首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The EUMETNET EIG GNSS Water Vapour Programme (E-GVAP) is responsible for the coordination of near real time GPS Zenith Total Delay (ZTD) production in Europe and for aiding the development of ZTD assimilation into Numerical Weather Prediction (NWP) models. Since 2000, the Geodetic Observatory Pecný (GOP) has been routinely estimating regional ZTDs in near real time. In 2010, GOP developed a modified processing system in order to provide the first optimal and robust ZTD solution with a global scope and hourly upgrade, fulfilling the requirements for assimilation into operational NWP models. Since July 2010, the GOP global tropospheric product has consisted of about 90 sites and has contributed routinely in a testing mode into the E-GVAP database. Global near real time ZTDs generated over ten months have been evaluated with respect to IGS and EUREF routine post-processed ZTD products, ZTDs integrated from radiosonde profiles, and ZTDs calculated from the Met Office global NWP model. Comparison with the GNSS post-processed solutions gives standard deviations of 3–6 mm in ZTD and biases of 1–2 mm, which is comparable to GOP regional near real time solution, however, for some isolated or low data quality stations up to 20 % quality decrease can be found. Comparison with NWP shows a latitudinal trend in the standard deviation with values as low as 4 mm at high latitudes, increasing to almost 20 mm in the tropics, and a lack of variability in the model background ZTD in the tropics. The evaluation with global radiosondes gives ZTD standard deviation of 5–16 mm, which is comparable with previous studies in European scope. Since the 10-month comparison gave satisfactory results, GOP was asked by UK Met Office to disseminate the global product to the end users via the Global Telecommunications System. Since 10 October 2011, the GOP global ZTD product configuration has been extended to about 164 global stations and still processed within 10 min. However, in GOP routine contribution to E-GVAP, about 124 stations are available in general due to hourly data latency above 30 min or data gaps.  相似文献   

2.
Precise positioning requires an accurate a priori troposphere model to enhance the solution quality. Several empirical models are available, but they may not properly characterize the state of troposphere, especially in severe weather conditions. Another possible solution is to use regional troposphere models based on real-time or near-real time measurements. In this study, we present the total refractivity and zenith total delay (ZTD) models based on a numerical weather prediction (NWP) model, Global Navigation Satellite System (GNSS) data and ground-based meteorological observations. We reconstruct the total refractivity profiles over the western part of Switzerland and the total refractivity profiles as well as ZTDs over Poland using the least-squares collocation software COMEDIE (Collocation of Meteorological Data for Interpretation and Estimation of Tropospheric Pathdelays) developed at ETH Zürich. In these two case studies, profiles of the total refractivity and ZTDs are calculated from different data sets. For Switzerland, the data set with the best agreement with the reference radiosonde (RS) measurements is the combination of ground-based meteorological observations and GNSS ZTDs. Introducing the horizontal gradients does not improve the vertical interpolation, and results in slightly larger biases and standard deviations. For Poland, the data set based on meteorological parameters from the NWP Weather Research and Forecasting (WRF) model and from a combination of the NWP model and GNSS ZTDs shows the best agreement with the reference RS data. In terms of ZTD, the combined NWP-GNSS observations and GNSS-only data set exhibit the best accuracy with an average bias (from all stations) of 3.7 mm and average standard deviations of 17.0 mm w.r.t. the reference GNSS stations.  相似文献   

