首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present results of 3D simulations of magnetohydrodynamics (MHD) instabilities at the accretion disc–magnetosphere boundary. The instability is Rayleigh–Taylor, and develops for a fairly broad range of accretion rates and stellar rotation rates and magnetic fields. It manifests itself in the form of tall, thin tongues of plasma that penetrate the magnetosphere in the equatorial plane. The shape and number of the tongues changes with time on the inner disc dynamical time-scale. In contrast with funnel flows, which deposit matter mainly in the polar region, the tongues deposit matter much closer to the stellar equator. The instability appears for relatively small misalignment angles, Θ≲ 30°, between the star's rotation and magnetic axes, and is associated with higher accretion rates. The hotspots and light curves during accretion through instability are generally much more chaotic than during stable accretion. The unstable state of accretion has possible implications for quasi-periodic oscillations and intermittent pulsations from accreting systems, as well as planet migration.  相似文献   

2.
We discuss the peculiarities of fast magnetic reconnection in the essentially nonequilibrium magnetosphere of a compact relativistic object: a neutron star, a magnetar, a white dwarf. Such a magnetosphere is produced by the interaction of a large-amplitude shock wave with a strong stellar magnetic field. We present an analytical solution of the generalized two-dimensional problem on the magnetosphere’s structure, the shape of its boundary, and the direct and reverse currents in a reconnecting current sheet. The uncompensated magnetic force acting on the reverse current is determined. Characteristic parameters of the nonequilibrium magnetosphere of compact stellar objects are estimated. We show that the excess magnetic energy of the magnetosphere is comparable to the mechanical energy brought into it by the shock at the instant of impact. The possibility of particle acceleration to enormous energies is discussed.  相似文献   

3.
We present a precise timing analysis of the accreting millisecond pulsar XTE J1814−338 during its 2003 outburst, observed by RXTE . A full orbital solution is given for the first time; Doppler effects induced by the motion of the source in the binary system were corrected, leading to a refined estimate of the orbital period,   P orb= 15 388.7229(2)  s, and of the projected semimajor axis,   a sin  i / c = 0.390633(9)  light-second. We could then investigate the spin behaviour of the accreting compact object during the outburst. We report here a refined value of the spin frequency  (ν= 314.356 108 79(1) Hz)  and the first estimate of the spin frequency derivative of this source while accreting     . This spin-down behaviour arises when both the fundamental frequency and the second harmonic are taken into consideration. We discuss this in the context of the interaction between the disc and the quickly rotating magnetosphere, at accretion rates sufficiently low to allow a threading of the accretion disc in regions where the Keplerian velocity is slower than the magnetosphere velocity. We also present indications of a jitter of the pulse phases around the mean trend, which we argue results from movements of the accreting hotspots in response to variations of the accretion rate.  相似文献   

4.
The magneto-rotational evolution of a neutron star in the massive binary system 4U 2206+54 is discussed in light of the recent discovery of its 5555 s rotational period and its average rate of spin-down. We show that this behavior of the neutron star means that its magnetic field exceeds the quantum mechanical critical limit and it is an accretion magnetar. The system’s evolution is explained by wind driven mass transfer without formation of an accretion disk. The constant character of the x-ray source indicates a steady rate of accretion and raises anew the question of the stability of the boundary of the magnetosphere of a star undergoing spherical accretion. A solution to this problem is also a key to determining the mechanism for the slowing down of the star’s rotation.  相似文献   

5.
We address the problem of plasma penetration of astrophysical magnetospheres, an important issue in a wide variety of contexts, ranging from accretion in cataclysmic variables to flows in protostellar systems. We point out that under well-defined conditions, penetration can occur without any turbulent mixing (driven, for example, by Rayleigh–Taylor or Kelvin–Helmholtz instabilities) caused by charge polarization effects, if the inflowing plasma is bounded in the direction transverse to both the flow velocity and the magnetic field. Depolarization effects limit the penetration depth, which nevertheless can, under specific circumstances, be comparable to the size of the magnetosphere. We discuss the effect of ambient medium on plasma propagation across the stellar magnetic field and determine the criteria for deep magnetosphere penetration. We show that, under conditions appropriate to magnetized white dwarfs in AM Her type cataclysmic variables, charge polarization effects can lead to deep penetration of the magnetosphere.  相似文献   

