首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Pollen analysis was carried out on sediments older than the Würm pleniglacial (OIS 4), in two new sequences (H and I) derived from the centre of Lac du Bouchet, Massif Central. The inferred vegetation history enables, for the first time in France, five temperate episodes to be defined which pre-date the last interglacial. These temperate episodes alternate with episodes during which the changes in vegetation are indicative of glacial climates. Comparison of these climatic episodes with the oceanic isotope record shows that the pollen record of sequences H and I from Lac du Bouchet spans the time interval from OIS 9c (Ussel interstadial) to OIS 5e (Ribains/Eemian interglacial). In the organic sediments from the Amargiers interstadial (OIS 9a), a trachytic layer, Ar/Ar dated to ca 275 ka, enables a correlation to be established with the upper part of a sequence derived from the nearby Praclaux crater, the lower part of this sequence being of Holsteinian age (OIS 11c). The cross-dating of the pollen sequences from Lac du Bouchet (cores H, I and D) and from Praclaux provides a complete record from the Massif Central, southern France, of successive glacial and interglacial episodes that span the last ca. 400 ka, that is the interval from the Holsteinian to the Holocene.  相似文献   

2.
Palynological data on major Holocene climatic events in NW Iberia   总被引:6,自引:0,他引:6  
Three NW Iberia Cantabrian Mountain pollen records are presented. They reflect the main Holocene climatic shifts in the North Atlantic region as recorded in the isotopic data from Greenland ice, Irish speleothems and reconstructed sea surface temperatures. Two brief forest regression episodes reconstructed from pollen may be synchronous with GH-11.2 and GH-8.2 events. At mid-altitude, two woodland expansion phases (7000-6000 14C yr BP and 4000-2500 14C yr BP) are separated by a phase of heaths and peat deposits. Major woodland declines occurred during the Galician-Roman Period (which includes the Bronze Age, the Iron Age and the Roman occupation) and from the end of the Medieval Period. The pollen data, backed up by archaeological and historical sources, suggest climatic impact of the Iron Age Cold Period, but are indecisive concerning the Little Ice Age. However, the pollen records do not support any significant 'Neoglacial' period (4000-3000 14C yr BP) influence on NW Iberia.  相似文献   

3.
The intertidal environment of the Ponzos beach (NW Iberian Peninsula) hosts a sedimentary sequence (including large wood fragments) deposited during the first half of the Holocene in a hygrophilous continental wetland. Pollen and macrofossil data alongside radiocarbon dating allow reconstruction of the changes that occurred during the Early and Middle Holocene in the landscape of the NW Iberia coastal lowlands, as well as the local wetland plant communities, in response to the climate variations and the eustatic sea-level oscillations. The sequence represents the evolution of a coastal wetland from its initial phases as a hygrophilous wetland towards the subsequent installation of a freshwater lagoon. Pollen data show the dominant role of Atlantic (mainly deciduous) woody taxa, the scarcity of conifers and the lack of Mediterranean elements in the coastal landscapes around the Ponzos site. The presence and abundance of some taxa such as deciduous Quercus, Castanea, Fagus, Tilia and Ulmus during the Early Holocene provides further support for the occurrence of glacial refuges in the Cantabrian-Atlantic area during the Last Glaciation. The diverse vegetation that characterizes the modern landscapes in this territory established later, spreading from these glacial reservoirs of biodiversity. In this sense, the notable and early presence of Fagus at the beginning of the Holocene, a tree also previously recorded during several phases of the Last Glacial Cycle on the NW Iberia coasts, is noteworthy. In addition, during the Early and Middle Holocene are recorded other trees that are currently extirpated as natural taxa in the area, such as Pinus, Tilia and Carpinus.  相似文献   

4.
High resolution multiproxy analysis (microcharcoal, pollen, organic carbon, Neogloboquadrina pachyderma (s), ice rafted debris) of the deep-sea record MD04-2845 (Bay of Biscay) provides new insights for understanding mechanisms of fire regime variability of the last glacial period in western France. Fire regime of western France closely follows Dansgaard–Oeschger climatic variability and presents the same pattern than that of southwestern Iberia, namely low fire regime associated with open vegetation during stadials including Heinrich events, and high fire regime associated with open forest during interstadials. This supports a regional climatic control on fire regime for western Europe through fuel availability for the last glacial period. Additionally, each of Heinrich events 6, 5 and 4 is characterised by three episodes of fire regime, with a high regime bracketed by lower fire regime episodes, related to vegetational succession and complex environmental condition changes.  相似文献   

