首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A horizontal transmitter loop (vertical magnetic dipole) is used for frequency electromagnetic (FEM) soundings. The frequency ranges from approximately 6 Hz to about 4000 Hz. The vertical and radial magnetic field components are measured for 20 frequencies per decade several hundred meters from the transmitter loop. A very small bandwidth is selected for amplification using a reference signal. An Apple computer is used for data acquisition. A computer program for Marquardt inversion optimizes the parameters for the n-layer case: the resistivities and thicknesses of individual beds and a correction factor for the primary magnetic field. Interpretation of each component individually yields practically the same parameters. Examples from the field are given with interpretation; comparison with dc resistivity measurements is provided. The ratio of vertical/radial magnetic field components vs. frequency can be transformed simply into apparent resistivity vs. apparent depth. This can be done in the field to obtain an estimation of the depth of the layer boundaries. FEM results are compared with Schlumberger d.c. sounding obtained at the same site.  相似文献   

2.
Results from 12 new two-ship seismic refraction profiles in the Philippine Sea detail regions of crustal thickness significantly less than average for the Pacific. A comparison of layer 3 and mantle intercept times shows that layer 3 in the West Philippine basin is 1–2 km thinner than for similarly aged crust in the Pacific. In the Parece Vela basin layer 3 is on average 0.5 km thinner than its Pacific counterpart but varies considerably across the basin. Layer 2 parameters are also quite variable between profiles but its thicknesses are in the mean 0.5–1.0 km less in the West Philippine basin than for either the Parece Vela basin or for any of the 7 Pacific age groups. In the northeastern sector of the West Philippine basin layer 2 and 3 are both particularly thin which results in a total crustal thickness of as little as 3–4 km.Pacific and Philippine depth versus age data from DSDP holes are corrected for these variations in crustal thicknesses. The resultant compensated mantle depths can only be fitted by theoretical conductive cooling curves which are depressed for the Philippine basins by an additional 1 km from those that would match Pacific depths. Given such an offset, Philippine Sea depth and heat flow values are consistent with thermal models in which the lithosphere may remain thinner than it is in the Pacific, but still must reach a minimum thickness of at least 50–75 km.  相似文献   

3.
Neural network simulation of spring flow in karst environments   总被引:2,自引:2,他引:0  
Daily discharges of two springs lying in a karstic environment were simulated for a period of 2.5 years with the use of a multi-layer perceptron back-propagation neural network. Two models were developed for the springs, one relying on the original data and another where the missing discharge values were supplemented by assuming linear relationships during base flow conditions. For both springs the mean square error of the two models did not differ significantly, with an improvement exhibited at the extremes, during the network’s training phase, by the model that utilized the extended data set, the results of which are reported here. The time lag between precipitation and spring discharge differed significantly for the two springs indicating that in karstic environments hydraulic behavior is dominated, even within a few hundred meters, by local conditions. Optimum training results were attained with a Levenberg–Marquardt algorithm resulting in a network architecture consisting of two input layer neurons, four hidden layer neurons, and one output layer neuron, the spring’s discharge. The neural network’s predictions captured the behavior for both springs and followed very closely the discontinuities in the discharge time series. Under-/over-estimation of observed discharges for the two springs remained below 3 %, with the exception of a few local maxima where the predicted discharges diverged more strongly from observed values. Inclusion of temperature data did not add to the improvement of predictions. Finally, optimum predictions were attained when past discharge data were added to the input record and discharge differentials rather than direct discharges were calculated resulting in elimination of any local maximum discrepancy between observed and predicted discharge values.  相似文献   

4.
A few extensively studied downhole seismic arrays are commonly used in detailed site response studies. Thus, there is a critical need to increase the number of sites that are used to compare soil constitutive models. Toward this end, we develop a classification scheme for downhole arrays that identifies stations where common wave propagation assumptions are valid. For stations where the one-dimensional (1D) assumption does not hold, we identify different levels of complexity that must be accounted for, which is a function of the inter-event variability and the similarity between the empirical and one-dimensional theoretical transfer functions. The classification is based on 100 seismic arrays in Japan that have recorded surface accelerations in excess of 0.3g, 69 of which exhibit low inter-event variability. The response at 16 of these sites resembles the one-dimensional response, while the others deviate from one-dimensional behavior, indicating that the one-dimensional assumption is not acceptable in most cases. We check our interpretation of the taxonomy with field investigations at two stations. The field observations show large lateral variations of the velocity profile across distances of hundreds of meters at the station where we expect the one-dimensional assumption does not hold.  相似文献   