6.
We report on the numerical discovery of quasi-periodic oscillations (QPOs) associated with accretion through a non-axisymmetric magnetic boundary layer in the unstable regime, when two ordered equatorial streams form and rotate synchronously at approximately the angular velocity of the inner disc. The streams hit the star's surface producing hotspots. Rotation of the spots leads to high-frequency QPOs. We performed a number of simulation runs for different magnetospheric sizes from small to tiny, and observed a definite correlation between the inner disc radius and the QPO frequency: the frequency is higher when the magnetosphere is smaller. In the stable regime, a small magnetosphere forms and accretion through the usual funnel streams is observed, and the frequency of the star is expected to dominate the light curve. We performed exploratory investigations of the case in which the magnetosphere becomes negligibly small and the disc interacts with the star through an equatorial belt. We also performed investigation of somewhat larger magnetospheres where one or two ordered tongues may dominate over other chaotic tongues. In application to millisecond pulsars, we obtain QPO frequencies in the range of 350–990 Hz for one spot. The frequency associated with rotation of one spot may dominate if spots are not identical or antipodal. If the spots are similar and antipodal, then the frequencies are twice as high. We show that variation of the accretion rate leads to drift of the QPO peak.  相似文献   

7.
We report on the detection of an ∼5900 s quasi-periodic variation in the extensive photometry of TX Col spanning 12 yr. We discuss five different models to explain this period. We favour a mechanism where the quasi-periodic variation results from the beating of the Keplerian frequency of the 'blobs' orbiting in the outer accretion disc with the spin frequency and from modulated accretion of these 'blobs' taking place in a shocked region near the disc/magnetosphere boundary.  相似文献   

8.
A critical analysis of standard accretion models is presented. We consider the stability of models in the theories of disc accretion onto black holes and spherical/disc accretion onto a magnetosphere. We take into account realistic physics processes and geometry (inner magnetic field in the accreted plasma, finite conductivity, finite length of the field lines, finite rotation of the accreted object, and magnetic shear on the boundary between the magnetosphere and accreted plasma). The influence of these factors leads to radical changes of both the accretion as whole and the energy release in the accreting system. Strong current-sheet and Z-pinch-like structures should arise over the polar region of the accreting object. Particle acceleration in the electric fields of current discharges in these regions may be a source of efficient conversion of energy into nonthermal particles and of the emission observed from many accreting objects.  相似文献   

9.
We calculate the structure of a force-free magnetosphere which is assumed to corotate with a central star and which interacts with an embedded differentially rotating accretion disc. The magnetic and rotation axes are aligned, and the stellar field is assumed to be a dipole. We concentrate on the case when the amount of field line twisting through the disc–magnetosphere interaction is large , and consider different outer boundary conditions. In general the field line twisting produces field line inflation (e.g. Bardou & Heyvaerts), and in some cases with large twisting many field lines can become open. We calculate the spin-down torque acting between the star and the disc, and we find that it decreases significantly for cases with large field line twisting. This suggests that the oscillating torques observed for some accreting neutron stars could be caused by the magnetosphere varying between states with low and high field line inflation. Calculations of the spin evolution of T Tauri stars may also have to be revised in the light of the significant effect that field line twisting has on the magnetic torque resulting from star–disc interactions.  相似文献   

10.
We report on time-series optical spectrophotometry of the low-inclination intermediate polar RX  J0558+5353. This object exhibits coherent continuum and Hα line variations on both the orbital and white dwarf spin cycles. Despite the absence of a well-determined conjunction phase, the spectroscopic ephemeris combined with a favourable comparison with better-studied systems suggests that the impact between gas stream and accretion disc, or magnetosphere, drives orbital phenomena. Continuum variations over the spin cycle are consistent with previous broad-band data and indicate that accretion occurs on two poles of the primary star. We find no significant spin pulsations in the integrated line emission, but do detect variations in the resolved line profiles of Hα. Pulsed profiles are also suggestive of two-pole accretion. Double-peaked Hα line profiles and the non-detection of beat behaviour between the orbital and spin frequencies provide evidence for partial-disc transport in the system.  相似文献   