5.
Marine erosion at Clettnadal, West Burra island off the west coast of Shetland, caused the drainage of a small water body at Clettnadal, exposing deposits of Late Devensian and Holocene age. Pollen, diatom and invertebrate analyses have provided variable records of environmental change during stratigraphical event GI‐1. Event GS‐1 is revealed by the non‐pollen evidence, especially by Coleoptera, by sediment stratigraphy, and by radiocarbon dating. In contrast, the pollen evidence indicates that an arctic tundra flora, in which dwarf shrubs were prominent, persisted throughout the Late‐glacial. The Holocene brought colonisation by tree birch, but by ca. 9000 14C yr BP the taxon had almost disappeared. This contrasts strongly with other Holocene pollen records for Shetland where both Betula and Corylus avellana‐type survived longer—at some sites, for example, until ca. 2900 yr BP. The extreme westerly and exposed coastal situation of Clettnadal appears to be responsible both for a muted Late‐glacial response in the pollen record of terrestrial vegetation and for the early replacement of woodland by a maritime grassland. The results provoke questions concerning biological stability at times of marked climatic change. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
The pollen record of the long succession of marine and continental deposits filling the subsident north-Adriatic foredeep basin (NE Italy) documents the history of vegetation, the landscape evolution and the climate forcing during the last 215 ka at the south-eastern Alpine foreland. The chronology relies on several 14C determinations as well as on estimated ages of pollen-stratigraphical and sea-level event tie-points derived from comparison with high-resolution marine records, speleothemes and ice cores.Mixed temperate rainforests persisted throughout MIS 7a–7c, being replaced by conifer forests after the local glacioeustatic regression during early MIS 6. The Alpine piedmont facing the Adriatic foredeeep was glaciated at the culmination of the penultimate glaciation, as directly testified by in situ fluvioglacial aggradation related to the building of a large morainic amphitheatre. The pollen record allows correlation with other European records and with the IRD from N-Atlantic and off Iberia, thus the duration of the penultimate glacial culmination at the southalpine fringe is estimated less than 13 ka between 148 ± 1 and >135 ka. The site was not reached by the Last Interglacial maximum sea transgression and enregistered a typical, though incomplete, Eemian forest record, lacking Mediterranean evergreen trees. A complex sequence of stadial–interstadial episodes is reconstructed during the Early and Middle Würm: major xerophyte peaks match IRD maxima occurred during Heinrich events in deep-sea cores offshore Iberia and in the N-Atlantic and allows to frame lumps of interstadial phases, marked by Picea peaks, each one including several DO warm events. Broad-leaved thermophilous forests disappeared from the north-eastern plain of Italy at the end of the Early Würm, whereas reduced populations of Abies and Fagus probably sheltered even during the Last Glacial Maximum. A renewed fluvioglacial in situ deposition between 30.4 ± 0.4 and 21.6 ± 0.5 ka cal BP sets the time and duration of the last glacial culmination in the pedemontane morainic amphitheatre. Palynomorphs from Plio-Pleistocene marine successions were reworked by glacier erosion and deposited in the lowland during both the penultimate and the last deglaciation phases. This explains a bias affecting previous pollen records from the region.  相似文献   

7.
Coral reef terraces are one of the best recorders of relative sea-level changes during the last glacial cycle. Thus far, knowledge of relative sea-level record based on coral reefs during the marine Oxygen Isotope Stage (OIS) 3 has been limited to studies of the Huon Peninsula, Papua New Guinea. High-precision a α-spectrometric 230Th/234U dating demonstrated an offlapping sequence of five coral reef complexes, ages of which are 66, 64, 62, 55 and 52 ka, in the northern part of Kikai Island, central Ryukyus of Japan. Interstadial reefs, characterized by deepening-upward sequences of coral assemblages, recorded three hemicycles from transgression to highstand at 52, 62, and 66 ka, during which these reefs were drowned. These highstands in the relative sea-level record can be correlated with the eustatic record reconstructed from the Huon reef terraces and with the interstadials 14, 18, and 19 of the GISP 2 oxygen isotope record. This consistency confirms the Huon sea-level record of OIS 3 and implies that the eustatic sea level responded to the millennial-scale climate changes even during the glacial period of OIS 4.  相似文献   