5.
Abstract   Magnetic susceptibility and the anisotropy of magnetic susceptibility were measured on an 800-cm-thick succession of cumulate gabbro in the Sadm area of the Oman ophiolite. The section contained three distinct cumulate units. The susceptibility tends to decrease upward in each from a melanocratic layer (several tens of centimeters thick) to a leucocratic layer (a few meters thick). The susceptibility decreases in accordance with the decreasing number of magnetite grains, which are the alteration product mainly of olivine minerals. This suggests the cyclic downward accumulation of olivine in the cumulate gabbro. The apparent strain deduced from the patterns of magnetic and grain fabrics was the result mostly of simple shear, so that the layering of gabbro is understood to be formed primarily by a crystal cumulus process followed by simple shear deformation.  相似文献   

6.
Mars Global Surveyor (MGS) observations of crustal magnetic fields over Tharsis provide new constraints on models for the thermal and magmatic evolution of this region. We analyze the distribution of magnetic field anomalies over Tharsis surface units of Noachian, Hesperian and Amazonian age. These data suggest that early Noachian crust underlies the Tharsis province, and formed contemporaneously with the existence of a martian dynamo. This crust either pre-dates the formation of Tharsis, or formed during the earlier phases of Tharsis volcanism. The preservation of strong magnetic field anomalies over some of the earliest Noachian and topographically high units, together with the observation of magnetic field anomalies over Hesperian- and Amazonian-age surface units, indicate that a large fraction of the magnetized crust has remained cool (below the blocking temperature of the magnetic carrier) throughout the construction of Tharsis. Moreover, the distributions of magnetic anomaly amplitudes over Noachian, Hesperian, and Amazonian surface units suggest that the youngest units overlie sites of prolonged intrusion and have undergone a greater extent of thermal demagnetization. The absence of magnetic anomalies around the Tharsis Montes and Olympus Mons argues for strong, localized heating, as would be expected at volcanic centers. We show that end-member models for progressive thermal demagnetization of a Noachian magnetized crustal layer are consistent with the anomaly amplitude distributions. We integrate the magnetic field observations with constraints from tectonics, gravity, and topography, and present a revised scenario for the evolution of the Tharsis region.  相似文献   

7.
本文根据苏黎世天文台太阳黑子11年周期资料和太阳黑子磁场磁性变化周期特征,构建了太阳黑子磁场磁性指数MI(Magnetic Index)时间序列.分析表明:太阳活动磁性周期平均长度为222年,但是每个周期长度是不相等的;多数情况周期短时磁性指数较大,对应太阳活动水平强;周期变长时磁性指数较小,对应太阳活动水平较弱;太阳黑子磁场磁性指数序列也具有80~90年的世纪周期. 进一步研究指出,太阳黑子磁场磁性指数曲线由极小值升至极大值时期,太阳磁场南向,行星际磁场磁力线与地磁场磁力线重联,此时磁层为开磁层,太阳风将携带大量等离子体从向阳面进入地球磁层,从而使输入的动量、能量和物质大幅度增加,与北半球对流层增温时期对应;太阳黑子磁场磁性指数曲线由极大值下降至极小值时期,太阳磁场北向,与磁层顶地磁场同向,行星际磁场不会与地磁场发生重联,此时磁层为闭磁层,这种情况下,只有少数带电粒子能够穿越磁力线进入地球磁层,与北半球对流层降温时期对应.  相似文献   

8.
The interpretation of airborne VLF data represents an important aspect of geophysical mapping of the upper few hundred meters of the Earth's crust, especially in areas with crystalline rocks. We have examined the ability of the single frequency VLF method to provide quantitative subsurface resistivity information using two generic models and standard airborne parameters with a flight altitude of 70 m and a frequency of 16 kHz. The models are long thin conductor (10 m thick, 10 Ω m resistivity and 1 km long) and a wider buried conductive dike (100 Ω m resistivity and 500 m wide). Using standard regularized inversion it turned out that for both models the conductivity of the conductors are underestimated and the vertical resolution is rather poor. The lateral positions of the minimum of the resistivity distributions coincide well with the true positions of the shallow conductors. For deeper conductors the position of the minimum resistivity moves from the edges of the conductor into the conductor. The depth to the minimum of the resistivity anomalies correlates well with the true depth to the top of the conductors although the latter is always smaller than the former.Interpretation of field airborne data collected at 70 m flight height resolved both small scale and large scale near surface conductors (conductance ∼1 S). Deeper conductors show up in the VLF data as very long wavelength anomalies that are particularly powerful in delineating the lateral boundaries of the conductors. Many of the VLF anomalies in the Stockholm area are dominated by these deep conductor responses with some near surface conductors superimposed. The deep conductors often follow topographic lows coinciding with metasediments. We interpret the frequent absence of near surface responses at 70 m flight height as a result of weak coupling between the primary VLF wave and the small scale (in all three dimensions) near-surface conductors.Radio magnetotelluric (RMT) ground measurements were carried out along a short profile coinciding with part of an airborne profile. Using data at 9 frequencies (14–250 kHz) small scale conductors in the upper few tens of meters, not identified from the airborne data, could be well resolved. Large scale deeper conductors could be identified by both methods at nearly the same positions.  相似文献   

