首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have shown in a previous paper that, if the primordial solar nebula existed when the Earth was formed, the Earth was once surrounded by a dense and massive primordial atmosphere, whose temperature and pressure were about 4000 K and 900 atm, respectively, at the bottom. We suppose that this hydrogen-rich atmosphere escaped from the Earth after the solar nebula itself disappeared, both phenomena probably being due to the effect of strong solar wind and radiation.Using the results of our previous and new calculations on the structure of the primordial atmosphere, we have investigated the amount of dissolution of the rare gases, which were contained in the primordial atmosphere, into the molten Earth's material.The amount of the dissolved rare gases is found to be strongly dependent on the grain opacity of the atmosphere, i.e., on the amount of fine grains. However, their isotopic ratios and relative abundance are independent of the opacity and approximately equal to those in the primordial solar nebula, that is, to the present solar values. Especially, the dissolved neon is expected to have remained in the present mantle. Therefore, if a considerable amount of neon with nearly the solar isotopic ratio is discovered in present mantle material, this offers direct evidence for the proposition that the proto-Earth was once surrounded by the primordial atmosphere.  相似文献   

2.
If the Earth was formed by accumulation of rocky bodies in the presence of the gases of the primordial solar nebula, the Earth at this formation stage was surrounded by a massive primordial atmosphere (of about 1 × 1026 g) composed mainly of H2 and He. We suppose that the H2 and He escaped from the Earth, owing to the effects of strong solar wind and EUV radiation, in stages after the solar nebula itself dissipated into the outer space.The primordial atmosphere also contained the rare gases Ne, Ar, Kr and Xe whose amounts were much greater than those contained in the present Earth's atmosphere. Thus, we have studied in this paper the dissipation of these rare gases due to the drag effect of outflowing hydrogen molecules. By means of the two-component gas kinetic theory and under the assumption of spherically symmetric flow, we have found that the outflow velocity of each rare gas relative to that of hydrogen is expressed in terms of only two parameters — the rate of hydrogen mass flow across the spherical surface under consideration and the temperature at this surface. According to this result, the rare gases were dissipated below the levels of their contents in the present atmosphere, when the mass loss rate of hydrogen was much greater than 1 × 1017 g/yr throughout the stages where the atmospheric mass decreased from 1 × 1026 g to 4 × 1019 g.  相似文献   

3.
The pressure-temperature conditions in the primordial nebula which could produce the observed Ni, Ga and Ge abundances in the major iron meteorite groups have been calculated assuming equilibrium condensation. Included in these calculations are the effect on the metal composition of Fe oxidation and sulphide formation during accretion, GeS and GaCl in the nebula gases and pressure variations in the nebula. It was found that the IIAB irons had their abundances of these elements fixed at the low-pressure extreme of the range which gives the IAB irons, but at 50 ± 10K higher temperatures. IIIAB and IVA formed over the same temperature range as IAB (600–670?40+60 K) in regions where the pressure was lower by a factor of 20 and 104 respectively. Group IVB accreted soon after condensation of the metal and at pressures of less than 10?3 atmosphere. The distribution of sulphur and carbon are consistent with this. The abundance of carbon in group IAB suggests that this and group IIAB accreted at about 10?4 atmosphere, so that IIIAB and IVA accreted where the pressure was 5 × 10?6 and 10?8 atmosphere, respectively.  相似文献   

4.
Besides generating seismic waves, which eventually dissipate, an earthquake also generates a static displacement field everywhere within the Earth. This global displacement field rearranges the Earth’s mass thereby causing the Earth’s rotation and gravitational field to change. The size of this change depends upon the magnitude, focal mechanism, and location of the earthquake. The Sumatran earthquake of December 26, 2004 is the largest earthquake to have occurred since the 1960 Chilean earthquake. Using a spherical, layered Earth model, the coseismic effect of the Sumatran earthquake upon the Earth’s length-of-day, polar motion, and low-degree harmonic coefficients of the gravitational field are computed. Using a model of the earthquake source that is composed of five subevents having a total moment-magnitude M w of 9.3, it is found that this earthquake should have caused the length-of-day to decrease by 6.8 microseconds, the position of the Earth’s generalized figure axis to shift 2.32 milliarcseconds towards 127° E longitude, the Earth’s oblateness J 2 to decrease by 2.37 × 10−11 and the Earth’s pear-shapedness J 3 to decrease by 0.63 × 10−11. The predicted change in the length-of-day, position of the generalized figure axis, and J 3 are probably not detectable by current measurement systems. But the predicted change in oblateness is perhaps detectable if other effects, such as those of the atmosphere, oceans, and continental water storage, can be adequately removed from the observations.  相似文献   