11.
We present measurements of magnetic field strength and geometry on the surfaces of T Tauri stars (TTS) with and without circumstellar disks. We use these measurements to argue that magnetospheric accretion models should not assume that a fixed fraction of the stellar surface contains magnetic field lines that couple with the disk. We predict the fractional area of accretion footpoints, using magnetospheric accretion models and assuming field strength is roughly constant for all TTS. Analysis of Zeeman broadened infrared line profiles shows that individual TTS each have a distribution of surface magnetic field strengths extending up to 6 kG. Averaging over this distribution yields mean magnetic field strengths of 1-3 kG for all TTS, regardless of whether the star is surrounded by a disk. These strong magnetic fields suggest that magnetic pressure dominates gas pressure in TTS photospheres, indicating the need for new model atmospheres. The He I 5876 Å emission line in TTS can be strongly polarized, so that magnetic field lines at the footpoints of accretion have uniform polarity. The circular polarization signal appears to be rotationally modulated, implying that accretion and perhaps the magnetosphere are not axisymmetric. Time series spectropolarimetry is fitted reasonably well by a simple model with one magnetic spot on the surface of a rotating star. On the other hand, spectropolarimetry of photospheric absorption lines rules out a global dipolar field at the stellar surface for at least some TTS.  相似文献   

12.
Reconnection X-winds: spin-down of low-mass protostars   总被引:1,自引:0,他引:1  
We investigate the interaction of a protostellar magnetosphere with a large-scale magnetic field threading the surrounding accretion disc. It is assumed that a stellar dynamo generates a dipolar-type field with its magnetic moment aligned with the disc magnetic field. This leads to a magnetic neutral line at the disc mid-plane and gives rise to magnetic reconnection, converting closed protostellar magnetic flux into open field lines. These are simultaneously loaded with disc material, which is then ejected in a powerful wind. This process efficiently brakes down the protostar to 10–20 per cent of the break-up velocity during the embedded phase.  相似文献   

13.
The general case of non-radial accretion is assumed to occur in real binary systems containing X-ray pulsars. The structure and the stability of the magnetosphere, the interaction between the magnetosphere and accreted matter, as well as evolution of neutron star in close binary system are examined within the framework of the two-stream model of nonradial accretion onto a magnetized neutron star. Observable parameters of X-ray pulsars are explained in terms of the model considered.  相似文献   

14.
Accretion of interstellar material by an isolated neutron star is discussed. The point I address here is the interaction between the accretion flow and the stellar magnetosphere. I show that the interchange instabilities of the magnetospheric boundary under the conditions of interest are basically suppressed. The entry of the material into the magnetosphere is governed by diffusion. Due to this reason the persistent accretion luminosity of isolated neutron stars is limited to <4×1026 erg s−1. These objects can also appear as X-ray bursters with the burst durations of ∼30 min and repetition time of ∼105 yr. This indicates that the number of the accreting isolated neutron stars which could be observed with recent and modern X-ray missions is a few orders of magnitude smaller than that previously estimated.   相似文献   

15.
The accretion-induced neutron star (NS) magnetic field evolution is studied through considering the accretion flow to drag the field lines aside and dilute the polar-field strength, and as a result the equatorial field strength increases, which is buried inside the crust on account of the accretion-induced global compression of star crust. The main conclusions of model are as follows: (i) the polar field decays with increase in the accreted mass; (ii) the bottom magnetic field strength of about 108 G can occur when the NS magnetosphere radius approaches the star radius, and it depends on the accretion rate as     ; and (iii) the NS magnetosphere radius decreases with accretion until it reaches the star radius, and its evolution is little influenced by the initial field and the accretion rate after accreting  ∼0.01 M  , which implies that the magnetosphere radii of NSs in low-mass X-ray binaries would be homogeneous if they accreted the comparable masses. As an extension, the physical effects of the possible strong magnetic zone in the X-ray NSs and recycled pulsars are discussed. Moreover, the strong magnetic fields in the binary pulsars PSR 1831−00 and PSR 1718−19 after accreting about  0.5 M  in the binary-accretion phase,  8.7 × 1010  and  1.28 × 1012 G  , respectively, can be explained through considering the incomplete frozen flow in the polar zone. As an expectation of the model, the existence of the low magnetic field  (∼3 × 107 G)  NSs or millisecond pulsars is suggested.  相似文献   

