1时输沙强度最大,对河道淤积泥沙可以达到输沙最优的效果;而粒径大于0.05 mm的泥沙输移的效果不好。  相似文献   

11.
近60年黄河水沙变化及其对三角洲沉积的影响   总被引:1,自引:1,他引:0  
In order to find out the variation process of water-sediment and its effect on the Yellow River Delta, the water discharge and sediment load at Lijin from 1950 to 2007 and the decrease of water discharge and sediment load in the Yellow River Basin caused by human disturbances were analyzed by means of statistics. It was shown that the water discharge and sediment load into the sea were decreasing from 1950 to 2007 with serious fluctuation. The human activities were the main cause for decrease of water discharge and sediment load into the sea. From 1950 to 2005, the average annual reduction of water discharge and sediment load by means of water-soil conservation practices were 2.02×109 m3 and 3.41×108 t respectively, and the average annual volume by water abstraction for industry and agriculture were 2.52×1010 m3 and 2.42×108 t respectively. The average sediment trapped by Sanmenxia Reservoir was 1.45×108 t from 1960 to 2007, and the average sediment retention of Xiaolangdi Reservoir was 2.398×108 t from 1997 to 2007. Compared to the data records at Huanyuankou, the water discharge and sediment load into the sea decreased with siltation in the lower reaches and increased with scouring in the lower reaches. The coastline near river mouth extended and the delta area increased when the ratio of accumulative sediment load and accumulative water discharge into the sea (SSCT) is 25.4–26.0 kg/m3 in different time periods. However, the sharp decrease of water discharge and sediment load into the sea in recent years, especially the Yellow River into the sea at Qing 8, the entire Yellow River Delta has turned into erosion from siltation, and the time for a reversal of the state was about 1997.  相似文献   

12.
开封市黄河滩区土地资源规避洪水风险的安全利用   总被引:2,自引:1,他引:1  
基于ArcGIS与ERDAS遥感影像制图软件,利用2007年SPOT2.5m分辨率遥感影像,结合实地调查,详细编绘了开封市段黄河河道边界、开封段黄河滩区土地资源的利用现状。采用1992~2007年最大洪峰时期的TM影像与沿河水文站点的观测资料,提取1992~2007年7个典型日期的河道行洪边缘线,与本底数据叠加,编制了开封段不同常遇洪水流量下滩区淹没范围。按照黄河下游二维水沙数学模型,采用2004年汛后河道大断面资料,计算生成不同流量级大洪水在滩区的可能淹没范围图(淹没区边界)。在此基础上,结合土地资源管理与河道行洪安全性的要求,总结当前黄河下游滩区利用开发的现状与存在问题,制订土地安全利用规避洪险的原则,规划土地安全利用分区,分为临河风险缓冲带、近河宜耕地带、相对稳定利用带(中风险带)和稳定利用带。提出了黄河滩区土地资源合理安全利用的对策。  相似文献   

13.
甬江河床演变及航道治理   总被引:3,自引:0,他引:3  
沈承烈 《地理研究》1988,7(3):58-66
本文分析甬江动力、泥沙、边界及河床演变的基本特征,提出甬江航道整治的原则和措施。  相似文献   

14.
This study attempts to quantify the amount of fine-grained (ca. < 150 μm) sediment stored on the floodplains and on the channel bed of the non-tidal sections of the main channels in the catchment of the River Ouse (3315 km2) and of one of its tributaries, the River Waarfe (818 km2), in Yorkshire, UK. Caesium-137 analyses of floodplain sediment cores were used to quantify the amount of Iloodplain deposition as a result of overbank flooding during the last ca. 40 years. A combination of bulk and sectioned cores were collected along transects perpendicular to the channel at 26 sites throughout the study basins. In general, rates of overbank sedimentation decrease with distance from the channel. The average values for individual transects range between 0.010 and 0.554 g cm−2 year−1. Floodplain storage along the main channels of the Ouse and Wharfe basins accounts for 60645 and 10325 t year−1, respectively, and represents a net loss from the system. The amount of fine-grained sediment stored on the channel bed was estimated by a survey undertaken in August 1996, during which the fine material deposited on the bed was resuspended and its mass estimated at 16 locations. The average values for the individual locations range between 0.017 and 0.924 g cm−2 and tend to increase downstream. The total channel bed storage at the time of sampling in 1996 was estimated to be 16076 and 1866 t for the Ouse and Wharfe basins, respectively. It is assumed that channel bed storage is seasonal and that no net loss to the system occurs at the annual timescale. Floodplain storage for the Ouse and Wharfe basins represents 39 and 49%, and channel bed storage equals 10 and 9%, respectively, of the annual suspended sediment load (1995–1996) delivered to the channel system. These results have important implications for the routing of fine-grained sediment and sediment-associated contaminants in drainage basins, and for the interpretation of downstream sediment yields in terms of upstream sediment mobilisation.  相似文献   

