首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chian  Abraham C.-L.  Abalde  José R. 《Solar physics》1999,184(2):403-419
Close temporal correlation between high-frequency Langmuir waves and low-frequency electromagnetic whistler waves has been observed recently within magnetic holes of the solar wind. In order to account for these observations, a theory is formulated to describe the nonlinear coupling of Langmuir waves and whistler waves. It is shown that a Langmuir wave can interact nonlinearly with a whistler wave to produce either right-hand or left-hand circularly polarized electromagnetic waves. Nonlinear coupling of Langmuir waves and whistler waves may lead to the formation of modulated Langmuir wave packets as well as the generation of circularly polarized radio waves at the plasma frequency in the solar wind. Numerical examples of whistler frequency, nonlinear growth rate and modulation frequency for solar wind parameters are calculated.  相似文献   

2.
The effect of parallel electrostatic field on the amplification of whistler mode waves in an anisotropic bi-Maxwellian weakly ionized plasma for Jovian magnetospheric conditions has been carried out. The growth rate for different Jovian magnetospheric plasma parameters forL = 5.6R j has been computed with the help of general dispersion relation for the whistler mode electromagnetic wave of a drifted bi-Maxwellian distribution function. It is observed that the growth or damping of whistler mode waves in Jovian magnetosphere is possible when the wave vector is parallel or antiparallel to the static magnetic field and the effect of this field is more pronounced at low frequency wave spectrum.  相似文献   

3.
Non-linear, three-dimensional, time-dependent fluid simulations of whistler wave turbulence are performed to investigate role of whistler waves in solar wind plasma turbulence in which characteristic turbulent fluctuations are characterized typically by the frequency and length-scales that are, respectively, bigger than ion gyrofrequency and smaller than ion gyroradius. The electron inertial length is an intrinsic length-scale in whistler wave turbulence that distinguishably divides the high-frequency solar wind turbulent spectra into scales smaller and bigger than the electron inertial length. Our simulations find that the dispersive whistler modes evolve entirely differently in the two regimes. While the dispersive whistler wave effects are stronger in the large-scale regime, they do not influence the spectral cascades which are describable by a Kolmogorov-like   k −7/3  spectrum. By contrast, the small-scale turbulent fluctuations exhibit a Navier–Stokes-like evolution where characteristic turbulent eddies exhibit a typical   k −5/3  hydrodynamic turbulent spectrum. By virtue of equipartition between the wave velocity and magnetic fields, we quantify the role of whistler waves in the solar wind plasma fluctuations.  相似文献   

4.
Instability of whistler wave in collisionless current sheet is studied with numerical solution of the general dispersion relation obtained in Ref.[4] for the physical model A. As revealed by the results, the whistler wave can be directly absorbed by collisionless current sheets. On the neutral sheet (z/di = 0) oblique whistler waves over a rather wide range of wave numbers can propagate, while they are basically stable. In the ionic inertial region (z/di < 1), the obliquely propagating whistler wave is unstable. On the edge of the ionic inertial region (z/di = 1), the whistler wave is still unstable, with an increase in the growth rate, and in the frequency of the unstable wave. The growth rate is larger for the whistler wave propagating towards the neutral sheet (kzdi < 0) than away from the neutral sheet (kzdi > 0).  相似文献   

5.
The mutual influence between two whistler mode waves, through cyclotron resonant interaction of each wave with the same set of energetic electrons, is analysed both theoretically and by computer simulations ; this two-wave interaction mechanism seems to be an important process in understanding recently observed phenomena in Siple Station VLF multi-wave injection experiments. A criterion is established to estimate the threshold for the critical frequency spacing (for given wave amplitudes) for a significant mutual interaction between two monochromatic waves to occur. This criterion is based on the overlap of coherence bandwidths associated with the trapping domains of each wave and it takes into account the geomagnetospheric medium inhomogeneity. The effects of a perturbing second wave on electrons trapped by a first wave is discussed, considering the general situation of varying-frequency waves, and a simulation model is used to track the motion of test-electrons in the two-waves field. Conditions leading to detrapping and subsequent trapping by the second wave of previously first-wave trapped electrons are analysed and suggest the possibility of this phenomenon to play an important role in frequency entrainment and energy exchange between two waves.  相似文献   