5.
We have performed a number of one-dimensional hybrid simulations (particle ions, massless electron fluid) of quasi-parallel collisionless shocks in order to investigate the injection and subsequent acceleration of part of the solar wind ions at the Earth’s bow shock. The shocks propagate into a medium containing magnetic fluctuations, which are initially superimposed on the background field, as well as generated or enhanced by the electromagnetic ion/ion beam instability between the solar wind and backstreaming ions. In order to study the mass (M) and charge (Q) dependence of the acceleration process He2+ is included self-consistently. The upstream differential intensity spectra of H+ and He2+ can be well represented by exponentials in energy. The e-folding energy Ec is a function of time: Ec increases with time. Furthermore the e-folding energy (normalized to the shock ramming energy Ep) increases with increasing Alfvén Mach number of the shock and with increasing fluctuation level of the initially superimposed turbulence. When backstreaming ions leave the shock after their first encounter they exhibit already a spectrum which extends to more than ten times the shock ramming energy and which is ordered in energy per charge. From the injection spectrum it is concluded that leakage of heated downstream particles does not contribute to ion injection. Acceleration models that permit thermal particles to scatter like the non-thermal population do not describe the correct physics.  相似文献   

6.
Pan evaporation (Ep) is an important indicator of water and energy and the decline of Ep has been reported in many regions over the last decades. The climate and Ep are dependent on each other. In this study, the temporal trends of Ep and main Ep drivers, namely mean air temperature (Ta), wind speed (u), global solar radiation (Rs), net long‐wave radiation(Rnl) and vapour pressure deficit (D) from 1970 to 2012, were calculated on the basis of 26 meteorological stations on the Tibetan Plateau. The arithmetic average of Ep from 26 stations decreased with the rate of ?11.91 mm a?2; the trends of Rs, Rnl, Ta, u and D were ?1.434 w m?2 decade?1, 0.2511 w m?2 decade?1, 0.3590°C decade?1, ?0.2376 m s?1 decade?1 and 9.523 Pa decade?1, respectively. The diffuse irradiance is an essential parameter to model Ep and quantify the contribution of climatic factors to changing Ep. 60 724 observations of Rs and diffuse solar irradiance (Rd) from seven of the 26 stations were used to develop the correlation between the diffuse fraction (Rd/Rs), and the clearness index (Rs/Ro). On the basis of the estimation of the diffuse component of Rs and climatic data, we modified the PenPan model to estimate Chinese micro‐pan evaporation (Ep) and assess the attribution of Ep dynamics using partial derivatives. The results showed that there was a good agreement between the observed and calculated daily Ep values. The observed decrease in Ep was mostly due to declining wind speed (?13.7 mm a?2) with some contributions from decreasing solar irradiance (?3.1 mm a?2); and the increase of temperature had a large positive effect (4.55 mm a?2) in total whilst the increase of Rnl had insignificant effect (0.35 mm a?2) on Ep rates. The change of Ep is the net result of all the climatic variables. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A rigorous singular perturbation theory is developed to estimate the electric field E produced in the mantle M by the core dynamo when the electrical conductivity σ in M depends only on radius r, and when |r?rln σ| ? 1 in most of M. It is assumed that σ has only one local minimum in M, either (a) at the Earth's surface ?V, or (b) at a radius b inside the mantle, or (c) at the core-mantle boundary ?K. In all three cases, the region where σ is no more than e times its minimum value constitutes a thin critical layer; in case (a), the radial electric field Er ≈ 0 there, while in cases (b) and (c), Er is very large there. Outside the critical layer, Er ≈ 0 in all three cases. In no case is the tangential electric field ES small, nearly toroidal, or nearly calculable from the magnetic vector potential A as ??tAS. The defects in Muth's (1979) argument which led him to contrary conclusions are identified. Benton (1979) cited Muth's work to argue that the core-fluid velocity u just below ?K can be estimated from measurements on ?V of the magnetic field B and its time derivative ?tB. A simple model for westward drift is discussed which shows that Benton's conclusion is also wrong.In case (a), it is shown that knowledge of σ in M is unnecessary for estimating ES on ?K with a relative error |r?r 1nσ|?1from measurements of ES on ?V and knowledge of ?tB in M (calculable from ?tB on ?V if σ is small). Then, in case (a), u just below ?K can be estimated as ?r×ES/Br. The method is impractical unless the contribution to ES on ?V from ocean currents can be removed.The perturbation theory appropriate when σ in M is small is considered briefly; smallness of σ and of |r?r ln σ|?1 a independent questions. It is found that as σ → 0, B approaches the vacuum field in M but E does not; the explanation lies in the hydromagnetic approximation, which is certainly valid in M but fails as σ → 0. It is also found that the singular perturbation theory for |r?r ln σ|?1 is a useful tool in the perturbation calculations for σ when both σ and |r?r ln σ|?1 are small.  相似文献   