15.
The Upper Mississippian (ca. 325 Ma) Pride Shale and Glady Fork Member in the Central Appalachian Basin comprise an upward‐coarsening, ca. 60‐m‐thick succession of prodeltaic‐delta front, interlaminated fine‐grained sandstones and mudstones gradational upwards into mouth‐bar and distributary‐channel sandstones. Analysis of laminae bundling in the Pride Shale reveals a hierarchy of tidal cycles (semi‐diurnal, fortnightly neap‐spring) and a distinct annual cyclicity resulting from seasonal fluvial discharge. These tidal rhythmites thus represent high‐resolution chronometers that can be used in basin analysis. Annual cycles average 10 cm in thickness, thus the bulk of the Pride Shale‐Glady Fork Member in any one vertical section is estimated to have accumulated in ca. 600 years. Progradational clinoforms are assumed to have had dips of 0.3–3° with a median dip of 1.7°; the latter infilled a NE‐SW oriented foreland trough up to 300 km long by 50 km wide in the relatively short time period of 90 kyr. The total volume of sediment in the Pride basin is ca. 900 km3 which, for an average sediment density of 2700 kg m?3, equates to a total mass of ca. 2.4 × 106 Mt. Thus, mass sediment load can be estimated as 27 Mt yr?1. For a drainage basin area of 89 000 km2, based on the scale of architectural channel elements and cross‐set thicknesses in the incised‐valley‐fill deposits of the underlying Princeton Formation, suspended sediment yields are estimated at ca. 310 t km?2 yr?1 equating to a mechanical denudation rate of ca. 0.116 mm yr?1. Calculated sediment yields and inferred denudation rates are comparable to modern rivers such as the Po and Fly and are compatible with a provenance of significant relief and a climate characterized by seasonal, monsoonal discharge. Inferred denudation rates also are consistent with average denudation rates for the Inner Piedmont Terrane of the Appalachians based on flexural modelling. The integration of stratigraphic architectural analysis with a novel chronometric application highlights the utility of sedimentary archives as a record of Earth surface dynamics.  相似文献   

16.
Downstream hydrologic and geomorphic effects of large dams on American rivers   总被引:12,自引:4,他引:12  
William L. Graf   《Geomorphology》2006,79(3-4):336
The hydrology and geomorphology of large rivers in America reflect the pervasive influence of an extensive water control infrastructure including more than 75,000 dams. One hundred thirty-seven of the very large dams, each storing 1.2 km3 (106 acre feet) of water or more, alter the flows of every large river in the country. The hydrologic effects of these very large dams emerge from an analysis of the stream gage records of 72 river reaches organized into 36 pairs. One member of each pair is an unregulated reach above a dam, whereas the other is a regulated reach downstream from the same structure. Comparison of the regulated and unregulated reaches shows that very large dams, on average, reduce annual peak discharges 67% (in some individual cases up to 90%), decrease the ratio of annual maximum/mean flow 60%, decrease the range of daily discharges 64%, increase the number of reversals in discharge by 34%, and reduce the daily rates of ramping as much as 60%. Dams alter the timing of high and low flows and change the timing of the yearly maximum and minimum flows, in some cases by as much as half a year. Regional variation in rivers, dams, and responses are substantial: rivers in the Great Plains and Ozark/Ouachita regions have annual maximum/mean flow ratios that are 7 times greater than ratios for rivers in the Pacific Northwest. At the same time, the ratio of storage capacity/mean annual water yield for dams is greatest for Interior Western, Ozark/Ouachita and Great Plains rivers and least for Pacific Northwest streams. Thus, in many cases those rivers with the highest annual variability have the greatest potential impact from dams because structures can exert substantial control over downstream hydrology. The hydrologic changes by dams have fostered dramatic geomorphic differences between regulated and unregulated reaches. When compared to similar unregulated reaches, regulated reaches have 32% larger low flow channels, 50% smaller high flow channels, 79% less active flood plain area, and 3.6 times more inactive flood plain area. Dams also affect the area of active areas, the functional surfaces that are functionally connected to the present regime of the river. Regulated reaches have active areas that are 72 smaller than the active areas of similar unregulated reaches. The geomorphic complexity (number of separate functional surfaces per unit of channel length) is 37% less in regulated reaches. Reductions in the size of hydrologically active functional surfaces are greatest in rivers in the Great Plains and least in Eastern streams. The largest differences in geomorphic complexity are in interior western rivers. The shrunken, simplified geomorphology of regulated large rivers has had direct effects on riparian ecology, producing spatially smaller, less diverse riparian ecosystems compared to the larger, more complex ecosystems along unregulated reaches of rivers.  相似文献   

17.
黄河下游河槽横断面调整规律及治理方式探讨   总被引:7,自引:0,他引:7  
通过对影响河槽挟沙能力诸因素的分析,作者认为目前黄河下游只有河槽形态是一个人为可调节的控制河道淤积的要素。分析黄河下游河道横剖面形态的特征及其调整规律,考虑来沙组成变化、河槽综合阻力变化,计算得到黄河下游典型断面的实际挟沙能力及平均水沙条件下河槽平衡输沙横剖面,经与实际断面形态对比,得出必须以多级河槽方式缩窄7000m3/s流量以下即中、小水期的河槽,方能显着减少黄河下游河槽中的淤积的结论。这样才能真正实现潘季驯的“束水攻沙”的治黄方略。  相似文献   