9.
Paleomagnetic studies of the basalt samples of Mid-Atlantic Ridge recovered during DSDP Leg 45 and the FAMOUS Project have led to a revision of our view of the oceanic igneous crust as a recorder of geomagnetic field reversals. The discovery of several magnetic polarity reversals with depth in the crust has indicated that oceanic igneous basement should not necessarily be considered magnetized uniformly in direction, or even polarity, in a given vertical cross section. Statistical arguments, based on the ratio of the average time of crustal formation to the average length of a magnetic polarity interval, indicate that magnetic reversals with depth are to be expected in typical ocean crust, but also that this does not conflict with current theories of plate tectonics or exclude the upper layers of the crust from making a major contribution to the overlying linear magnetic anomalies. Certain ratios of average crustal formation time to average polarity interval do, however, result in an effective zero magnetization for the oceanic crust and these conditions may be responsible for the reduced amplitude of magnetic anomalies in some areas.  相似文献   

10.
Sharp boundary inversion of 2D magnetotelluric data   总被引:6,自引:0,他引:6  
We consider 2D earth models consisting of laterally variable layers. Boundaries between layers are described by their depths at a set of nodes and interpolated laterally between nodes. Conductivity within each layer is described by values at a set of nodes fixed within each layer, and is interpolated laterally within each layer. Within the set of possible models of this sort, we iteratively invert magnetotelluric data for models minimizing the lateral roughness of the layer boundaries, and the lateral roughness of conductivities within layers, for a given level of data misfit. This stabilizes the inverse problem and avoids superfluous detail. This approach allows the determination of boundary positions between geological units with sharp discontinuities in properties across boundaries, while sharing the stability features of recent smooth conductivity distribution inversions.
We compare sharp boundary inversion results with smooth conductivity distribution inversion results on a numerical example, and on inversion of field data from the Columbia River flood basalts of Washington State. In the synthetic example, where true positions and resistivities are known, sharp boundary inversion results determine both layer boundary locations and layer resistivities accurately. In inversion of Columbia flood basalt data, sharp boundary inversion recovers a model with substantially less internal variation within units, and less ambiguity in both the depth to base of the basalts and depth to resistive basement.  相似文献   

11.
Radio signals from very low frequency (VLF) transmitters distributed world-wide have been used for several decades to study the lateral variations of the electrical conductivity in the upper few hundred metres of the earth's crust. Traditionally, in airborne applications, the total magnetic fields from one or two transmitters are measured to form the basis for construction of maps that primarily show those conductive structures that are parallel or subparallel to the direction to the transmitters. The tensor VLF technique described in this paper makes use of all signals available in a predefined frequency band to construct transfer functions relating the vertical magnetic field and the two horizontal magnetic field components. These transfer functions are uniquely determined for a particular measuring site and contain information about the lateral conductivity variations in all directions. First experiences with real field data, acquired during a test survey in Sweden, show that maps of the so-called peaker, the spatial divergence of the transfer functions, give an image of the conducting structures. Most of the structures can be correlated to small valleys filled with conducting sediments or valleys underlain by conductive fracture zones in the crystalline rocks.  相似文献   

12.
A simple method for obtaining a space-time model of the main magnetic field from the high-precision satellite survey data is described. At the first stage, the CHAMP satellite data for one-day interval are expanded into the spherical harmonics with constant coefficients. This yields a set of daily mean spherical harmonic models (DMSHM) over the survey interval of a few years. At the second stage, the coefficients of this set are used as source data for expansion into the natural orthogonal components (NOC). It is shown that the terms of the NOC series decrease rapidly, and the accuracy of the space-time model of the main geomagnetic field over the time interval under discussion is not worse than the accuracy of the models obtained by traditional methods.  相似文献   

