首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the last four decades exploitation of natural resources to meet increasing societal demands for land based products has caused significant changes in land use and land cover not only in nature’s best gifted regions but also environmentally sensitive arid regions. Through digital interpretation of IRS LISS-III data of 2004 supported with field survey, the present land use map of Jhunjhunun district of arid Rajasthan has been prepared. Agriculture is the dominant land use constituting 84% (including 38% irrigated cropland) area. The land use changes over time and space are worked out by comparing with Landsat 2 MSS data of 1975 and Land use/land cover map of 1988–89. These changes are correlated by analyzing historical land use and cropping pattern data from 1957–58 to 2004–05. The region witnessed record increase in irrigated area but sharply depleted ground water and rendered hectares of irrigated double cropland into dry land agriculture. Strategies and technologies are suggested for sustainable use and management of different category of land.  相似文献   

2.
Standard false colour composites (Std. FCC) on 1:50,000 scale was visually interpreted in conjunction with soil survey to prepare physiographic-soil map. Thirteen mapping units were delineated indicating soil association at family-level. Soil and land resource was evaluated for their land capability and irrigation suitability for its sustained use under irrigation. Land capability and land irrigability maps were generated as attribute map. These maps were integrated to suggest potential land use map. Current land use/land cover map prepared by visual analysis was spatially analysed in relation to potential land use to study potential changes in land use / land cover using GIS. The study reveals that 14.66% area has no limitation and can be brought to intensive agriculture by double cropping.  相似文献   

3.
全球土地覆盖制图在过去的10年中取得重要进展,空间分辨率从300 m增加至30 m,分类详细程度也有所提高,从10余个一级类到包含29类的二级分类体系。然而,利用光学遥感数据在大空间范围制图方面仍有诸多挑战。本文主要介绍在农田、居住区、水体和湿地制图方面的挑战,讨论在使用多时相和多传感器遥感数据上的困难,这将是未来遥感应用的趋势。由于各种地表覆盖数据产品有自己定义的地表覆盖类型体系和处理流程,通过调和以及集成各种全球土地覆盖制图产品能够满足新的应用目的,并且可以最大程度地利用已有的土地覆盖数据。然而,未来全球土地覆盖制图需要能够按照新应用需求动态生成地表覆盖数据产品的能力。过去的研究表明有效地提高局部尺度制图的分类精度,更好的算法、更多种特征变量(新类型的数据或特征)以及更具代表性的训练样本都非常重要。我们却认为特征变量的使用更重要。本文提出了一个全球土地覆盖制图的新范式。在这个新范式中,地表覆盖类型的定义被分解为定性指标的类、定量指标的植被郁闭度和高度。非植被类型通过它们的光谱和纹理信息提取。复合考虑类、郁闭度和高度3种指标来定义和区别包含植被的地表覆盖类型。郁闭度和高度不能在分类算法中提取,需要借助其他直接测量或间接反演方法。新的范式还表明,一个普遍适用的训练样本集有效地提高了在非洲大陆尺度土地覆盖分类。为了确保更加容易地实现从传统的土地覆盖制图到全球土地覆盖制图新范式的转变,建议构建一体化的数据管理和分析系统。通过集成相关的观测数据、样本数据和分析算法,逐步建成全球土地覆盖制图在线系统,构建全球地表覆盖制图门户网站,为数据生产者、数据用户、专业研究人员、决策人员搭建合作互助的平台。  相似文献   

4.
The Kentucky Landscape Snapshot Project, a NASA-funded project, was established to provide a first baseline land cover/land use map for Kentucky. Through this endeavor, change detection will be institutionalized, thus aiding in decision-making at the local, state, and federal planning levels. 2002 Landsat 7 imagery was classified following an Anderson Level III scheme, providing an enhancement over the 1992 USGS National Land Cover Data Set. Also as part of the deliverables, imperviousness and canopy closure layers were produced with the aid of IKONOS high resolution, multispectral imagery.  相似文献   

