首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文利用解摄动方程的平均值法求得在PPN框架中二体自转对轨道要素产生的后牛顿效应的长期变化影响.利用这一理论对CWCep和DRVul两颗双星中两子星的自转对轨道近星点和平近点角的长期摄动的后牛顿效应做了计算。结果表明:对于两个质量较大快速自转的子星,由此所产生的后牛顿效应的摄动量是不能忽视的。  相似文献   

2.
研究了双星多方模型的形状对同步子星轨道要素的摄动影响,假定两子星在同一轨道面上运动,推出了主星对伴星的轨道要素的摄动量,理论结果表明,双星多方模型对轨道半长轴和偏心率只有周期项摄动,无长期摄动,但对近星点和历元平近点角除有周期摄动外还有长期摄动效应。文中将理论结果应用于同步双星βPer(大陵五双星)的计算上,除计算了两个子星的形状(椭率)外对同步子星的轨道要素变化的周期项振幅和长期项的效应做了数值  相似文献   

3.
研究了双星多方模型的形状对同步子星轨道要素的摄动影响。假定两子星在同一轨道面上运动,推出了主星对伴星的轨道要素的摄动量。理论结果表明:双星多方模型对轨道半长轴和偏心率只有周期项摄动,无长期摄动,但对近星点和历元平近点角除有周期摄动外还有长期摄动效应。文中将理论结果应用于同步双星βPer(大陵五双星)的计算上。除计算了两个子星的形状(椭率)外对同步子星的轨道要素变化的周期项振幅和长期项的效应做了数值计算  相似文献   

4.
根据后牛顿方法,得到了自转因素产生的轨道根数的参数化后牛顿效应。这种效应对轨道根数a、e、i、M没有长期摄动,只对ωΩ产生长期摄动,并且对所有轨道根数不产生长周期摄动,只产生短周期摄动。  相似文献   

5.
中心体自转对天体轨道要素变化的后牛顿效应   总被引:2,自引:1,他引:1  
李林森 《天文学报》1990,31(1):108-111
本文给出了在三种引力理论为中心自转对天体轨道要素变化产生的后牛顿摄动效应的研究结果。研究结果表明:六个轨道要素除长钾不受摄动影响外其它五个要素均有周期摄动,特别升交点经度和近星点经度还有长期摄动效应。最后将文中的理论结论同前人的工作做了比较还应用于行星自转对卫星轨道要素变化的摄动效应计算上。作者在文[1]中研究了天体轨道要素变化的后牛顿效应,但在该文中并没有考虑中心体自转的影响。本文研究了三种引力理论(Einstein,Brans-Dick和Nordtvedt)中的这方面效应,并给出理论和数值的研究结果。  相似文献   

6.
天体自转因素导致的相对论性效应   总被引:1,自引:0,他引:1  
本文在PPN框架中得到了太用系内自转因素产生的瞬时轨道根数改正的一阶封闭分析解.轨道半长径和偏心率不受长期效应的影响,只受周期效应的影响;轨道倾角、升交点经度、近星点角距,平近点角既受长期效应又受周期效应的影响.我们用两种引力理论分别计算了太阳自转对地内大行星及—些小行星轨道,行星自转对自然卫星轨道,地球自转对人造卫星轨道所产生的各相对论性效应.  相似文献   

7.
用相同的仪器条件在美国基特峰国立天文台观测了12颗晚型双星,并用卷积法测得了这12个双星系统的15个子星的自转速度,其中5个子星是首次进行自转测量。利用我们自己测得的自转速度值,我们也讨论了这些双星系统中的自转同步性。结果显示:所有轨道周期小于9天的双星系统子星都是周步自转的  相似文献   

8.
地球磁场对带电人造卫星轨道根数的摄动影响   总被引:2,自引:0,他引:2  
研究了地球磁场对带电的非赤道卫星的轨道根数的摄动影响,理论结果表明,地球磁场对带电卫星的轨道半长轴没有摄动影响,既无周期摄动,也无长期摄动,但对轨道偏心率、轨道倾角、升交点赤经、近地点经度和历元平近点角均有周期摄动,且对升交点和近地点经度还有长期摄动效应,通过算例表明,当卫星带有大量电菏时,地球磁场对卫星轨道的摄动影响必须加以考虑。  相似文献   

9.
给出了以偏近点角为自变量的变引力常数的摄动方程组的解.解包括轨道半长轴的长期和周期变化项,其他轨道根数在一阶解中无长期项,只有周期项.近星点经度和平经度在二阶解中显示长期项变化.给出了由于引力常数变化对双星轨道演变情况的数值估计,对结果做了讨论并给出结论.  相似文献   

10.
研究了地球磁场对带电的非赤道卫星的轨道根数的摄动影响。理论结果表明,地球磁场对带电卫星的轨道半长轴没有摄动影响,既无周期摄动,也无长期摄动,但对轨道偏心率、轨道倾角、升交点赤经、近地点经度和历元平近点角均有周期摄动,且对升交点和近地点经度还有长期摄动效应。通过算例表明,当卫星带有大量电荷时,地球磁场对卫星轨道的摄动影响必须加以考虑。  相似文献   

