首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From the influence already revealed by attenuation models on the values of expected intensity for North-Eastern Sicily, the necessity arises to quantify the weight of these models and of their respective coefficients on the projection of intensity.A first evaluation is presented in this paper using the Sponheuer, Blake, and Grandori models.A comparison of the expected intensity maps allows a first critical estimate, showing the greater adaptability of the Grandori model to describe the attenuation of intensity for the investigated area.  相似文献   

2.
The object of this study is to consider directly the influence of regional geological conditions on the assessment of seismic hazard. It is assumed that macroseismic data at individual locations contain, in an average way, the influence of geological conditions.A Data Base referring to 199 historical (5) and instrumental (194, in the 1947–1993 period) events with macroseismic information in 1195 locations of Portugal was built. For any given seismic event, whenever macroseismic information was available at a location (town, village, etc.), an EMS-92 intensity value was estimated. To each one of those locations a geological unit, representing the most common type of soil, was assigned, based on the Geological Portuguese Map at a scale 1:500 000; the geological units were grouped into three categories: soft, intermediate and hard soils.The Data Base was used to determine the attenuation laws in terms of macroseismic intensity for the three different geological site conditions, using multiple linear regression analysis. The reasonability of the laws was tested by (i) checking residual distributions and (ii) comparing the map of isoseismals of important earthquakes with the isoseismals generated by the attenuation curves derived for each one of the three different soil classes, taking into consideration the soil class of each site. The main results of attenuation modeling are: high dispersion on macroseismic intensity data; all the models predict intensity values, for short hypocentral distances, lower than the ones observed; and for some important analyzed earthquakes and for the observed range of distances, the models confirm the expectancy that macroseismic intensity increases from hard to soft soil.The approach to obtain the hazard assessment at each location consisted in the use of the attenuation law specifically derived for the class of soil of that particular location. This method, which considers the influence of the regional geology, was illustrated with the mapping of hazard for the country for several return periods. Comparison with previous maps not taking into consideration the regional geological conditions emphasizes the importance of this new parameter. It can be concluded that (i) soil segmentation is clearly the cause for hazard increase in the region to the north of Lisbon, especially at sites with soft and intermediate soils as the ones in lower Tagus valley; the maximum increase on hazard is, in any case, less than one degree; (ii) when geological conditions are disregarded in the attenuation regression analysis, hazard pattern is similar to the one obtained for the case of hard soil everywhere.  相似文献   

3.
A. Pantea 《Natural Hazards》1994,10(1-2):65-72
The macroseismic intensity attenuation (m.i.a.) laws for the main seismic provinces with crustal foci of the Romanian territory and adjacent areas were established. The input data consist of MSK-64 intensities of 18 earthquakes with epicentral/maximum intensity in the range V to X degrees (MSK scale), whose isoseismal maps were available.The attenuation was analyzed as a function of distance and azimuth and from the three main attenuation formulas (logarithmic, exponential, and power-law) (the last one was preferred, as it best fits the observed data) and, consequently, were used for each seismogenic region. The bulk of derived equations is intended to be further used in the assessment of the seismic hazards of Romania.  相似文献   

4.
Teramo  A.  Termini  D.  Stillitani  E.  Bottari  A. 《Natural Hazards》1998,17(1):17-29
The anisotropic attenuation of macroseismic intensity for a seismogenetic zone is dealt with using a new modelling of intensity distribution. The analysis, carried out starting from the intensity maps of the earthquakes of different seismogenetic zones of Central and Southern Italy, allows the determination of the attenuation coefficients for each seismogenetic zone by an anisotropic attenuation law. The obtained results show the reliability of the proposed modelling within seismic hazard evaluation studies.  相似文献   

5.
The seismic hazard in the Sannio-Matese area has been worked out by a modification of the McGuire (1976) computing programme, taking into account the influence of nine potential seismic source zones.The method uses truncated-quadratic intensity-frequency distribution and azimuth-dependent intensity attenuation derived from isoseismal maps for each of the seismogenetic sources. A new modification has been introduced to take into account different decay of the intensity in the near (to VIII degree) and far (from VIII degree) field.Different assumptions about maximum possible intensities and truncation of intensity-frequency laws are used to evaluate the effects of the uncertainties on the computed hazard at high intensities. Intensities associated with different level of annual probability are computed for five test sites in the considered area. Maps displaying the expected intensity for a mean return period of 500 years (pa 0.002) are presented and compared with observed intensities.Presented at the XXIst General Assembly of the European Seismological Commission, Symposium on Methods of Seismic Hazard Assessment in Europe, Sofia, 23–27 August 1988.  相似文献   