5.
Abstract

Land use/land cover monitoring and mapping is crucial to efficient management of the land and its resources. Since the late 1980s increased attention has been paid to the use of coarse resolution optical data. The Moderate Resolution Imaging Spectroradiometer (MODIS) has features, which make it particularly suitable to earth characterization purposes. MODIS has 10 products dedicated mainly to land cover characterization and provides three kinds of data: angular, spectral and temporal. MODIS data also includes information about the data quality through the ‘Quality Assessment’ product. In this paper, we review how MODIS data are used to map land cover including the preferred MODIS products, the preprocessing and classification approaches, the accuracy assessment, and the results obtained.  相似文献   

6.
In the present study, detailed field survey in conjunction with remotely sensed (IRS-1D, LISS-III) data is of immense help in terrain analysis and landscape ecological planning at watershed level. Geomorphologically summit crust, table top summits, isolated mounds. plateau spurs, narrow slopes, plateau side drainage floors, narrow valleys and main valley floor were delineated. The soil depth ranges from extremely shallow in isolated mounds to very deep soils in the lower sectors. Very good, good, moderate, poor and very poor groundwater prospect zones were delineated. By the integrated analysis of slope, geomorphology. soil depth, land use/land cover and groundwater prospect layers in GIS. 29 landscape ecological units were identified. Each landscape ecological unit refers to a natural geographic entity having distinctive properties of slope, geomorphology. soil depth, land use/ land cover and groundwater prospects. The landscape ecological stress zone mapping of the study area has been carried out based on the analysis and reclassification of tandscape ecological units. The units having minimum ecological impact in terms of slope, geomorphology, soil depth and land use/land cover were delineated under very low stress landscape ecological zones. The units having maximum ecological stress in the form of very high slopes, isolated mounds, table top summits and summit crust, extremely shallow soils, waste lands and very poor groundwater prospects were delineated into very high stress landscape ecological zones. The integrated analysis of remotely sensed data and collateral data in GIS environment is of immense help in evaluation of landscape ecological units and landscape ecological stress zones. The delineated landscape ecological stress zones in the watershed have been recommended for landscape ecological planning for better utilization of natural resources without harming the natural geo-ecosystem of the area.  相似文献   

7.
The groundwater occurrence and movement within the flow systems are governed by many natural factors like topography, geology, geomorphology, lineament structures, soil, drainage network and land use land cover (LULC). Due to complex natural geological/hydro-geological regime a systematic planning is needed for groundwater exploitation. It is even more important to characterize the aquifer system and delineate groundwater potential zones in different geological terrain. The study employed integration of weighted index overlay analysis (WIOA) and geographical information system (GIS) techniques to assess the groundwater potential zones in Krishna river basin, India and the validation of the result with existing groundwater levels. Different thematic layers such as geology, geomorphology, soil, slope, LULC, drainage density, lineament density and annual rainfall distribution were integrated with WIOA using spatial analyst tools in Arc-GIS 10.1. These thematic layers were prepared using Geological survey of India maps, European Digital Archive of Soil Maps, Bhuvan (Indian-Geo platform of ISRO, NRSC) and 30 m global land cover data. Drainage, watershed delineation and slope were prepared from the Shuttle Radar Topography Mission digital elevation model of 30 m resolution data. WIOA is being carried out for deriving the normalized score for the suitability classification. Weight factor is assigned for every thematic layer and their individual feature classes considering their significant importance in groundwater occurrence. The final map of the study area is categorized into five classes very good, good, moderate, poor and very poor groundwater potential zones. The result describes the groundwater potential zones at regional scale which are in good agreement with observed ground water condition at field level. Thus, the results derived can be very much useful in planning and management of groundwater resources in a regional scale.  相似文献   

8.
In the present study the effect of solar elevation angle on the spectral response of rice crop was examined under farmer’s field conditions. The aim of the study is to see if band ratioing can reduce the effect of soiar elevation angle on rice crop spectral response. It was observed that the spectral transformations involving red and near infrared are highly useful in normalizing the effect of sun elevation when the canopy cover is complete. Contrary to this, the spectral transformation could not normalize the effect of sun elevation on the spectral response of rice crop when the canopy cover is incomplete.  相似文献   