8.
Dated macrofossil evidence documents the widespread occurrence of woodland in what are now desert lowlands of southwestern North America from the last pleniglacial (ca. 20,000 yr B.P.) to late glacial/Holocene transition (12,000–8000 yr B.P.). The composition of the Pleistocene woodlands indicates that they had already differentiated geographically in modern form, though immensely more extensive than today. The pinyon-juniper woodland (Pinus monophylla, Juniperus osteosperma) of the Mohave Desert province had not yet penetrated the central Great Basin, but extended from southern Nevada south through the vast lowlands of the Mohave and westernmost Sonoran Deserts to southeastern California and Baja California. The strongly xerophytic Mohavean woodland was characterized by a very well-marked altitudinal and latitudinal zonation with juniper-Joshua tree (Yucca brevifolia) sorting out below pinyon-juniper woodland, and with live oaks restricted to the upper level along the lower Colorado River drainage. Southeastward, the Sonoran Desert province was similarly zoned, but with the more slender-leaved Pinus edulis var. fallax as pinyon and with more live oaks in the upper zone. However, the pleniglacial woodland of the Chihuahuan Desert province was almost unzoned, inasmuch as the less xerophytic species of pinyon and live oaks prevailed over the entire span of available elevation; the pinyon was the very slender-leaved P. cembroides var. remota.The overall paleozonation indicates a strong northwest-to-southeast gradient of increasing summer rain with decreasing distance from the monsoonal source area over the Gulf of Mexico, as at present, but augmented pluvially along the same gradient. A key piece of evidence is the counterintuitive latitudinal-zonational anomaly between about 30 and 40° N in southwestern North America; the lower limits of modern vegetational zones are depressed with decreasing latitude (e.g., ca. 500 m lower at 34° than at 36° N). The axis of the gradient actually extends from northwest to southeast, paralleling the monsoonal gradient of increasing summer rain, which no doubt causes the apparent anomaly. During the Wisconsinan glacial, the latitudinal anomaly was greatly steepened, a fact requiring a pluvial increase in precipitation over the Southwest. The monsoonalpluvial pattern is supported by the Neotoma record of a northwest-to-southeast gradient of increasing diversity of evergreen oaks requiring summer rain, and by a parallel segregation of pinyon species. Equability of seasons during the last glacial is also suggested by the Neotoma macrofossil data.  相似文献   

9.
A pollen diagram from Lago di Martignano, a maar lake in central Italy, provides an 11000-year record of vegetation and environment change. The earliest pollen spectra are dominated by Artemisia and Gramineae, representing late glacial steppe vegetation typical of the Mediterranean region. Broad-leaved forests were established by ca. 11 000 yr BP. Although Quercus initially dominated their canopy, a wide range of other mesophyllous trees were also present. Pollen values for sclerophyllous tree and shrub taxa characteristic of Mediterranean woodlands and scrub are initially low (<10%). After ca. 7000 yr BP, however, they begin to increase and rise to a peak of >40% of total land pollen at ca. 6700 yr BP, with Olea europaea the single most abundant taxon. Human influence upon the vegetation only becomes significant somewhat after this peak, with progressive clearance of woodland and expansion of herbaceous communities. Castanea sativa and luglans regia pollen is recorded consistently from the beginning of the rise in pollen values for taxa characteristic of Mediterranean scrub communities. Pollen values for arable crops increase progressively after ca. 5500 yr BP, following the peak pollen values for taxa characteristic of Mediterranean scrub vegetation. Late glacial and Holocene climate changes have been complex in this region, with the present character of the climate developing only during the last millennium. Rates of change of pollen spectra peak during this period.  相似文献   

10.
The Hercynian mountain ranges were islands of mountain glaciation and alpine tundra in a Central European ice‐free corridor during the Late Pleistocene. Today they are notable areas of glacial landforms, alpine‐forest free areas, peatlands and woodlands. However, our knowledge of the Lateglacial and early Holocene environmental changes in this region is limited. We present a new multi‐proxy reconstruction of a mid‐altitude environment in the Bohemian Forest spanning this period. A core (5.2 m length) in the ?erné Lake cirque (1028 m a.s.l.) was subjected to lithological, geochemical, pollen and macrofossil analysis supplemented by two optically stimulated luminescence (OSL) and 10 AMS radiocarbon dates. We determined the impact of regional and supraregional climate changes on the environment. The two most significant changes in sedimentation during the Lateglacial (17.6 and 15.8–15.5 cal. ka BP) were synchronous with regional glacial chronostratigraphy. Unlike Central European mountain ranges, in the Bohemian Forest the Younger Dryas was not coincident with glacier re‐advance, but was a dry, cold episode with low lake levels, which prevailed until the early Preboreal. Plant macrofossils indicate local establishment of Betula nana and Betula pendula/pubescens at 15.4–13.4 cal. ka BP. Comparison with Holocene records from Central Europe shows a similar immigration history of vegetation at mid and higher altitudes. The tree line exceeded an altitude of ~1000 m a.s.l. around 10.5 cal. ka BP and coincided with rapid geochemical changes in the sediment. The 8.2 ka BP event did not have any response in the sedimentary record, but corresponded to stabilization of the Picea abies population and expansion of Fagus. Fagus colonized the Bohemian Forest earlier than other Hercynian mid‐mountains, but never predominated in the composition of the forest at higher elevations. Abies alba was the last tree species that immigrated to the study area.  相似文献   