6.
The main result of this work is to show that macroseismic intensity decay with distance strongly depends on the epicentral intensity. An attenuation law that takes this parameter into account is proposed for Metropolitan France, from the analysis of SISFRANCE macroseismic database. Such a model significantly reduces the difference between observed and theoretical intensities. A map of the attenuation variations is also set up for Metropolitan France. No major site effects are observed, but at a broad scale, young Alpine regions display a stronger attenuation than old Hercynian regions. To cite this article: P. Arroucau et al., C. R. Geoscience 338 (2006).  相似文献   

7.
A method for the evaluation of seismic hazard in a given zone, taking into account both the spreading of macroseismic effects and seismic catalogue information, is applied. A data-bank of some 500 digitized isoseisms of earthquakes having occurred in Italy between 1542 and 1986 is used. The isoseismical maps are digitized considering for each degree of intensity the length of 24 spreading rays starting from the macroseismic epicenter or barycentre of the megaseismic area. These rays are separated from each other by the same angle, i.e. every isoseism is divided into 24 equal circular sectors. The year 1542 is taken as the beginning of the time span, since this is when the first seismic event occurred for which reliable isoseismal maps are available. The epicentral intensities considered lie between theVI andXI degrees of the Mercalli-Cancani-Sieberg scale (MCS). This digitized data-bank is analyzed to achieve, for each homogeneous seismogenetic zone that has been recognized, the mean azimuthal spreadings of effects for each degree of intensity as a function of the epicentral intensity. Once a mean propagation model is obtained for each zone, this is applied to seismic events of the same zone, the isoseismal maps of which are not available. A geographic grid is defined to cover the analyzed area, and for each cell of this grid it is then possible to count the number of felt events and their degree. These effects have been evaluated either on the basis of the isoseismal maps (when available) or on the basis of the mean propagations of the zone in which the single event occurred. Moreover, an index summarizing the seismic information was computed for each cell of the previous grid. All the events producing effects and their provenance are stored on files, allowing the main seismogenic zones influencing this cell to be identified. This methodology has been applied to central and southern Italy in an area between the latitudes 40.6 and 43.3 N. In particular, attention is focussed on the sample areas of Rome (given the historical and political importance of the city) and of the Sannio-Matese and Irpinia zone (in which some of the strongest earthquakes of the Apennine chain have occurred). Finally, in order to evaluate the maximum expected magnitude, extreme value statistics (Gumbel III-type) are applied to the Colli Albani area, which represents the seismogenic zone nearest to Rome. For the Sannio-Matese and Irpinia area, considering the more dangerous zone as a ‘unicum’, theWeibull distribution has been hypothesized to determine the mean return time for events with an intensity greater than or equal to IX.  相似文献   

8.
The maximum expected ground motion in Greece is estimated for shallow earthquakes using a deterministic seismic hazard analysis (DSHA). In order to accomplish this analysis the input data include an homogeneous catalogue of earthquakes for the period 426 BC–2003, a seismogenic source model with representative focal mechanisms and a set of velocity models. Because of the discrete character of the earthquake catalogue and of errors in location of single seismic events, a smoothing algorithm is applied to the catalogue of the main shocks to get a spatially smoothed distribution of magnitude. Based on the selected input parameters synthetic seismograms for an upper frequency content of 1 Hz are computed on a grid of 0.2° × 0.2°. The resultant horizontal components for displacement, velocity, acceleration and DGA (Design Ground Acceleration) are mapped. The maps which depict these results cannot be compared with previously published maps based on probabilistic methodologies as the latter were compiled for a mean return period of 476 years. Therefore, in order to validate our deterministic analysis, the final results are compared with PGA estimated from the maximum observed macroseismic intensity in Greece during the period 426 BC–2003.Since the results are obtained for point sources, with the frequency content scaled with moment magnitude, some sensitivity tests are performed to assess the influence of the finite extent of fault related to large events. Sensitivity tests are also performed to investigate the changes in the peak ground motion quantities when varying the crustal velocity models in some seismogenic areas. The ratios and the relative differences between the results obtained using different models are mapped and their mean value computed. The results highlight the importance in the deterministic approach of using good and reliable velocity models.  相似文献   