9.
The homegardens represent an important component of the trees outside forests (TOF) in the rural ecosystem which fulfill a range of subsistence and economic needs besides providing many environmental services. The present work was focused on the identification and mapping of rural homegardens as a component of the trees outside forests in the larger landscape of the three districts—Cachar, Hailakandi and Karimganj, of Barak Valley, Assam, northeast India. Mapping and identification of homegardens and other dominant land use/land cover classes was done with IRS-P6 LISS-IV data using on-screen visual interpretation technique in a geographic information system environment. Two major TOF classes could be identified from the satellite data and homegardens were found to be the dominant TOF class with the highest percentage coverage of the total geographical area in the three districts. The study reveals that high resolution satellite data of IRS-P6 LISS-IV can be successfully used for classification and mapping of different land use/land cover classes including the homegardens with an overall classification accuracy of 91 %. The land use/land cover map generated for the three districts shows the distribution of the homegardens in relation to other land use/land cover classes and can be used in future for proper identification of homegardens and resource management planning.  相似文献   

10.
Airborne multispectral data obtained over mono and multiple cropping systems of small farming agriculture was studied for two cropping seasons for a possible development of crop spectral signatures and to utilize such signatures for interpretation of multispectral data and for assessing agricultural potentials of a region. In multiple cropping system, the unique crop spectral response exhibited by crop species at specific growth stages facilitated interpretation and analysis of multispectral data with the knowledge of crop phenology. For resolving spectral confusion between crop species due to growtn stages of different crop species, temporal data were observed to be useful. Development and use of crop spectral sigrature for interpretation and analysis multispectral data related to mono cropping system were found to be relatively less complex and offer great promise because of minimum spectral confusion.  相似文献   

11.
The present work accentuated the expediency of remote sensing and geographic information system (GIS) applications in groundwater studies, especially in the identification of groundwater potential zones in Ithikkara River Basin (IRB), Kerala, India. The information on geology, geomorphology, lineaments, slope and land use/land cover was gathered from Landsat ETM + data and Survey of India (SOI) toposheets of scale 1:50,000 in addition, GIS platform was used for the integration of various themes. The composite map generated was further classified according to the spatial variation of the groundwater potential. Four categories of groundwater potential zones namely poor, moderate, good and very good were identified and delineated. The hydrogeomorphological units like valley fills and alluvial plain and are potential zones for groundwater exploration and development and valley fills associated with lineaments is highly promising area for groundwater extraction. The spatial variation of the potential indicates that groundwater occurrence is controlled by geology, structures, slope and landforms.  相似文献   

12.
The goal of this research is to map land cover patterns and to detect changes that occurred at Alkali Flat and Lake Lucero, White Sands using multispectral Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and hyperspectral Hyperion and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. The other objectives of this study were: (1) to evaluate the information dimensionality limits of Landsat 7 ETM+, ASTER, ALI, Hyperion, and AVIRIS data with respect to signal-to-noise and spectral resolution, (2) to determine the spatial distribution and fractional abundances of land cover endmembers, and (3) to check ground correspondence with satellite data. A better understanding of the spatial and spectral resolution of these sensors, optimum spectral bands and their information contents, appropriate image processing methods, spectral signatures of land cover classes, and atmospheric effects are needed to our ability to detect and map minerals from space. Image spectra were validated using samples collected from various localities across Alkali Flat and Lake Lucero. These samples were measured in the laboratory using VNIR–SWIR (0.4–2.5 μm) spectra and X-ray Diffraction (XRD) method. Dry gypsum deposits, wet gypsum deposits, standing water, green vegetation, and clastic alluvial sediments dominated by mixtures of ferric iron (ferricrete) and calcite were identified in the study area using Minimum Noise Fraction (MNF), Pixel Purity Index (PPI), and n-D Visualization. The results of MNF confirm that AVIRIS and Hyperion data have higher information dimensionality thresholds exceeding the number of available bands of Landsat 7 ETM+, ASTER, and ALI data. ASTER and ALI data can be a reasonable alternative to AVIRIS and Hyperion data for the purpose of monitoring land cover, hydrology and sedimentation in the basin. The spectral unmixing analysis and dimensionality eigen analysis between the various datasets helped to uncover the most optimum spatial–spectral–temporal and radiometric-resolution sensor characteristics for remote sensing based on monitoring of seasonal land cover, surface water, groundwater, and alluvial sediment input changes within the basin. The results demonstrated good agreement between ground truth data and XRD analysis of samples, and the results of Matched Filtering (MF) mapping method.  相似文献   