11.
《Quaternary Science Reviews》2007,26(5-6):773-792
New subsurface data reveal a nearly continuous stratigraphic record of Middle to Late Pleistocene loess sedimentation preserved beneath upland summits in eastern Nebraska, USA. Thickness and grain size trends, as well as pedologic evidence, indicate significant changes in loess sources, accumulation rates, and depositional environments. The newly defined Kennard Formation accumulated in the Middle Pleistocene, and may represent multiple thin increments of distal loess from nonglacial sources on the Great Plains. The overlying Loveland Loess, up to 18 m thick and deposited during Oxygen Isotope Stage 6 (OIS 6) (Illinoian glaciation), probably records the emergence of the Missouri River valley as a major glaciogenic loess source. The prominent Sangamon Geosol formed through long-term pedogenic alteration of the upper Loveland Loess during OIS 5 and 4. Thin loess of the Gilman Canyon Formation records slow loess accumulation and pedogenic alteration in OIS 3. The Peoria Loess (OIS 2) is similar in thickness to Loveland Loess, but may have accumulated more rapidly in an environment less favorable to bioturbation. More importantly, comparison of Peoria and Loveland loess thickness trends indicates much greater influx of nonglaciogenic loess from the Great Plains during OIS 2 than in OIS 6, suggesting colder and/or drier conditions in the Midcontinent during OIS 2 than in earlier glacial stages.  相似文献   

12.
Environmental change in NW Iberia between 7000 and 500 cal BC   总被引:1,自引:0,他引:1  
We review research done on environmental changes in northwest (NW) Iberia spanning from the beginning to the late Holocene (7000–500 cal. BC). The type of archives (peat bogs, lake sediments, colluvium, soils, etc.) and proxies (pollen, element concentrations, isotopes, etc.) that were used to reconstruct changes on climate, soils, vegetation and atmospheric metal pollution are briefly described. Then we synthesize what the records suggest about the ecological history of NW Iberia. We identified four main phases: 7000–5000, 5000–3000, 3000–1500 and 1500-500 cal. BC. Each phase is determined by a set of environmental conditions, a combination of changes in climate, vegetation, soils and human impact. Human activities seem to have been involved in landscape changes in NW Iberia since at least 5000 cal. BC, with an increasing degree of anthropisation through time, which accelerated by 1500 cal. BC. The interaction between human activities and natural changes expressed as modifications in the vegetation cover, the elimination of the soil resources in many areas and its concentration in more localized, control-demanding sectors, as well as a progressive acidification and pollution of continental ecosystems. To a great extent, the present landscape in NW Iberia is the end product of these complex interactions, a cultural landscape.  相似文献   

13.
Relatively few radiometrically dated records are available for the central Mediterranean spanning the marine oxygen isotope stage 6–5 (MIS 6–5) transition and the first part of the Last Interglacial. Two flowstone cores from Tana che Urla Cave (TCU, central Italy), constrained by 19 U/Th ages, preserve an interval of continuous speleothem deposition between ca. 159 and 121 ka. A multiproxy record (δ18O, δ13C, growth rate and petrographic changes) obtained from this flowstone preserves significant regional-scale hydrological changes through the glacial/interglacial transition and multi-centennial variability (interpreted as alternations between wetter and drier periods) within both glacial and interglacial stages. The glacial stage shows a wetter period between ca. 154 and 152 ka, while the early to middle Last Interglacial period shows several drying events at ca. 129, 126 and 122 ka, which can be placed in the wider context of climatic instability emerging from North Atlantic marine and NW European terrestrial records. The TCU record also provides important insights into the evolution of local environmental conditions (i.e. soil development) in response to regional and global-scale climate events.  相似文献   