16.
We introduce between the magnetosphere of a neutron star and its accretion disk a sheared layer of finite thickness in which the velocity, density, pressure and magnetic field vary continuously and we discuss the Kelvin-Helmholtz instability of plane wave purturbations for the case of a compressible plasma. The results show that the K-H instability is still present and radial wave vector perturbation is the main mode of instability. We particularly considered the effect of the thickness of the sheared layer on the rotation of the neutron star, showing that by suitably adjusting the thickness we can explain the period changes in the X-ray pulsars. Application of this model to Her X-1 gave a good result.  相似文献   

17.
The origin and stability of a thin sheet of plasma in the magnetosphere of an accreting neutron star are investigated. First, the radial extension of such a magnetospheric disc is explored. Then a mechanism for magnetospheric accretion is proposed, reconsidering the bending wave explored by Agapitou, Papaloizou & Terquem, that was found to be stable in ideal magnetohydrodynamics. We show that this warping becomes unstable and can reach high amplitudes, in a variant of Pringle's radiation-driven model for the warping of active galactic nucleus accretion discs. Finally, we discuss how this mechanism might give a clue to explain the observed X-ray kilohertz quasi-periodic oscillation of neutron star binaries.  相似文献   

18.
We investigate the photometric variability of magnetized stars, particularly neutron stars, accreting through a magnetic Rayleigh–Taylor-type instability at the disc–magnetosphere interface, and compare it with the variability during stable accretion, with the goal of looking for possible quasi-periodic oscillations (QPOs). The light curves during stable accretion show periodicity at the star's frequency and sometimes twice that, due to the presence of two funnel streams that produce antipodal hotspots near the magnetic poles. On the other hand, light curves during unstable accretion through tongues penetrating the magnetosphere are more chaotic due to the stochastic behaviour of the tongues, and produce noisier power spectra. However, the power spectra do show some signs of quasi-periodic variability. Most importantly, the rotation frequency of the tongues and the resulting hotspots are close to the inner-disc orbital frequency, except in the most strongly unstable cases. There is therefore a high probability of observing QPOs at that frequency in longer simulations. In addition, the light curves in the unstable regime show periodicity at the star's rotation frequency in many of the cases investigated here, again except in the most strongly unstable cases which lack funnel flows and the resulting antipodal hotspots. The noisier power spectra result in the fractional rms amplitudes of the Fourier peaks being smaller.
We also study in detail the effect of the misalignment angle between the rotation and magnetic axes of the star on the variability, and find that at misalignment angles  ≳25°  the star's period always appears in the light curves.  相似文献   

19.
In the evolutionary tracks of magnetized compact stars the subsonic propeller state is intermediate between the supersonic propeller and accretor states. The rotation rate of a star in this stage decreases because of the interaction of its magnetosphere with the surrounding hot quasistatic shell. The radius of the magnetosphere is less than the corotation radius, and the boundary of the magnetosphere is stable with respect to inter-change instabilities. The mass flow rate from the inner radius of the shell to the surface of the compact object is limited by the rate at which plasma diffuses into the magnetic field of the star. Because of this, a subsonic propeller will show up as a low (or moderate) luminosity accretion pulsar with a soft x-ray spectrum.__________Translated from Astrofizika, Vol. 48, No. 3, pp. 477–490 (August 2005).  相似文献   

20.
In the present work we examined the hypothesis that, a core mass function (CMF), such as the one deduced for cores in the Orion molecular cloud (OMC), could possibly be the primogenitor of the stellar initial mass function (IMF). Using the rate of accretion of a protostar from its natal core as a free parameter, we demonstrate its quintessential role in determining the shape of the IMF. By varying the rate of accretion, we show that a stellar mass distribution similar to the universal IMF could possibly be generated starting from either a typical CMF such as the one for the OMC, or a uniform distribution of prestellar core masses which leads us to suggest, the apparent similarity in shapes of the CMF and the IMF is perhaps, only incidental. The apodosis of the argument being, complex physical processes leading to stellar birth are crucial in determining the final stellar masses, and consequently, the shape of stellar mass distribution. This work entails partial Monte-Carlo treatment of the problem, and starting with a randomly picked sample of cores, and on the basis of classical arguments which include protostellar feedback and cooling due to emission from warm dust, a theoretical distribution of stellar masses is derived for five realisations of the problem; the magnetic field, though, has been left out of this exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号