3.
The global navigation satellite system (GNSS) can provide centimeter positioning accuracy at low costs. However, in order to obtain the desired high accuracy, it is necessary to use high-quality atmospheric models. We focus on the troposphere, which is an important topic of research in Brazil where the tropospheric characteristics are unique, both spatially and temporally. There are dry regions, which lie mainly in the central part of the country. However, the most interesting area for the investigation of tropospheric models is the wet region which is located in the Amazon forest. This region substantially affects the variability of humidity over other regions of Brazil. It provides a large quantity of water vapor through the humidity convergence zone, especially for the southeast region. The interconnection and large fluxes of water vapor can generate serious deficiencies in tropospheric modeling. The CPTEC/INPE (Center for Weather Forecasting and Climate Studies/Brazilian Institute for Space Research) has been providing since July 2012 a numerical weather prediction (NWP) model for South America, known as Eta. It has yield excellent results in weather prediction but has not been used in GNSS positioning. This NWP model was evaluated in precise point positioning (PPP) and network-based positioning. Concerning PPP, the best positioning results were obtained for the station SAGA, located in Amazon region. Using the NWP model, the 3D RMS are less than 10 cm for all 24 h of data, whereas the values reach approximately 60 cm for the Hopfield model. For network-based positioning, the best results were obtained mainly when the tropospheric characteristics are critical, in which case an improvement of up to 7.2 % was obtained in 3D RMS using NWP models.  相似文献   

4.
The continuous evolution of global navigation satellite systems (GNSS) meteorology has led to an increased use of associated observations for operational modern low-latency numerical weather prediction (NWP) models, which assimilate GNSS-derived zenith total delay (ZTD) estimates. The development of NWP models with faster assimilation cycles, e.g., 1-h assimilation cycle in the rapid update cycle NWP model, has increased the interest of the meteorological community toward sub-hour ZTD estimates. The suitability of real-time ZTD estimates obtained from three different precise point positioning software packages has been assessed by comparing them with the state-of-the-art IGS final troposphere product as well as collocated radiosonde (RS) observations. The ZTD estimates obtained by BNC2.7 show a mean bias of 0.21 cm, and those obtained by the G-Nut/Tefnut software library show a mean bias of 1.09 cm to the IGS final troposphere product. In comparison with the RS-based ZTD, the BNC2.7 solutions show mean biases between 1 and 2 cm, whereas the G-Nut/Tefnut solutions show mean biases between 2 and 3 cm with the RS-based ZTD, and the ambiguity float and ambiguity fixed solutions obtained by PPP-Wizard have mean biases between 6 and 7 cm with the references. The large biases in the time series from PPP-Wizard are due to the fact that this software has been developed for kinematic applications and hence does not apply receiver antenna eccentricity and phase center offset (PCO) corrections on the observations. Application of the eccentricity and PCO corrections to the a priori coordinates has resulted in a 66 % reduction of bias in the PPP-Wizard solutions. The biases are found to be stable over the whole period of the comparison, which are criteria (rather than the magnitude of the bias) for the suitability of ZTD estimates for use in NWP nowcasting. A millimeter-level impact on the ZTD estimates has also been observed in relation to ambiguity resolution. As a result of a comparison with the established user requirements for NWP nowcasting, it was found that both the G-Nut/Tefnut solutions and one of the BNC2.7 solutions meet the threshold requirements, whereas one of the BNC2.7 solution and both the PPP-Wizard solutions currently exceed this threshold.  相似文献   

5.
2013年中国发射了首颗进行全球导航卫星系统(global navigation satellite system,GNSS)掩星观测的气象卫星风云3号C星(Fengyun-3C,FY-3C),且已发布自2014年6月以来的FY-3C掩星大气产品,但目前还未见将其应用于大气边界层的相关研究。首次尝试利用FY-3C折射率产品确定边界层高度并进一步进行空间分布分析。结果表明,在小波协方差变换法基础上,进行尖锐度约束,能够确定FY-3C掩星低层大气折射率廓线中可能存在的突变,反演边界层高度。所得到的2015―2018年各年边界层高度全球分布在不同纬度及海洋和陆地上的差异基本体现了边界层与地表气候及地形的关系,但FY-3C折射率产品在低层大气的精度和垂直分辨率相对较低。因此,反演成功率总体上较低,反演结果对边界层高度空间分布细节特征的呈现仍有待提升。  相似文献   