13.
Estimation of crop area, growth and phenological information is very important for monitoring of agricultural crops. However, judicious combination of spatial and temporal data from different spectral regions is necessary to meet the requirement. This study highlights the use of active microwave QuikSCAT Ku-band scatterometer and Special Sensor Microwave/Imager (SSM/I) passive microwave radiometer data to derive information on important phenological phases of rice crop. The wetness index, a weekly composite product derived using brightness temperatures from 19, 37 and 85 GHz channels of SSM/I, was used to identify the puddling period. Ku-band scatterometer data provided the signal of transplanted rice seedlings since they acts as scatterers and increases the backscattering. Dual peak nature of temporal backscatter curve around the heading stage of rice crop was observed in Ku-band. The decrease of backscatter after first peak was associated with the threshold value of 60% crop canopy cover. The symmetric (Gaussian) and asymmetric (lognormal) curve fits were attempted to derive the date of initiation of the heading phase. The temporal signature from each of these sensors was found to complement each other in crop growth monitoring. Image showing pixel-wise timings of heading stage revealed the differences exists in various parts of the study area.  相似文献   

14.
The use of remote sensing data with other ancillary data in a geographic information system (GIS) environment is useful to delineate groundwater potential zonation map of Ken–Betwa river linking area of Bundelkhand. Various themes of information such as geomorphology, land use/land cover, lineament extracted from digital processing of Landsat (ETM+) satellite data of the year 2005 and drainage map were extracted from survey of India topographic sheets, and elevation, slope data were generated from shuttle radar topography mission (SRTM) digital elevation model (DEM). These themes were overlaid to generate groundwater potential zonation (GWPZ) map of the area. The final map of the area shows different zones of groundwater prospects, viz., good (5.22% of the area), moderate (65.83% of the area) poor (15.31% of the area) and very poor (13.64% of area).  相似文献   

15.
The objective of this study was to investigate the land use/land cover, landforms, shoreline and coastal regulation zone (CRZ) changes of Greater Visakhapatnam coastal region using Indian Remote Sensing-IRS P6 (Resourcesat-I) satellite data and collateral information. Prominent changes have been observed during the past 30 years through land use/land cover analyzes which clearly indicate that thecoastal regulatory zones have altered in respect of both natural and anthropogenic activities. Various geomorphic units were identified and confirmed with appropriate field work. Significant changes have been recognized in the shoreline map, which denote that the area of erosional shoreline is larger than the accretional and stable prone shoreline. The availability of high resolution data has helped to prepare large-scale maps for implementation of CRZ measures. The results were promising and suggest that the modern geo-spatial information and technological tools are extremely helpful for conducting coastal morphological studies.  相似文献   

16.
In this study, an attempt has been made to suggest crop diversification based on soil and weather requirements of different crops. State level spatial databases of various agro-physical parameters such as rainfall, soil texture, physiography and problem soil along with the agricultural area derived from remote sensing data were integrated using GIS. A raster based modelling approach was followed to arrive at suitable zones for practicing different cropping systems. The results showed that the south-western Punjab is suitable for low water requiring crops such as desi cotton, pearl millet, gram etc., where as north-eastern Punjab with high rainfall and excess drainage should practice maize based cropping system. Rice can be substituted by maize and other crops in Central Punjab, where water table is going down fast. Using this approach the area of rice based cropping system can be reduced from present 24.7 lakh ha to 19.6 lakh ha, thereby reducing the degradation of valuable land and water resources.  相似文献   