9.
This article presents the results of a detailed study of the effects of the 1883 earthquake, which occurred at the island of Ischia (Gulf of Naples) and produced the total destruction of buildings in the epicentral area (Casamicciola town). Despite the moderate magnitude, this event was characterised by very high intensities (I max = XI degree MCS) mainly due to the shallow depth of the source. The study of the earthquake shows that the intensities, which decreased rapidly with distance, were affected by source directivity, according to the causative fault geometry and tectonic structures, while local amplification of damage was observed where soft soils outcrop. The attenuation of seismic intensity with distance was evaluated using the well-known relation of intensity versus epicentral distance (Blake’s method). The diverse gradients of attenuation, observed in different directions, were ascribed to the various geological features of the shallow crust of the island. In order to evaluate the role of geology in the damage level, we computed different attenuation models for stiff and soft soils outcropping on the island. A systematic local amplification of about 1 MCS degree associated to the presence of reworked tuffs was obtained. This study also shows the influence of geological conditions on the evaluation of macroseismic data and supplies useful elements to derive a predictive map of potential site effects.  相似文献   

10.
A method for the evaluation of seismic hazard in a given zone, taking into account both the spreading of macroseismic effects and seismic catalogue information, is applied. A data-bank of some 500 digitized isoseisms of earthquakes having occurred in Italy between 1542 and 1986 is used. The isoseismical maps are digitized considering for each degree of intensity the length of 24 spreading rays starting from the macroseismic epicenter or barycentre of the megaseismic area. These rays are separated from each other by the same angle, i.e. every isoseism is divided into 24 equal circular sectors. The year 1542 is taken as the beginning of the time span, since this is when the first seismic event occurred for which reliable isoseismal maps are available. The epicentral intensities considered lie between theVI andXI degrees of the Mercalli-Cancani-Sieberg scale (MCS). This digitized data-bank is analyzed to achieve, for each homogeneous seismogenetic zone that has been recognized, the mean azimuthal spreadings of effects for each degree of intensity as a function of the epicentral intensity. Once a mean propagation model is obtained for each zone, this is applied to seismic events of the same zone, the isoseismal maps of which are not available. A geographic grid is defined to cover the analyzed area, and for each cell of this grid it is then possible to count the number of felt events and their degree. These effects have been evaluated either on the basis of the isoseismal maps (when available) or on the basis of the mean propagations of the zone in which the single event occurred. Moreover, an index summarizing the seismic information was computed for each cell of the previous grid. All the events producing effects and their provenance are stored on files, allowing the main seismogenic zones influencing this cell to be identified. This methodology has been applied to central and southern Italy in an area between the latitudes 40.6 and 43.3 N. In particular, attention is focussed on the sample areas of Rome (given the historical and political importance of the city) and of the Sannio-Matese and Irpinia zone (in which some of the strongest earthquakes of the Apennine chain have occurred). Finally, in order to evaluate the maximum expected magnitude, extreme value statistics (Gumbel III-type) are applied to the Colli Albani area, which represents the seismogenic zone nearest to Rome. For the Sannio-Matese and Irpinia area, considering the more dangerous zone as a unicum, theWeibull distribution has been hypothesized to determine the mean return time for events with an intensity greater than or equal to IX.  相似文献   

11.
A methodology for the anisotropic characterization of macroseismic fields is proposed, in order to evaluate seismic hazard, based on the real geometry of the isoseismals of the field. The proposed methodology, independent of the macroseismic intensity attenuation law, allows both for a single field and for several fields in the same source zone, the determination of minimum and maximum attenuation values and of the relative directions.  相似文献   

12.
The SIRENE macroseismic database has been utilized to draw isoseismal maps for the 140 best-documented French earthquakes, characterized by epicentral intensities of at least V (MSK) and located in all parts of the country. A study of focal depths derived from available local intensity data using an intensity versus distance decay law (Sponheuer) shows that the focal depths of most of the events considered do not exceed about 10 km. Their distribution correlates fairly well with regional dynamic geology features. A relationship is then computed between magnitude, intensity and focal distance, based on 73 instrumenta]ly recorded earthquakes (M L between 3.3 and 6.3) and on 217 mean radius values (from 2 to 380 km) for isoseismals of intensity VIII to III (MSK). This relationship is applied to historical earthquakes contained in the database SIRENE which are characterised by their intensity only. These results are used in the evaluation as well deterministic as probabilistic of the seismic hazard on the national territory.  相似文献   