6.
姚宜斌  赵庆志 《测绘学报》2022,51(6):935-952
对流层是近地空间环境中与人类活动联系最为密切的大气层,而水汽是低层大气圈中最重要的组成部分之一。尽管水汽在对流层中所占比例较小,但在一系列天气和多种气候变化中都扮演着重要角色。随着全球导航卫星系统(GNSS)的快速发展,GNSS对流层水汽监测成为重要的研究和应用方向。本文系统介绍了GNSS多维水汽监测及其在相关方面应用的研究现状和进展。GNSS水汽监测研究方面,当前主要集中在二维大气可降水量监测和三维湿折射率/水汽密度廓线反演两部分;GNSS水汽应用研究方面,当前主要包括定位、短临降雨及旱涝监测、数值同化预报等。  相似文献   

7.
As a first step towards studying the ionosphere with the global navigation satellite system (GNSS), leveling the phase to the code geometry-free observations on an arc-by-arc basis yields the ionospheric observables, interpreted as a combination of slant total electron content along with satellite and receiver differential code biases (DCB). The leveling errors in the ionospheric observables may arise during this procedure, which, according to previous studies by other researchers, are due to the combined effects of the code multipath and the intra-day variability in the receiver DCB. In this paper we further identify the short-term temporal variations of receiver differential phase biases (DPB) as another possible cause of leveling errors. Our investigation starts by the development of a method to epoch-wise estimate between-receiver DPB (BR-DPB) employing (inter-receiver) single-differenced, phase-only GNSS observations collected from a pair of receivers creating a zero or short baseline. The key issue for this method is to get rid of the possible discontinuities in the epoch-wise BR-DPB estimates, occurring when satellite assigned as pivot changes. Our numerical tests, carried out using Global Positioning System (GPS, US GNSS) and BeiDou Navigation Satellite System (BDS, Chinese GNSS) observations sampled every 30 s by a dedicatedly selected set of zero and short baselines, suggest two major findings. First, epoch-wise BR-DPB estimates can exhibit remarkable variability over a rather short period of time (e.g. 6 cm over 3 h), thus significant from a statistical point of view. Second, a dominant factor driving this variability is the changes of ambient temperature, instead of the un-modelled phase multipath.  相似文献   

8.
Global navigation satellite systems (GNSS) are acting as an indispensable tool for geodetic research and global monitoring of the Earth, and they have been rapidly developed over the past few years with abundant GNSS networks, modern constellations, and significant improvement in mathematic models of data processing. However, due to the increasing number of satellites and stations, the computational efficiency becomes a key issue and it could hamper the further development of GNSS applications. In this contribution, this problem is overcome from the aspects of both dense linear algebra algorithms and GNSS processing strategy. First, in order to fully explore the power of modern microprocessors, the square root information filter solution based on the blocked QR factorization employing as many matrix–matrix operations as possible is introduced. In addition, the algorithm complexity of GNSS data processing is further decreased by centralizing the carrier-phase observations and ambiguity parameters, as well as performing the real-time ambiguity resolution and elimination. Based on the QR factorization of the simulated matrix, we can conclude that compared to unblocked QR factorization, the blocked QR factorization can greatly improve processing efficiency with a magnitude of nearly two orders on a personal computer with four 3.30 GHz cores. Then, with 82 globally distributed stations, the processing efficiency is further validated in multi-GNSS (GPS/BDS/Galileo) satellite clock estimation. The results suggest that it will take about 31.38 s per epoch for the unblocked method. While, without any loss of accuracy, it only takes 0.50 and 0.31 s for our new algorithm per epoch for float and fixed clock solutions, respectively.  相似文献   

9.
与传统的无线电探空、雷达探测等手段相比,GNSS掩星技术为大气探测提供了一个强有力的工具,其具有无校准、全天候、精度高、垂直分辨率高、全球均匀覆盖等特点。介绍了利用GNSS掩星技术获取地球大气温、压、湿等相关参数大小的研究现状。同时,提出了GNSS掩星技术在气候研究领域的发展方向,将拓宽GNSS掩星技术在全球气候变化研究中的应用。  相似文献   