17.
海岸带作为连接海洋和陆地系统的特殊地理地带,与人类的生存与发展密切相关,但其自然和生态环境极其脆弱和敏感。气候变化和人类活动给海岸带环境带来了巨大压力,导致其生态环境不断恶化。随着技术的发展,近年来遥感技术已成为海岸带地理环境监测的重要手段之一,在海岸带规划、管理和保护中扮演着举足轻重的角色。本文对遥感技术在海岸带地理环境监测典型应用(土地利用/覆盖、土壤质量、植被、海岸线、水色、水深和水下地形及灾害)中的主要数据源、方法、结果和局限性进行归纳和总结,并对其未来发展提出展望。  相似文献   

18.
Abstract

An important methodological and analytical requirement for analyzing spatial relationships between regional habitats and species distributions in Mexico is the development of standard methods for mapping the country's land cover/land use formations. This necessarily involves the use of global data such as that produced by the Advanced Very High Resolution Radiometer (AVHRR). We created a nine‐band time‐series composite image from AVHRR Normalized Difference Vegetation Index (NDVI) bi‐weekly data. Each band represented the maximum NDVI for a particular month of either 1992 or 1993. We carried out a supervised classification approach, using the latest comprehensive land cover/vegetation map created by the Mexican National Institute of Geography (INEGI) as reference data. Training areas for 26 land cover/vegetation types were selected and digitized on the computer's screen by overlaying the INEGI vector coverage on the NDVI image. To obtain specific spectral responses for each vegetation type, as determined by its characteristic phenology and geographic location, the statistics of the spectral signatures were subjected to a cluster analysis. A total of 104 classes distributed among the 26 land cover types were used to perform the classification. Elevation data were used to direct classification output for pine‐oak and coastal vegetation types. The overall correspondence value of the classification proposed in this paper was 54%; however, for main vegetation formations correspondence values were higher (60‐80%). In order to obtain refinements in the proposed classification we recommend further analysis of the signature statistics and adding topographic data into the classification algorithm.  相似文献   

19.
<正>Land cover is a fundamental variable that links many facets of the natural environment and a key driver of global environmental change.Alterations in its status can have significant ramifications at local,regional and global levels.Hence,it is imperative to map land cover at a range of spatial and temporal scales with a view to understanding the inherent patterns for effective characterization,prediction and management of the potential environmental impacts.This paper presents the results of an effort to map land cover patterns in Kinangop division,Kenya,using geospatial tools.This is a geographic locality that has experienced rapid land use transformations since Kenya's independence culminating in uncontrolled land cover changes and loss of biodiversity.The changes in land use/cover constrain the natural resource base and presuppose availability of quantitative and spatially explicit land cover data for understanding the inherent patterns and facilitating specific and multi-purpose land use planning and management.As such,the study had two objectives viz.(i) mapping the spatial patterns of land cover in Kinangop using remote sensing and GIS and;(ii) evaluating the quality of the resultant land cover map.ASTER satellite imagery acquired in January 23,2007 was procured and field data gathered between September l0 and October 16,2007.The latter were used for training the maximum likelihood classifier and validating the resultant land cover map.The land cover classification yielded 5 classes,overall accuracy of 83.5%and kappa statistic of 0.79,which conforms to the acceptable standards of land cover mapping. This qualifies its application in environmental decision-making and manifests the utility of geospatial techniques in mapping land resources.  相似文献   

20.
This study reveals the temporal changes in the land use/land cover of district Ludhiana from the years 1970 to 2001 and reports on the change that has occurred in land use/land cover as a result of change in cropping pattern. The changes were analysed through the data obtained from statistical abstract 1969–70, False Colour Composite (FCC) of IRS-IC LISS-III satellite data of March 2001 and ground truth. There has been a decrease in agricultural land by 2100 ha. but still it occupies 83.76% of the total geographical area (TGA). The wasteland shows a declining trend whereas forest cover has increased from 1.07 to 2.71% of TGA. Area under non-agricultural uses has increased from 10.13 to 12.50% of TGA. There has also been a great change in the cropping pattern of the district. Crops such as groundnut, gram and cotton have nearly disappeared and wheat and rice dominate the region. This change has substantially resulted in the decrease of area under wastelands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号