13.
收集了首都圈数字化地震遥测台网58个井下摆2003-2008年记录的102次M≥3.0地震的数据.通过鉴别直达波及对应地表反射波的波形,发现两者到时差与震中矩和方位角无关.基于斯涅尔定律,分析获得了这些台站上方厚约300 m浅地表土层P波和S波平均速度结构以及波速比.结果表明,首都圈区域近地表P波和S波平均速度分别约为...  相似文献   

14.
Ground surveys made during August, 1961, show large vertical magnetic intensity anomalies associated with the partly lava filled crater of Kilauea Iki. A vertical magnetic variation of 11,600 gammas occurs along a north-south profile across the crater, the maximum being on the north rim of the crater and the minimum on the south edge of the encrusted lava lake below the south rim. An east-west profile shows less vertical magnetic variation, with lake-surface measurements 1500 to 2500 gammas lower than measurements on the east rim of the crater. Computed anomalies using two-dimensional potential field graticules are in good agreement with the observed anomalies and support the following conclusions: 1) Average measured values of remanent magnetization of 10?2 cgs units and susceptibilities of 10?3 cgs units give reasonable magnitudes to the computed anomalies. 2) The remanent magnetization is parallel to the earth’s present magnetic field. 3) The maximum vertical magnetic field value in the north-south profile is the result of reinforcement of the positive terrain effect of the north rim of the crater and the positive edge effect of the north side of the lava lake. 4) The minimum value in the same profile is the result of reinforcement of the negative terrain effect at the base of the south rim of the crater and the negative edge effect of the south side of the lava lake. 5) Variation in the east-west magnetic profile is less because the terrain and edge effects of the horizontal components of the earth’s magnetic field and remanent magnetization approach zero. Changes in vertical magnetic field values as the lake solidifies will be maximum at the north edge of the lava lake, but more consistent changes of the opposite sign will occur on the south side of the lava lake. Total change will be approximately + 2300 gammas between the August 1961 measurement at station S6 and the value at that point when the entire lava lake has cooled below 400° C. The maximum rate of change at station S6 will occur when the 500° C isotherm is 35 to 65 meters below the surface and will be about 28 gammas per meter of lowering of the 500°C surface. Because of the steep magnetic anomalies associated with the lava lake and crater rims, the permanent magnetization presently forming in the cooling lake crust will have inclinations as much as 12° less than the average 37.5° inclination in the Kilauea area.  相似文献   

15.
Airborne VLF data are routinely collected by The Geological Survey of Sweden (SGU) as part of its bedrock mapping programme. In this paper we demonstrate that the novel Tensor VLF technique developed at Uppsala University and SGU can provide useful qualitative and quantitative information about the electrical conductivity distribution in the upper few hundred meters. Single transmitter scalar VLF maps emphasize those conductive structures that have dominant strikes in the direction of the transmitter. The tensor tipper (essentially the vertical magnetic field from currents along the strike direction) calculated from multiple transmitters is dependent only upon the underlying conductivity structure. Transformation of the tipper into the peaker (the horizontal divergence) has proven to enhance the lateral resolution while the transformation to the apparent resistivity can be used to discriminate different rock types. Two case histories from the application of VLF data are presented in this study. Two dimensional structures can be quantitatively modelled by modern inversion methods developed originally for deep electromagnetic MT soundings. Direct inversion of the real and imaginary parts of the tipper provides more quantitative information about the subsurface resistivity distribution.  相似文献   

16.
Three-dimensional inversions of the magnetic field reveal the presence of zones of high magnetization over the propagating limb of large spreading center discontinuities. The presence of high-magnetization zones is confirmed by rock magnetic measurements where available. Magnetization highs are associated with basalts which tend to have high Fe contents and low Mg numbers. These data suggest that high-magnetization zones observed over large ridge axis discontinuities are associated with highly differentiated basalts enriched in iron. Following Christie and Sinton [1], such highly evolved basalts may be the result of shallow-level crystal fractionation in small magma bodies with a low supply rate. These small magma bodies are postulated to correspond to the first stages in the development of a sub-axial magmatic system as a result of the propagation of one of the limbs of the offset into older lithosphere. Because high-magnetization zones at large ridge axis discontinuities often correspond to gaps in the along-axis extent of a seismically detectable magma chamber, these magma bodies may be smaller than a few hundred meters. Rock magnetic measurements suggest that the enrichment in iron associated with increased differentiation may be accompanied, in a few cases, by an increase in the concentration of titanomagnetite within the basalts and in the magnetization of the rocks. However, the exact relationship between high magnetization intensities and iron enrichment is complex and unclear, and may be significantly affected by factors such as magnetic mineralogy and crystallization history.  相似文献   