10.
全球卫星导航系统(GNSS)以其全天候、操作简便、高精度等优点在测绘、航空、地质勘察、环境监测与保护等领域得到了广泛应用。为提高GNSS接收机检定设备的利用率和检定工作的效率,也为测量工作中提高GNSS接收机的使用效率提供可靠依据,文中设计了不同型号的GNSS接收机与相同型号GNSS接收机联合检测和联合数据处理的实验。实验证明,不同型号GNSS接收机联合检测具有可行性。  相似文献   

11.
Radio occultation (RO) has been proven to be a powerful technique for ionospheric electron density profile (EDP) retrieval. The Abel inversion currently used in RO EDP retrieval has degraded performance in regions with large horizontal gradients because of an assumption of spherical symmetry as indicated by many studies. Some alternative methods have been proposed in the past; the global ionospheric map (GIM)-aided Abel inversion is most frequently studied. Since the number of RO observations will likely increase rapidly in the near future, it is worthwhile to continue to improve retrieval method. In this study, both the simulations and the real data test have been done to evaluate the GIM-aided Abel inversion method. It is found that the GIM-aided Abel inversion can significantly improve upon the standard Abel inversion in either the F or the E region if an accurate GIM is available. However, the current IGS GIM does not appear accurate enough to improve retrieval results significantly, because of the spherical symmetry assumption and sparse global navigation satellite system (GNSS) stations used in its creation. Generating accurate GIM based on dense GNSS network to aid the Abel inversion might be an alternative method.  相似文献   

12.
偶发E层(sporadic E, Es)是主要发生在90~120 km高度的电子密度显著增强的电离层薄层,Es层的存在会导致掩星观测中全球导航卫星系统信号强度和相位的强烈波动。利用2019-01—2021-12风云三号C(Fengyun-3C,FY3C)和风云三号D(Fengyun-3D,FY3D)卫星GPS(global positioning system)掩星观测的50 Hz信噪比数据提取Es层信息,进而对两颗卫星数据分别反演得到的60°S~60°N中低纬地区Es层发生率的时空分布及季节变化进行比较。结果发现,虽然两颗卫星掩星资料得到的Es层发生率分布形态基本一致,均反映了Es层的发生率与地磁场和中性大气背景风场的相关性,但在大部分季节和地区,由FY3D得到的Es层发生率低于由FY3C得到的结果,北半球夏季中纬地区尤为明显,而FY3C反演结果与基于电离层与气候星座观测系统掩星数据的反演结果更为接近。导致差异的可能原因包括两颗卫星信噪比廓线的上边界高度分布和地方时覆盖上的差异、两颗卫星掩星接收机噪声水平的差异等。上述结果表明,后续融合两颗卫星的掩星数据进行Es层相关研究时,可能需要顾及两颗卫星接收机的不同噪声水平,在Es层发生的判定策略上进行针对性调整。  相似文献   

13.
海量IGS数据实时线程池并发获取   总被引:1,自引:0,他引:1  
随着全球卫星导航系统(GNSS)的迅猛发展,国际GNSS服务组织(IGS)发布了各类海量高精度服务数据。目前,IGS数据在GNSS基线解算、精密单点定位、卫星精密定轨、地壳形变监测、地球电离层和地球动力学研究等领域得到了广泛应用。传统的IGS服务数据下载过程烦琐而耗时,且易出错。如何快速且正确获取IGS数据是当前用户迫切关心的问题。本文基于FTP文件传输协议,设计了实时线程池并发和断点续传算法,并对海量IGS数据进行一站式分类下载测试,通过对试验结果进行分析比较,最终得出海量数据最优的获取方法。  相似文献   