8.
Shear flow instability is studied in the Earth’s magnetotail by treating plasma as compressible. A dispersion relation is derived from the linearized MHD equations using the oscillating boundary conditions at the inner central plasma sheet/outer central plasma sheet (OCPS) interface and OCPS/plasma-sheet boundary layer (PSBL) interface, whereas the surface-mode boundary condition is used at the PSBL/lobe interface. The growth rates and the real frequencies are obtained numerically for near-Earth (\midX\mid\sim10-15 RE) and far-Earth (\midX\mid\sim100 RE) magnetotail parameters. The periods and wavelengths of excited modes depend sensitively on the value of plasma-sheet half thickness, L, which is taken as L=5 RE for quiet time and L=1 RE for disturbed time. The plasma-sheet region is found to be stable for constant plasma flows unless MA3>1.25, where MA3 is the Alfvén Mach number in PSBL. For near-Earth magnetotail, the excited oscillations have periods of 2–20 min (quiet time) and 0.5-4 min (disturbed time) with typical transverse wavelengths of 2–30 RE and 0.5-6.5 RE, respectively; whereas for distant magnetotail, the analysis predicts the oscillation periods of \sim8-80 min for quiet periods and 2–16 min for disturbed periods.  相似文献   

9.
10.
Using Time History of Events and Macroscale Interactions during Substorms(THEMIS) observations from 2007 to 2011 tail seasons, we study the plasma properties of high speed flows(HSFs) and background plasma sheet events(BPSs) in Earth's magnetotail(|Y_(GSM)|13R_E, |Z_(GSM)|5R_E, –30R_EX_(GSM)–6R_E), and their correlations with solar wind parameters. Statistical results show that the closer the HSFs and BPSs are to the Earth, the hotter they become, and the temperature increase of HSFs is larger than that of BPSs. The density and temperature ratios between HSFs and BPSs are also larger when events are closer to Earth. We also find that the best correlations between the HSFs(BPSs) density and the solar wind density occur when the solar wind density is averaged 2(3.5) hours prior to the onset of HSFs(BPSs). The normalized densities of both HSFs and BPSs are correlated with the interplanetary magnetic field(IMF) θ angles(θ=arctan(B_Z/((B_x~2)+(B_y~2))~(1/2) which are averaged 3 hours before the observation time. Further analysis indicates that both HSFs and BPSs become denser during the northward IMF period.  相似文献   