11.
引力常数变化对地球自转长期变化的影响   总被引:1,自引:0,他引:1  
探讨和估计了各种引力常数变化理论对地球角速度和日长变化的影响。各种引力常数变化理论包括了引力常数G随时间、空间以及速度变化等几个方面的影响。另外也估计了对地球自转角速度和日长变化产生的效应。其中有些研究对探讨地球自转变化也有启发意义。  相似文献   

12.
本文研究了表面边界位置对太阳ρ模绝热本征振荡频率的影响。数值计算结果表明,对于v4000μHz的中低阶p模,表面边界置于温度极小点所引起的本征振荡频率的计算误差随着v和l的增大,表面边界点位置对太阳理论振荡频率的影响增大,色球结构对太阳p模振荡频率的影响已变得不可忽略。  相似文献   

13.
本文主要阐述了近年来我们在近地小行星轨道演化研究所获得的一些基本结果,即合理的力学模型和相应的有效算法,并以实际预报算例与有关权威性的结果作了比较,证实这些研究结果确实是可信的。  相似文献   

14.
15.
为了适应星际探测的需求,本文建立了在新的精度要求下土星卫星运动对应的力学模型,具体讨论了土卫八的运动,并针对主要摄动源土卫六的引力作用,建立了轨道变化的分析解,以此表明建立了土卫运动理论该采取的途径和精密定轨宜采用以轨道根数作为状态量的数值定轨方法。  相似文献   

16.
埃尔塔宁小行星是一颗215 万年前在南太平洋撞击地球的小行星,它也是目前唯一的深海区与地球碰撞的小行星。根据埃尔塔宁号和Polarstern 号海洋调查船在陨击海区勘查的小行星残骸分布密度,我们估计埃尔塔宁小行星质量为2 .3 ×1013g ,对应于它的直径为0 .23 公里。这比Kyte 等人(1988) 估计的质量小了10 倍,然而它更接近埃尔塔宁小行星撞击事件的实际情况,可以作为埃尔塔宁小行星质量下限和半径下限更合理的估计值。  相似文献   

17.
日长变化的预报具有重要的科学意义和实际应用价值。非线性的人工神经网络技术中的反向传播模型(BP网络)可用于预报日长变化。BP网络的拓扑结构决定了神经网络解决问题的能力,针对不同的问题需要采用不同的网络结构。该文分析了神经网络的拓扑结构算法,选用最小均方误差法确定网络的拓扑结构,并将此应用于日长变化预报。结果表明,该方法是可靠和有效的。  相似文献   

18.
对钱德勒摆动椭率及长轴方向的检测   总被引:1,自引:0,他引:1  
高布锡 《天文学报》1999,40(2):139-141
证明地球的三轴性对钱德勒摆动椭率的影响只有1.8E5,,可以被忽略.假定极潮为平衡潮,求出由于海陆分布的影响,将使钱德勒摆动有0.013的椭率,主轴方向大约指向东经6°.采用傅里叶反卷积方法对SPACE92和BIH的极移资料进行分析,求出逐年的长期极移、周年极移和钱德勒摆动的参数,然后将钱德勒摆动归算到同一历元,证明钱德摆动椭率约为0.011,长轴方向约为东经9°,与理论结果十分符合.  相似文献   

19.
利用 2 0 2个太阳附近疏散星团的视向速度和自行观测资料 ,对太阳的运动和银河系的运动学参数进行了研究。其中 ,距离在 0 .5kpc到 2kpc之间的 12 8个疏散星团对平均太阳运动分量的解算结果是 (u0 ,v0 ,w0 ) =(- 13.8± 1.4 ,- 5 .0± 1.6 ,- 11.6± 2 .9)km/s ;Oort常数和银河系径向运动参数的解算结果分别为 (A ,B) =(16 .9± 1.1,- 11.6± 2 .6 )km·s- 1·kpc- 1及 (C ,D) =(2 .5± 1.1,- 2 .1± 0 .9)km·s- 1·kpc- 1。  相似文献   

20.
抽样选取了 2 7次上海天文台佘山站参与的天测与测地VLBI实验 ,分别进行了单次解算。通过分析解算参数随剩余钟行为和剩余大气效应分段拟合长度的变化 ,得到以下初步结论 :(1)选取不同分段拟合长度时 ,站坐标解算结果和时延残差加权均方根存在差异 ,最大分别至厘米级和数十皮秒 ,因而分段拟合长度不能随意选取。 (2 )分段拟合时段长度存在某一合理取值范围 ,它不宜过长 ,否则钟和大气的剩余效应短周期变化不能很好地模型化。为了保证待估参数解算时有足够的自由度 ,拟合时段不宜过短 ,否则将导致法方程近于或出现奇异 ,达不到较好控制噪声的效果。 (3)由于各次实验、同一次实验中的不同台站相应的钟和大气条件存在差异 ,有必要对每次实验以及每次实验中的各观测台站分别分析 ,寻找合适的分段拟合长度。这在实际操作中显然相当烦琐。 (4)一般而言 ,在剩余钟行为拟合长度缺省值 6 0min情况下 ,剩余大气效应分段拟合长度以介于 10min至 4 0min为宜 ;在剩余大气效应分段拟合长度缺省值 2 0min情况下 ,剩余钟行为分段拟合长度以介于 2 0min至 10 0min为宜  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号