14.
An enhanced strategy for GNSS data processing of massive networks   总被引:2,自引:1,他引:1  
Although the computational burden of global navigation satellite systems (GNSS) data processing is nowadays already a big challenge, especially for huge networks, integrated processing of denser networks with data of multi-GNSS and multi-frequency is desired in the expectation of more accurate and reliable products. Based on the concept of carrier range, in this study, the precise point positioning with integer ambiguity resolution is engaged to obtain the integer ambiguities for converting carrier phases to carrier ranges. With such carrier ranges and pseudo-ranges, rigorous integrated processing is realized computational efficiently for the orbit and clock estimation using massive networks. The strategy is validated in terms of computational efficiency and product quality using data of the IGS network with about 460 stations. The experimental validation shows that the computation time of the new strategy increases gradually with the number of stations. It takes about 14 min for precise orbit and clock determination with 460 stations, while the current strategy needs about 82 min. The overlapping orbit RMS is reduced from 27.6 mm with 100 stations to 24.8 mm using the proposed strategy, and the RMS could be further reduced to 23.2 mm by including all 460 stations. Therefore, the new strategy could be applied to massive networks of multi-GNSS and multi-frequency receivers and possibly to achieve GNSS data products of higher quality.  相似文献   

15.
Satellite-Based Augmentation Systems (SBASs) enhance the global navigation satellite system (GNSS) to support all phases of flight by providing required accuracy, integrity, continuity, and availability. The Korean SBAS program was recently initiated to develop a single-frequency SBAS aiming to provide Approach Procedure with Vertical guidance (APV)-I Safety-of-Life (SoL) service to aviation users by 2022 within the Korean region. We assess the preliminary availability of the single-frequency SBAS which will be deployed in the Korean peninsula. The resulting system performance shall be used as a baseline to design system components and specifications. The fundamental components of SBAS architecture, SBAS monitor network, geostationary earth orbiting satellite parameters, and ionospheric grid point mask, are defined and their effects on system performance are investigated. Ionospheric correction and integrity algorithm parameters including an ionospheric irregularity threat model are determined using data collected from the Korean GNSS network. The coverage of 99.9 % availability for APV-I service increases from approximately 70 % for the baseline case to 100 % when SBAS monitor stations are expanded to overseas. Even with the expanded monitor network, however, 90 % and less than 95 % availability for LPV-200 service can be achieved only in a very limited region.  相似文献   

16.
The Doppler orbitography and radiopositioning integrated by satellite (DORIS) system was originally developed for precise orbit determination of low Earth orbiting (LEO) satellites. Beyond that, it is highly qualified for modeling the distribution of electrons within the Earth’s ionosphere. It measures with two frequencies in L-band with a relative frequency ratio close to 5. Since the terrestrial ground beacons are distributed quite homogeneously and several LEOs are equipped with modern receivers, a good applicability for global vertical total electron content (VTEC) modeling can be expected. This paper investigates the capability of DORIS dual-frequency phase observations for deriving VTEC and the contribution of these data to global VTEC modeling. The DORIS preprocessing is performed similar to commonly used global navigation satellite systems (GNSS) preprocessing. However, the absolute DORIS VTEC level is taken from global ionospheric maps (GIM) provided by the International GNSS Service (IGS) as the DORIS data contain no absolute information. DORIS-derived VTEC values show good consistency with IGS GIMs with a RMS between 2 and 3 total electron content units (TECU) depending on solar activity which can be reduced to less than 2 TECU when using only observations with elevation angles higher than \(50^\circ \) . The combination of DORIS VTEC with data from other space-geodetic measurement techniques improves the accuracy of global VTEC models significantly. If DORIS VTEC data is used to update IGS GIMs, an improvement of up to 12  % can be achieved. The accuracy directly beneath the DORIS satellites’ ground-tracks ranges between 1.5 and 3.5 TECU assuming a precision of 2.5 TECU for altimeter-derived VTEC values which have been used for validation purposes.  相似文献   