13.
In this study, we have prepared an intensity map based on macroseismic survey and all the available information from print and electronic media of damage and other effects due to March 05, 2012, M 4.9 Bahadurgarh (Haryana–Delhi border) earthquake and interpreted them to obtain modified Mercalli intensities (MMI) at over 62 locations surrounding the Haryana and Delhi. We have cross-checked the damage information from print and electronic media in the field at 25 sites within 110 km surrounding the epicenter for validation. Based on the questionnaire which is used in macroseismic survey and personal judgment, intensities were assigned accordingly as per physical survey at 25 sites and for rest based on media reporting. A maximum intensity of VI was assigned to this seismic event. Isoseismals of V and VI have been fully covered in the field observations. Beside this, some of the points have also been covered for isoseismal IV and isoseismal III and rest are based on media report only. The intensity map reveals several interesting features. Elliptically elongated shape of intensity map shows that most of the slightly damaged areas are concentrated toward the northwestern side of the epicenter having intensity V which may be due to directivity or site effects. A regression relation has also been derived between intensity and epicentral distance. The derived attenuation relation will be useful for assessing damage of a potential future earthquake (earthquake scenario–based planning purposes) for the Delhi NCR region.  相似文献   

14.
An anisotropic attenuation law of the macroseismic intensity has been deduced, congruent with an anisotropic modelling of macroseismic fields. The results, obtained by analysing a set of earthquakes in Eastern Sicily and Southern Calabria, show a greater adaptability to the observed data as compared with those deduced using isotropic attenuation laws modified to take the anisotropy into account.  相似文献   

15.
We apply the general concept of seismic risk analysis based on morphostructural analysis of the territory, pattern recognition of earthquake-prone nodes, and the Unified Scaling Law for Earthquakes, USLE, in another seismic region of Russia to the west from Lake Baikal, i.e., Altai–Sayan Region. The USLE generalizes the empirical Gutenberg–Richter relationship making use of apparently fractal distribution of earthquake sources of different size: \( \log_{10} N\left( {M,L} \right)\, = \,A\, + \,B \cdot \left( {5\, - \,M} \right)\, + \,C \cdot \log_{10} L, \) where N (M, L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L. The local estimates of A, B, and C allow determination of the expected maximum credible magnitude in a given time interval and the associated spread around ground shaking parameters (e.g., peak ground acceleration, PGA, or macroseismic intensity, I0). Compilation of the corresponding seismic hazard map of Altai–Sayan Region and its rigorous testing against the available seismic evidences in the past is used to model regional maps of specific earthquake risks for population, cities, and infrastructures.  相似文献   

16.
A probabilistic macroseismic hazard assessment has been done for Nicaragua. For this, the most complete catalogue for Central America, compiled by NORSAR in Norway has been used. In this catalogue, empirical intensity attenuation relations were found. Using these empirical relations, magnitudes were changed to epicentral intensities expected in sites where no intensities had been reported. The calculated intensities from a polygon surrounding Nicaragua were used to assess the macroseismic hazard in the region. For the whole polygon, the cumulative intensity frequency was calculated resulting in a b-value of 0.60 for an intensity interval of V–IX. The time completeness was also studied indicating that, for strong events causing higher intensities (I 0 VII), the catalogue is complete for events that have been recorded since 1840. The whole polygon was cut into independent seismotectonic regions where the statistical procedure (intensity frequency and time completeness) was done.  相似文献   