11.
Non-Maxwellian ion velocity distribution functions have been theoretically predicted and confirmed by observations, to occur at high latitudes. These distributions deviate from Maxwellian due to the combined effect of the E×B drift and ion-neutral collisions. The majority of previous literature, in which the effect of ion self-collisions was neglected, established a clear picture for the ion distribution under a wide range of conditions. At high altitudes and/or for solar maximum conditions, the ion-to-neutral density ratio increases and, hence, the role of ion self-collisions becomes appreciable. A Monte Carlo simulation was used to investigate the behavior of O+ ions that are E×B-drifting through a background of neutral O, with the effect of O+ (Coulomb) self-collisions included. Wide ranges of the ion-to-neutral density ratio n i /n n and the electrostatic field E were considered in order to investigate the change of ion behavior with solar cycle and with altitude. For low altitudes and/or solar minimum (n i /n n \leq10?5), the effect of self-collisions is negligible. For higher values of n i /n n , the effect of self-collisions becomes significant and, hence, the non-Maxwellian features of the O+ distribution are reduced. For example, the parallel temperature T i\Vert increases, the perpendicular temperature T i decreases, the temperature anisotropy approaches unity and the toroidal features of the ion distribution function become less pronounced. Also, as E increases, the ion-neutral collision rate increases, while the ion-ion collision rate decreases. Therefore, the effect of ion self-collisions is reduced. Finally, the Monte Carlo results were compared to those that used simplified collision models in order to assess their validity. In general, the simple collision models tend to be more accurate for low E and for high n i /n n .  相似文献   

12.
A first-order degassing model was applied to describe the evolution of helium content and isotope composition in the earth and in the atmosphere. The main events described by the model are: (1) the earth-trapped primordial rare gases at the moment of its accretion; (2) later, the solid earth lost primordial and radiogenic rare gases, and (3) they were accumulated in the atmosphere; (4) in addition,3He was formed in the atmosphere due to cosmic irradiation, accretion from solar wind, etc.; (5)3He and4He dissipated into space at different loss rates.Study of this model confirms the concept that some of primordial helium is retained in the interior of the earth; terrestrial helium (3He/4He~ 2 × 10?5) was most probably formed as a mixture of primordial (3He/4He= 3 × 10?4) and radiogenic (3He/4He~ 3 × 10?8) helium. For achondritic concentrations of heavy radioactive elements (U= 2.25 × 10?8g/g) the calculated4He flux from the earth is equal to 5.7 × 106 at cm?2 sec?1. The corresponding3He flux is about 114 at cm?2 sec?1. In discussing the aeronomic problem of helium it is necessary to take into account that the earth is the main source of the light helium isotope.  相似文献   

13.
The coarse-grained, Ca-rich inclusions in the Allende meteorite are the highest-temperature condensates from the cooling solar nebula and, as such, the oldest solid objects in the solar system. All refractory elements with condensation points above the accretion temperature of the inclusions whose concentrations in them have been measured are seen to be present in the inclusions in unfractionated proportion to one another relative to C1 chondrites when data are averaged for a large number of inclusions. Observational data for U and theoretical data for both U and Pu suggest that these elements exhibited refractory behavior in the solar nebula. An experiment is proposed in which fissiogenic Xe and U contents are measured in a suite of these inclusions to obtain the244Pu/238U ratio of the solar system at the time of initial condensation with an uncertainty of ±15%.  相似文献   

14.
In order to understand the origin of iron-rich olivine in the matrices of type 3 ordinary chondrites, the reaction of metallic iron and enstatite, with and without forsterite and SiO2, has been experimentally reproduced at temperatures between 1150° and 800°C and PO2 between 10−11 and 10−16 atm (between the IQF and MW buffers). The olivine produced ranges from Fo58 to Fo34 and this composition does not change significantly with temperature and time of the runs. The magnesian olivine which forms does become more magnesian with increasing forsterite/enstatite ratio of the starting materials. Iron-rich olivine (Fo< 35) cannot be formed by the reaction of enstatite and metallic iron, with or without forsterite as starting materials but it can be formed in the presence of free silica. The composition of olivine becomes more iron-rich with increasing silica/enstatite ratio. The compositional range of olivine formed from each mixture is 25–30 mole% Fo regardless of the temperature, composition, mineral assemblage, and run duration.From these experimental results, two possibilities suggested for the origin of the iron-rich olivine in the matrices of type 3 ordinary chondrites: (1) free silica must have been present if the iron-rich olivine was formed by solid-state reactions under oxidizing condition in the solar nebula; (2) reaction of silicon-rich gas with metallic iron took place under oxidizing condition in the solar nebula. Though it is difficult to define which alternative was dominant, the formation of free silica or silicon-rich gas may be a result of fractional condensation. This is possible if there is a reaction relation between forsterite and gas to produce enstatite. The suggested fractional condensation is supported by the fact that the compositions of the fine-grained matrices of type 3 ordinary chondrites are more silica-rich than the bulk compositions of the chondrites. Though it is not known whether such conditions were established all over the nebula or locally in the nebula, both fractionation and more oxidizing conditions than the average solar nebula are required for the formation of matrix olivine.  相似文献   