17.
Continuous (CONT) VLBI campaigns have been carried out about every 3 years since 2002. The basic idea of these campaigns is to acquire state-of-the-art VLBI data over a continuous time period of about 2 weeks to demonstrate the highest accuracy of which the current VLBI system is capable. In addition, these campaigns support scientific studies such as investigations of high-resolution Earth rotation, reference frame stability, and daily to sub-daily site motions. The size of the CONT networks and the observing data rate have increased steadily since 1994. Performance of these networks based on reference frame scale precision and polar motion/LOD comparison with global navigation satellite system (GNSS) earth orientation parameters (EOP) has been substantially better than the weekly operational R1 and R4 series. The precisions of CONT EOP and scale have improved by more than a factor of two since 2002. Polar motion precision based on the WRMS difference between VLBI and GNSS for the most recent CONT campaigns is at the 30 \(\upmu \)as level, which is comparable to that of GNSS. The CONT campaigns are a natural precursor to the planned future VLBI observing networks, which are expected to observe continuously. We compare the performance of the most recent CONT campaigns in 2011 and 2014 with the expected performance of the future VLBI global observing system network using simulations. These simulations indicate that the expected future precision of scale and EOP will be at least 3 times better than the current CONT precision.  相似文献   

18.
The objective of this work is to investigate the performances of orthogonal frequency division multiplexing (OFDM) and minimum frequency shift keying (MSK) modulations as potential future global navigation satellite systems (GNSS) signal modulation schemes. MSK is used in global system for mobile communications because of its spectral efficiency, while OFDM is used in WLAN and digital video broadcast-terrestrial because of its multipath mitigation capability. These advantages of MSK and OFDM modulations render them as promising modulation candidates for future GNSS signals to offer enhanced performances in challenging environments. Gabor bandwidth and multipath error envelopes of these two modulations were computed and compared with those of the current global positioning system (GPS), Galileo, and Beidou signal modulations. The results show that OFDM modulation demonstrated promises as a viable future GNSS modulation, especially for signals that require pre-filtering bandwidths larger than 2 MHz, while MSK modulation is more desirable for pre-filtering bandwidth below 2 MHz where it exhibits the largest Gabor bandwidth.  相似文献   

19.
Soil moisture is a geophysical key observable for predicting floods and droughts, modeling weather and climate and optimizing agricultural management. Currently available in situ observations are limited to small sampling volumes and restricted number of sites, whereas measurements from satellites lack spatial resolution. Global navigation satellite system (GNSS) receivers can be used to estimate soil moisture time series at an intermediate scale of about 1000 m2. In this study, GNSS signal-to-noise ratio (SNR) data at the station Sutherland, South Africa, are used to estimate soil moisture variations during 2008–2014. The results capture the wetting and drying cycles in response to rainfall. The GNSS Volumetric Water Content (VWC) is highly correlated (r 2 = 0.8) with in situ observations by time-domain reflectometry sensors and is accurate to 0.05 m3/m3. The soil moisture estimates derived from the SNR of the L1 and L2P signals compared to the L2C show small differences with a RMSE of 0.03 m3/m3. A reduction in the SNR sampling rate from 1 to 30 s has very little impact on the accuracy of the soil moisture estimates (RMSE of the VWC difference 1–30 s is 0.01 m3/m3). The results show that the existing data of the global tracking network with continuous observations of the L1 and L2P signals with a 30-s sampling rate over the last two decades can provide valuable complementary soil moisture observations worldwide.  相似文献   

20.
掩星信号在传播过程中能够在地球表面发生反射,其反射信号中的低层大气信息在改进天气预报精准度和气候监测等方面存在很大的应用价值.基于COSMIC(constellation observing system for meteorology,ionosphere and climate)掩星廓线资料,提取了 2011-20...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号