6.
Analysis of the modifications introduced in a turbulent whistler noise spectrum with the injection of a coherent whistler leads to a nonlinear dispersion equation for the stochastic modes. These modes are submitted to real frequency shifts and corrections to their growth rates which are in qualitative agreement with observations made in the Siple Station VLF wave injection experiment showing the creation of noise-free bands when CW whistler modes are transmitted.  相似文献   

7.
We investigate the possibility of an additional acceleration of the high speed solar wind by whistler waves propagating outward from a coronal hole. We consider a stationary, spherically symmetric model and assume a radial wind flow as well as a radial magnetic field. The energy equation consists of (a) energy transfer of the electron beam which excites the whistler waves, and (b) energy transfer of the whistler waves described by conservation of wave action density. The momentum conservation equation includes the momentum transfer of two gases (a thermal gas and an electron beam). The variation of the temperature is described by a polytropic law. The variation of solar wind velocity with the radial distance is calculated for different values of energy density of the whistler waves. It is shown that the acceleration of high speed solar wind in the coronal hole due to the whistler waves is very important. We have calculated that the solar wind velocity at the earth's orbit is about equal to 670 km/sec (for wave energy density about 10?4 erg cm?3 at 1.1R⊙). It is in approximate agreement with the observed values.  相似文献   

8.
T. Takakura 《Solar physics》1982,75(1-2):277-292
It is demonstrated by a numerical simulation that both the whistler waves and plasma waves are excited by a common solar electron beam. The excitation of the whistler waves is ascribed to the loss-cone distribution which arises at a later phase of the passage of the beam at a given height due to a velocity dispersion in the electron beam with a finite length. It is highly probable that the fundamental of type III bursts are caused by the coalescence of the whistler waves and the plasma waves excited by a common electron beam, although the plasma waves must suffer induce scatterings by thermal ions to have small wave numbers before the coalescence to occur.  相似文献   

9.
The work deals with the resonant particle excitation of two electrostatic waves with closely spaced wave numbers, when there is an inhomogeneity present in the form of a spatially dependent wave number. Resonant particle behaviour in such a field is investigated and the resonant particle current is computed for a variety of cases. If the inhomogeneity is such that resonant particles see the wave numbers of the waves increasing, then it turns out that the wave of greatest wave number is preferentially amplified. If the gradient is reversed it is the opposite wave which grows. Thus when a narrow band electrostatic wave is subject to beam excitation, only one of the sideband waves is unstable.The theory is applied to the closely analogous problem of sideband formation in the case of triggering of VLF emissions by magnetospheric whistler pulses, and seems to account for much of the observed behaviour.  相似文献   

10.
11.
In this paper, the nonlinear dispersion relation for whistlers in the ionosphere has been derived and then the group travel time for an ion-cyclotron whistler from its source to an observer at the satellite has been theoretically calculated. It is seen that the nonlinear effect has some important contribution in the expression of group travel time. Our present analysis gives a more correct result than that obtained by Gurnett and others. From numerical estimations, it is found that the group travel time of whistler may be changed reasonably due to nonlinear interaction of the wave and the plasma of ionosphere.  相似文献   

12.
A mechanism is proposed for the generation of zebra-patterns in solar radio bursts due to the excitation of nonlinear ion-sound waves in a nonisothermal plasma and their scattering on fast particles. The appearance of the ion sound at the fundamental frequency can take place in the interaction of two opposing Alfvén or whistler waves. The presence of quasi-equidistant stripes in electro-magnetic radiation is ultimately determined by weak ion-sound dispersion resulting in the formation of higher harmonics.  相似文献   