14.
A late Devensian palynological record is presented from Dozmary Pool (Bodmin Moor, southwest England), beyond the southern limit of the Last Glacial Maximum (LGM) British Ice Sheet. The pollen assemblages indicate predominantly herbaceous tundra–steppe communities but also include elevated levels (typically 10–20%) of conifer tree pollen (Picea, Pinus, Abies) and lower but persistent percentages of broadleaf tree pollen during the LGM. This record is seemingly at odds with the orthodox view of an entirely treeless tundra–steppe environment for this region and elimination of tree species from the British Isles during glacial maxima. Long‐distance pollen transport seems an unlikely explanation for the tree pollen considering distance to the nearest known refugia, except possibly for Pinus. Reworking of the tree pollen, often invoked in these circumstances, remains a possible alternative, especially given the abundance of these trees in the region during early Devensian interstadials. However, this explanation has been challenged by studies reporting plant macrofossil and faunal evidence for survival of temperate biota during glacial maxima and from climate modelling work that suggests some trees could have survived the glacial extremes in areas well beyond the recorded glacial refugia. Assuming reworking was not a major factor, the Dozmary Pool pollen record is consistent with the ‘cryptic northern refugia hypothesis’ that invokes survival of trees in small, scattered populations under locally favourable conditions during glacial maxima. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The vegetational history of the penultimate glacial period, Marine Isotope Stage (MIS) 6 (c. 185–135 ka), has remained relatively unexplored. Here we present a new record from the Ioannina basin, north‐west Greece, which constitutes the highest‐resolution terrestrial pollen record for this interval produced to date. It shows that the vegetation history of MIS 6 in this region can be divided into two parts: an early period (185–155 ka) with pronounced oscillations in tree population extent, and a later period (155–135 ka) with much smaller tree populations and subdued oscillations. This pattern is analogous to the MIS 3/MIS 2 division during the last glacial in the same sequence, although the early part of MIS 6 had larger Pinus populations and fewer temperate trees relative to the equivalent interval in MIS 3. This implies cooler and wetter conditions, which is somewhat counterintuitive given the high summer insolation during MIS 6e, but is in line with other palaeoclimatic evidence from the Mediterranean. Comparison with North Atlantic records suggests that despite the absence of pronounced iceberg discharges during MIS 6, North Atlantic millennial‐scale variability had a significant downstream impact on tree populations in north‐west Greece. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
This paper for the first time reveals high-resolution core records of Zabuye Salt Lake in the interior of the Qinghai-Tibet Plateau. According to 1346 samples taken continuously, relatively accurate 14^C, U-series disequilibrium and ESR ages have been obtained, thus revealing that the lake core ages from 0 to 83.63 m of hole SZK02 are -800 to over 128 ka. In the paper, the lake core sedimentary characteristics (including the lithologies and mineral assemblages) are analyzed in detail and correlated with ostracod assemblages I to XX and sporopollen zones A to I, and on the basis of an integrated analysis of the δ^18O values of authigenic calcium-magnesium carbonate and environmental proxies of minerals, sporopollen and microfossils in the lake core, a correlation has been made of oxygen isotope change between this lake core and the Greenland GISP2 and GRIP and Guliya ice cores, and the climate of Zabuye Salt Lake since 128 ka BP is divided into the last interglacial stage (including substages e, d, c, b and a) of oxygen isotope stage (OIS) 5, early glacial stadial of the last glacial stage of OIS 4, interglacial stadial of the last glacial stage of OIS 3, late glacial stadial of the last glacial stage or Last Glacial Maximum of OIS 2 and postglacial state of OIS 1; in addition, 6 Heinrich (H6-H1) events, Younger Dryas event and 8.2 ka BP cold event have been recognized.  相似文献   

17.
Based on proxy records from western Black Sea cores, we provide a comprehensive study of climate change during the last glacial maximum and late-glacial period in the Black Sea region. For the first time we present a record of relative changes in precipitation for NW Anatolia based on variations in the terrigenous supply expressed as detrital carbonate concentration. The good correspondence between reconstructed rainfall intensity in NW Anatolia and past western Mediterranean sea surface temperatures (SSTs) implies that during the glacial period the precipitation variability was controlled, like today, by Mediterranean cyclonic disturbances. Periods of reduced precipitation correlate well with low SSTs in the Mediterranean related to Heinrich events H1 and H2. Stable oxygen isotopes and lithological and mineralogical data point to a significant modification in the dominant freshwater/sediment source concomitant to the meltwater inflow after 16.4 cal ka BP. This change implies intensification of the northern sediment source and, with other records from the Mediterranean region, consistently suggests a reorganization of the atmospheric circulation pattern affecting the hydrology of the European continent. The early deglacial northward retreat of both atmospheric and oceanic polar fronts was responsible for the warming in the Mediterranean region, leading simultaneously to more humid conditions in central and northern Europe.  相似文献   