17.
The 1511 Western Slovenia earthquake (M = 6.9) is the largest event occurred so far in the region of the Alps–Dinarides junction. Though it strongly influences the regional seismic hazard assessment, the epicenter and mechanism are still under debate. The complexity of the active tectonics of the Alps–Dinarides junction is reflected by the presence of both compressional and transpressional deformations. This complexity is witnessed by the recent occurrence of three main earthquake sequences, the 1976 Friuli thrust faulting events, the 1998 Bovec–Krn Mountain and the 2004 Kobarid strike-slip events. The epicenters of the 1998 and 2004 strike-slip earthquakes (Ms = 5.7 and Ms = 4.9, respectively) lie only 50 km far from the 1976 thrust earthquake (Ms = 6.5).We use the available macroseismic data and recent active tectonics studies, to assess a possible epicenter and mechanism for the 1511 earthquake and causative fault. According with previous works reported in the literature, we analyze both a two-and a single-event case, defining several input fault models. We compute synthetic seismograms up to 1 Hz in an extended-source approximation, testing different rupture propagations and applying a uniform seismic moment distribution on the fault segments. We extract the maximum horizontal velocities from the synthetics and we convert them into intensities by means of an empirical relation. A rounded-to-integer misfit between observed and computed intensities is performed, considering both a minimized and a maximized databases, built to avoid the use of half-degree macroseismic intensity data points. Our results are consistent with a 6.9 magnitude single event rupturing 50 km of the Idrija right-lateral strike-slip fault with bilateral rupture propagation.  相似文献   

18.
A semi-probabilistic approach to the seismic hazard assessment of Greece is presented. For this reason, a recent seismotectonic model for shallow and intermediate depth earthquake sources, based on historical as well as on instrumental data, was used. Different attenuation formulae were proposed for the macroseismic intensity and the strong ground motion parameters for the shallow and the intermediate focal depth shocks. The data were elaborated in terms of McGuire's computer program, which is based on the Cornell's method.A grid of equally spaced points at 20 km distance was made and the seismic hazard recurrence curves for various parameters of the seismic intensity was estimated for each point. Finally, seismic hazard maps for the area of Greece were compiled utilizing the entire range of recurrence curves. These maps depict areas of equal seismic hazard and for every area the analytical relations of the typeSI =f(Tm), whereSI is a seismic intensity parameter andTm is the mean return period, were determined.  相似文献   

19.
Preliminary Quantitative Assessment of Earthquake Casualties and Damages   总被引:4,自引:2,他引:2  
Prognostic estimations of the expected number of killed or injured people and about the approximate cost associated with the damages caused by earthquakes are made following a suitable methodology of wide-ranging application. For the preliminary assessment of human life losses due to the occurrence of a relatively strong earthquake we use a quantitative model consisting of a correlation between the number of casualties and the earthquake magnitude as a function of population density. The macroseismic intensity field is determined in accordance with an updated anelastic attenuation law, and the number of casualties within areas of different intensity is computed using an application developed in a geographic information system (GIS) environment, taking advantage of the possibilities of such a system for the treatment of space-distributed data. The casualty rate, defined as the number of killed people divided by the number of inhabitants of the affected region, is also computed and we show its variation for some urban concentrations with different population density. For a rough preliminary evaluation of the direct economic cost derived from the damages, equally through a GIS-based tool, we take into account the local social wealth as a function of the gross domestic product of the country. This last step is performed on the basis of the relationship of the macroseismic intensity to the earthquake economic loss in percentage of the wealth. Such an approach to the human casualty and damage levels is carried out for sites near important cities located in a seismically active zone of Spain, thus contributing to an easier taking of decisions in emergency preparedness planning, contemporary earthquake engineering and seismic risk prevention.  相似文献   

20.
The creation of earthquake hazard maps requires various datasets with selected attenuation relations. Based on the selected attenuation relation, the calculation time varies from half an hour to a couple of days. The length of time needed to create an earthquake hazard map also depends on the resolution of the resulting map. The time gets longer as the resolution of the resulting earthquake hazard map gets higher. The basic form of an attenuation relation requires complex calculation algorithms including geospatial information related to the region of interest. Nowadays, next-generation attenuation (NGA) models are introduced to generate more realistic earthquake hazard maps. However, the more complex the attenuation relation is, the longer time will be required to create a hazard map. This paper offers a new method to create high-resolution earthquake hazard maps, faster than using traditional attenuation relation methods, by using an analytic hierarchy process of spatial multi-criteria decision analysis and geographic information systems. This method has been generated and tested for the city of Istanbul. The resulting maps are compared with the earthquake hazard maps created for the city of Istanbul by using the NGA model of Boore and Atkinson (in Boore–Atkinson NGA ground motion relations for the geometric mean horizontal component of peak and spectral ground motion parameters (trans: Engineering Co, University of California B). Pacific Earthquake Engineering Research Center 2007). A second output of this paper is a map of the elements at risk (EaR) for the population and buildings of Istanbul, and the introduction of a new approach of net elements at risk (NEaR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号