18.
Three-dimensional morphological adjustment in a chute cutoff (breach) alluvial channel is quantified using Digital Elevation Model (DEM) analysis for a ca. 0.7 km reach of the River Coquet, Northumberland, UK. Following cutoff in January 1999, channel and bar topography was surveyed using a Total Station on five occasions between February 1999 and December 2000. Analysis of planform change coupled with DEM differencing elucidates channel and barform development following cutoff, and enables quantification of sediment transfers associated with morphological adjustment within the reach. This exercise indicates an initial phase of bed scour, followed by a period characterised by extensive bank erosion and lateral channel migration where erosion (including bed scour) totalled some 15,000 m3 of sediment. The channel in the post-cutoff, disequilibrium state is highly sensitive to relatively low-magnitude floods, and provision of accommodation space by bank erosion encouraged extensive lateral bar development. Bar development was further facilitated by infilling of channels abandoned by repeated within-reach avulsion and large-scale aggradation of sediment lobes deposited by higher magnitude floods. Calculations indicate that at least 6600 m3 of sediment was deposited on emerging bars within the reach over the survey period, and >2300 m3 deposited within the channel. Sediment losses from the reach may have exceeded 6500 m3.  相似文献   

19.
Sediment rating parameters and their implications: Yangtze River, China   总被引:4,自引:0,他引:4  
This study examines the characteristics of sediment rating parameters recorded at various gauging stations in the Yangtze Basin in relation to their controls. Our findings indicate that the parameters are associated with river channel morphology of the selected reaches. High b-values (> 1.600) and low log(a) values (< − 4.000) occur in the upper course of the steep rock-confined river, characterizing high unit stream power flows. Low b-values (< 0.900) and high log(a) values (> − 1.000) occur in the middle and lower Yangtze River associated with meandering reaches over low gradients, and can be taken to imply aggradation in these reaches with low stream power. Higher b-values (0.900–1.600) and lower log(a)-values (− 4.000 to − 1.000) characterize the reaches between Yichang and Xinchang, immediately below the Three Gorges. These values indicate channel erosion and bed instability that result from changes in channel gradient from the upstream steep valley to downstream low slope flood plain settings. Differences in channel morphology accompany these changes. Confined, V-shaped valleys occur upstream and are replaced downstream by broad U-shaped channels. The middle and lower Yangtze shows an apparent increase in channel instability over the past 40 years. This inference is based on sediment rating parameters from various gauging stations that record increasing b-values against decreasing log(a)-values over that time. Analysis of the sediment load data also reveals a strong correlation between changes in sediment rating curve parameters and reduction of annual sediment budget (4.70 × 108 t to 3.50 × 108 t/year, from the 1950s to 1990s), largely due to the damming of the Yangtze and sediment load depletion through siltation in the Dongting Lake. Short-term deviations from the general trends in the sediment rating parameters are related to hydroclimatic events. Extreme low b-values and high log(a)-values signify the major flood years, while the reverse indicates drought events. When compared with rivers from other climate settings, it is evident that the wide range of values of the Yangtze rating parameters reflects the huge discharge driven by the monsoon precipitation regime of eastern China.  相似文献   

20.
This paper describes the application of a commercially available, three-dimensional computational fluid dynamic (CFD) model to simulate the flow structure in an upland river that is prone to flooding. Simulations use a rectangular channel geometry, smooth sidewalls and a bed topography obtained from the field site that contains a subdued pool–riffle sequence. The CFD model uses the RNG κ turbulence closure scheme of Yakhot and Orszag (J. Sci. Comput. 1 (1986) 1), as implemented in FLUENT 4.4.4, with a free surface. Results are shown for numerical runs simulating a 1:100 year return interval flood. Output from the numerical model is compared to a physical model experiment that uses a 1:35 scale fibreglass mould of the field study reach and measures velocity using ultrasonic Doppler velocity profiling (UDVP). Results are presented from the numerical and flume models for the water surface and streamwise velocity pattern and for the secondary flows simulated in the numerical model. A good agreement is achieved between the CFD model output and the physical model results for the downstream velocities.Results suggest that the streamwise velocity is the main influence on the flow structure at the discharge and channel configuration studied. Secondary flows are, in general, very weak being below the resolution of measurement in the physical model and less than 10% of the streamwise velocity in the numerical model. Consequently, there is no evidence for a ‘velocity dip’. It is suggested that the subdued topography or inlet morphology may inhibit the development of secondary flows that have been recorded in previous flat-bed, rectangular open channel flows. A significant corollary of these results is that the morphological evolution of the pool–riffle sequence at high discharges may be controlled primarily by the downstream distribution of velocity and sediment transport with little role for lateral sorting and sediment routing by secondary flows. This paper also raises a number of issues that may be of use in future CFD modelling of three-dimensional flow in open channels within the geomorphological community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号