18.
The last glacial–interglacial transition encompassed rapid climate oscillations that affected both hemispheres. At low latitudes, the pattern of oscillations is not well established. To address this issue, pollen analysis was performed at Ciénega San Marcial, a monsoon‐influenced site located on the southeastern edge of the Sonoran Desert at the limit of the tropical thornscrub. The pollen record covers the Late Wisconsinan glacial termination II, from 15 650 to 13 400 cal. a BP, including GS‐2 and the Lateglacial interstadial, and a recent historical period (AD c. 1919 to 2004). We applied the modern analogue technique, in which pollen taxa are assigned to plant functional types (PFTs), to reconstruct the past climates. At the end of GS‐2, a Juniperus–Pinus woodland is indicative of annual temperatures 10±2 °C colder than present and higher annual precipitation dominated by winter rains. The onset of the Lateglacial interstadial occurs at c. 15 500 cal. a BP, resulting in a lower sedimentation rate and the spread of a xeric grassland. This period is associated with an increase in summer insolation. A weak signal of summer monsoon intensification is dated to 14 825 cal. a BP but is associated with colder winter temperatures. A wider spread of tropical taxa occurs after 13 800 cal. a BP, along with the loss of Juniperus, suggesting a temperature increase of approximately 3 °C. In spite of the earlier Lateglacial warming, the transition from glacial to interstadial conditions seems to be related to North Atlantic atmospheric variations. We conclude that during the last glacial–interglacial transition, the Sonoran Desert at 28.5° latitude was sensitive to climate variations originating in northern latitudes. The recent historical sequence displays summer‐dominant precipitation and additional drivers of climate change, including anthropogenic factors and El Niño, thus showing a stronger Pacific circulation influence in the subrecent period.  相似文献   

19.
This paper describes and discusses the palaeobotanical data obtained from organic levels of two exposed deposits on the Atlantic shore of the northwestern Iberian Peninsula. Radiocarbon dating assigns these levels to a period of marine regression at the end of MIS 3 and the beginning of the Last Glacial Maximum. The pollen record shows an initial predominance of tree taxa (mainly deciduous, including the presence of Fagus far from its current limit), followed by an episode of partial forest retraction related to the end of MIS 3 and the beginning of the Last Glacial Maximum. However, the presence of numerous tree taxa in the record, even during the cold intervals associated with Heinrich events, points to the existence of sheltered refugia for these species during this period, in keeping with the conclusions of recent reviews of the vegetation dynamics of this region for the Lateglacial and the Holocene.  相似文献   

20.
Paleoenvironmental records extending well into the last glacial period are scarce in the steppe regions of southern South America. Here, we present a continuous record for the past 55 ka from the maar lake Laguna Potrok Aike (51°58′ S, 70°23′ W, southern Patagonia, Argentina). Previous studies on a sedimentary core from a lake level terrace near the northern margin of the lake covered parts of Oxygen Isotope Stage (OIS) 3 (59–29 ka) whereas a second core from the centre of the basin comprised the last 16 ka. Tephrostratigraphical constraints and OSL ages from a third core located below the lake level terrace provide the crucial piece to close the gap between the previous coring sites. High-resolution XRF and magnetic susceptibility as well as grain size data indicate a positive hydrological balance alongside with relatively high aeolian activity during the glacial which is contemporaneous with increased dust fluxes in Antarctica. This is therefore the first evidence for contemporaneity of aeolian deposition in both the target area (Antarctica) and in the major source area of Patagonia. During the Holocene climatic conditions driving sediment deposition seem to have been more variable and less dominated by wind compared to glacial times. The identification of a minor lake level lowering at approximately 4 cal ka BP allows to refine earlier paleoenvironmental reconstructions for the Holocene. Within error margins the OSL ages are consistent with published radiocarbon-dated records offering hence a valuable tool for further studies of the sediments from Laguna Potrok Aike. The new chronology confirms the age of three tephra layers up to now only found in Laguna Potrok Aike sediments and ascribed to OIS 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号