15.
Xenon isotopic analyses by stepwise heating are presented for two neutron-irradiated chondrites, Arapahoe (L5) and Bjurböle (L4). The iodine-xenon formation age of Arapahoe is the oldest yet observed, 9.9 ± 0.8 m.y. before that of Bjurböle. It is thus unlikely that younger ages found in carbonaceous chondrite magnetite record the condensation of the solar nebula. The composition of trapped xenon in Arapahoe is normal except for a deficiency of129Xe, where we infer 129/Xe132Xe= 0.56 ? 0.04, well below the apparent primordial solar system value. This need not conflict with higher values in other metamorphosed meteorites since growth of129Xe from decay of129I in xenon-depleted environments can be substantial. The contrast with apparent average solar system composition cannot be easily explained, however, since there is no way to generate one composition from the other. The simplest way to achieve low129Xe seems to be to suppose that before decay to129Xe r-process production at mass 129 condensed into dust as129I, and that Arapahoe's parent body formed in a region of the solar system substantially depleted of this dust before any isotopic homogenization by vaporization of the remaining dust. Arapahoe is not unique in having trapped129Xe-deficient xenon, nor in any other respect yet observed, so some such history evidently characterizes major groups of meteorites.  相似文献   

16.
Stochastic modelling is applied to the analysis of local earthquake recordings, which are usually extremely rich in random incident-wave trains that are chaotically superimposed because of scattering effects in the Earth's crust. The presence in the seismic signal of effects connected with the scale of inhomogeneity in the lithosphere cannot be deterministically described in detail. The application of a stochastic second-order autoregressive model to accelerometric records for the higher magnitude (ML ? 6) Friuli earthquakes and to short-period seismometric records for the aftershocks of the strong earthquake of 6 May 1976 has allowed inferences to be drawn about the spectral properties of seismic signals and the propagation mechanisms of seismic waves. These inferences are based on an extremely small number of parameters of a mathematical model suitable for simultaneously describing the random sequence of scattered wave trains in the time and frequency domains. Useful physical information has been obtained about the dynamic characteristic correlation times and the predominant frequency of the seismic signals; moreover, the strength, σ2e(t), of the innovation of the stochastic process fitting the real digital data set has been estimated. From the envelopes of σ2e(t), the quantity heuristically used in the stochastic approach to describe seismic excitation, the·mean free-path between successive scatterings (l), or the equivalent diffusivity coefficient (d) and turbidity (g), and their dependence on seismic wave frequency have been investigated. For Friuli, using seismometric data at an epicentral distance of ~ 20 km and earthquakes with a magnitude just under 2, mean free-path estimates obtained by means of autoregressive parameters vary from ~ 5 km for the strong interaction model to ~ 30 km for the single scattering model. Furthermore, by means of accelerometric records for the strongest earthquakes in Friuli during May and September 1976, the dependence for the maximum of the seismic excitation on the epicentral distance R was estimated as (σ2e)maxR?ν (with ν 1.94 ± 0.13), which is in good agreement with results obtained for the same region using standard methods by means of acceleration peaks versus R. Lastly, stochastic modelling provides a method of estimating change versus time for the predominant frequency and characteristic correlation time of narrow band digital recordings. These two parameters were computed by means of autoregressive parameters in different physical situations and were found to be functions of the earthquake source, the instrumentation frequency response, and the Earth's filtering effects.  相似文献   