17.
A large number of houses suffered from liquefaction-induced damages in recent large earthquakes due to lack of economical countermeasures. In this study, the shallow ground improvement, up to several meters deep, was proposed as an economical liquefaction countermeasure for houses. Based on the case studies, the design criteria of allowable tilt angles and penetration settlements of houses were proposed for the required level of serviceability against moderate and large earthquakes. The results of questionnaire survey, airborne LiDAR survey and centrifuge model tests demonstrated that even a few meters of non-liquefiable layers in shallow ground could greatly reduce settlements and tilting of houses. A series of numerical analyses indicated that non-liquefiable layer of three meters thick below ground water table improved by solidification methods can prevent significant damages of houses. Furthermore, cost analyses were carried out for different ground improvement methods for both new and existing houses.  相似文献   

18.
Abstract

Measurements by free fall instruments, in the San Diego Trough, the Florida Current, and the central Pacific, reveal the detailed structure of the vertical component of the oceanic temperature gradient. The temperature changes are concentrated into regions on the order of a meter thick wherein the measured gradients are often more than ten times the average gradient. The horizontal extent of the regions of high gradient is greater than 750 meters in the seasonal thermocline off San Diego, but is only a few hundred meters at depths greater than 400 meters.

Fine scale measurements show that the layers of high gradient consist of even finer fluctuations in gradient which are only a few centimeters thick. Time scales of the thinnest of these regions of high gradient are of the order of five minutes. The data also yields an estimate of the entropy generation. According to the results of an idealized model relating entropy generation to the turbulent heat transport, only 240 to 700 ergs per cm.2 per sec were transported in a 25 meter vertical section measured in the San Diego Trough. This value compared with 3600 ergs per cm.2 per sec estimated from the mean gradient and an eddy coefficient of 1 cm.2 per sec.  相似文献   

19.
Fault zones are an important control on fluid flow, affecting groundwater supply, contaminant migration, and carbon storage. However, most models of fault seal do not consider fault zone cementation, despite the recognition that it is common and can dramatically reduce permeability. In order to study the field-scale hydrogeologic effects of fault zone cementation, we conducted a series of aquifer pumping tests in wells installed within tens of meters of the variably cemented Loma Blanca Fault, a normal fault in the Rio Grande Rift. In the southern half of the study area, the fault zone is cemented by calcite; the cemented zone is 2-8 m wide. In the center of the study area, the cemented fault zone is truncated at a buttress unconformity that laterally separates hydrostratigraphic units with a ∼40X difference in permeability. The fault zone north of the unconformity is not cemented. Constant rate pumping tests indicate that where the fault is cemented, it is a barrier to groundwater flow. This is an important demonstration that a fault with no clay in its core and similar sediment on both sides can be a barrier to groundwater flow by virtue of its cementation; most conceptual models for the hydrogeology of faults would predict that it would not be a barrier to groundwater flow. Additionally, the lateral permeability heterogeneity across the unconformity imposes another important control on the local flow field. This permeability discontinuity acts as either a no-flow boundary or a constant head boundary, depending on the location of pumping.  相似文献   

20.
青藏高原多年冻土区天然气水合物形成条件模拟研究   总被引:12,自引:1,他引:11       下载免费PDF全文
基于野外气体地球化学调查研究,以及前人有关冻土表层温度、冻土层内地温梯度、冻土层下地温梯度等的资料,对青藏高原多年冻土区天然气水合物的形成条件开展了模拟研究. 结果显示:研究区冻土条件能够满足天然气水合物形成的基本要求;气体组成、冻土特征(如冻土厚度或冻土表层温度、冻土层内地温梯度、冻土层下地温梯度等)是影响研究区天然气水合物稳定带厚度的最重要因素,其在不同点位上的差异性可能导致天然气水合物分布的不均匀性的主要原因;研究区最可能的天然气水合物为甲烷与重烃(乙烷和丙烷)的混合气体型天然气水合物;在天然气水合物分布的区域,其产出的上临界点深度在几十至一百多米间,下临界点深度在几百至近一千米间,厚度可达到几百米. 与Canadian Mallik三角洲多年冻土区相比,青藏高原多年冻土区除了冻土厚度小些外,其他条件,如冻土层内地温梯度、冻土层下地温梯度、气体组成等条件较为相近,具有一定的可比性,预示着良好的天然气水合物潜力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号