17.
Calculations with a full time-varying model are used to study changes in the height and density of the E-layer peak, caused by known changes in the neutral atmosphere. Agreement with mean observed values of NmE requires an increase of 10% in calculated ion densities, and an increase of 33% in the solar-maximum EUV model at λ<150 Å. At a fixed site, changes with the solar zenith angle χ agree well with the simple Chapman theory during most of the daylight hours. Simple modifications to the Chapman equations give improved accuracy near sunrise and sunset. When corrected for changes in χ, model results for summer and equinox show a decrease in the peak density NmE at increasing latitudes. The overall change agrees well with experimental data, as summarised in the IRI model. Known changes in the neutral atmosphere also reproduce the increase in NmE in winter, at latitudes up to 30°. The continuing increase at higher winter latitudes, in the IRI model, requires a major reduction in NO densities in winter. A suitable compromise is suggested. Equations fitted to the model results then provide a simpler and better behaved replacement for the IRI equations. Calculations at night show that known sources of ionisation, largely from starlight, can produce observed peak densities using current chemistry. There is an appreciable change with latitude, as starlight production increases in the southern hemisphere. The improbably large solar cycle change built into the IRI model, at night, cannot be reproduced and is not found in recent data. A new, simpler model is suggested. Changes in zenith angle and atmospheric composition cause the peak height (hmE) to vary between 105 and 120 km, as a function of time, latitude, season and solar flux. These changes are approximated by simple equations that should be definitely preferable over the single, fixed height used in the IRI models.  相似文献   

18.
Using calculations of the magnetic field in the solar atmosphere in the potential approximation, it is shown that, (1) as distance R from the Sun’s center grows, the area of the positive magnetic field (S +field) in 10-deg latitude zones tends to 100% (0%) in the neighborhood of the solar minimum. At the distance R = 2.5R (R is the solar radius), these values of the positive field are observed during ≈(12–55) Carrington rotations (CRs) for solar minima between neighboring cycles; (2) polar magnetic field reversals can occur repeatedly. Note that a polar reversal at large heights ends by 6–16 Carrington rotations earlier than on the Sun’s surface. On the Sun’s surface, a field polar reversal begins earlier at lower latitudes than at high ones; (3) for each longitude at different Rs and separately for each solar hemisphere the radial component of the field was averaged on synoptic maps in the 0°–40° latitude range. It is established that the T R rotation periods of the boundaries between the sectors (areas of longitudes with the same sign of the averaged field) can be shorter than, longer than, and equal to Carrington solar rotation period T CR. It turned out that boundaries with T R < T CR are observed at all heights, while boundaries with T R > T CR are observed at relatively small heights.  相似文献   

19.
Long-term historical records of rainfall (P), runoff (Q) and other climatic factors were used to investigate hydrological variability and trends in the Volta River Basin over the period 1901-2002. Potential (Ep) and actual evaporation (E), rainfall variability index (δ), Budyko’s aridity index (IA), evaporation ratio (CE) and runoff ratio (CQ) were estimated from the available hydroclimatological records. Mann-Kendall trend analysis and non-parametric Sen’s slope estimates were performed on the respective time series variables to detect monotonic trend direction and magnitude of change over time.Rainfall variability index showed that 1968 was the wettest year (δ = +1.75) while 1983 was the driest (δ = −3.03), with the last three decades being drier than any other comparable period in the hydrological history of the Volta. An increase of 0.2 mm/yr2 (P < 0.05) was observed in Ep for the 1901-1969 sub-series while an increased of 1.8 mm/yr2 (P < 0.01) was recorded since 1970. Rainfall increased at the rate of 0.7 mm/yr2 or 49 mm/yr between 1901 and 1969, whereas a decrease of 0.2 mm/yr2 (6 mm/yr) was estimated for 1970-2002 sub-series. Runoff increased significantly at the rate of 0.8 mm/yr (23 mm/yr) since 1970. Runoff before dam construction was higher (87.5 mm/yr) and more varied (CV = 41.5%) than the post-dam period with value of 73.5 mm/yr (CV = 23.9%). A 10% relative decrease in P resulted in a 16% decrease in Q between 1936 and 1998. Since 1970, all the months showed increasing runoff trends with significant slopes (P < 0.05) in 9 out of the 12 months. Possible causes, such as climate change and land cover change, on the detected changes in hydroclimatology are briefly discussed.  相似文献   

20.
The empirical model of variations in the emitting layer height and parameters has been developed based on an analysis of the rocket measurements of the vertical distributions in the 630 nm intensity. The dependences on the solar zenith angle during a day are most substantial. This dependence is responsible for the character of seasonal variations at different latitudes. The height of the emitting layer increases with increasing solar activity, reflecting a temperature rise in the upper atmosphere. The negative trend—0.35 km yr?1 in the interval 1964–1990—has been revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号