13.
During the May 21, 1972, noise storm, flux density measurements were made, at a frequency of 140 MHz, of 14 pulsating bursts. These comprised trains of up to 20 pulses, having pulse repetition rates of up to 15 s–1.A model for the burst mechanism is described, based upon the hypothesis that the pulsations are generated by the modulation of a thermally damped plasma wave source by periodic trains of whistler packets originating in unstable regions deep in the corona and passing through the meter wavelength source. These whistler packets further enhance the emissions by increasing the efficiency of the conversion of the plasma waves into electromagnetic waves.  相似文献   

14.
Relativistic whistler wave mode with a perpendicular AC electric field has been studied for generalized distribution function with an index j, which is reducible to bi-Maxwellian for j = 0, loss-cone for j = 1 and delta function for j = ∞. Based on particle trajectories, the dispersionrelation is obtained using the techniques of a kinetic approach anda method of characteristic solutions Calculations are compassed with observations of low frequency waves of Voyager 2 The growth rates for the plasma parameters suited to the magnetosphere of Uranus are obtained. It is inferred that, not the magnitude but the frequency of the AC field, influences the growth rate. In addition to the temperature anisotropy, plasma particles having a loss-cone provide an additional source of energy. The relativistic electrons along with increasing the growth rate, widen the band width so as to cover a wide frequency range thus may explain the entire spectrum of whistler emissions at Uranian bow shock. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
A theoretical study is made of the whistler mode cyclotron instability both in linear and nonlinear regimes in conjunction with the generation of VLF emissions in the magnetosphere. For the nonlinear treatment, a well-established quasilinear method is used and some physical processes of the cyclotron instability viz. energy conservation, mechanism of instability and frequency change of the excited emissions are clarified. The results are applied to some types of the triggered VLF emissions; whistler triggered emissions and artificially stimulated emissions (ASE). It is found that whistler triggered emissions excited around the upper cutoff frequencies of whistlers may be explained by the whistler mode cyclotron instability by a model distribution function inferred from satellite data. In order to see a nonlinear evolution of the whistler mode cyclotron instability, computer simulations were carried out and it is shown that the change of frequency with time of whistler triggered emissions as well as characteristics of ASE are well explained by resonant nonlinear behaviour of whistler mode cyclotron instability considered in the present paper.  相似文献   

16.
Fiber – or intermediate drift – bursts are a continuum fine structure in some complex solar radio events. We present the analysis of such bursts in the X17 flare on 28 Oct. 2003. Based on the whistler wave model of fiber bursts we derive the 3D magnetic field structures that carry the radio sources in different stages of the event and obtain insight into the energy release evolution in the main flare phase, the related paths of nonthermal particle propagation in the corona, and the involved magnetic field structures. Additionally, we test the whistler wave model of fiber bursts for the meter and the decimeter wave range. Radio spectral data (Astrophysikalisches Institut Potsdam, Astronomical Observatory Ond?ejov) show a continuum with fibers for ≈?6 min during the main flare phase. Radio imaging data (Nançay Radio Heliograph) yield source centroid positions of the fibers at three frequencies in the spectrometer band. We compare the radio positions with the potential coronal magnetic field extrapolated from SOHO/MDI data. Given the detected source site configuration and evolution, and the change of the fiber burst frequency range with time, we can also extract those coronal flux tubes where the high-frequency fiber bursts are situated even without decimeter imaging data. To this aim we use a kinetic simulation of whistler wave growth in sample flux tubes modeled by selected potential field lines and a barometric density model. The whistler wave model of fiber bursts accurately explains the observations on 28 Oct. 2003. A laterally extended system of low coronal loops is found to guide the whistler waves. It connects several neighboring active regions including the flaring AR 10486. For varying source sites the fiber bursts are emitted at the fundamental mode of the plasma frequency over the whole range (1200?–?300 MHz). The present event can be understood without assuming two different generation mechanisms for meter and decimeter wave fiber bursts. It gives new insight into particle acceleration and propagation in the low flare and post-CME corona.  相似文献   

17.
Nonlinear frequency shift of space-charge waves in a relativistic electron or positron beam is analyzed. The frequency shift is shown to be a function of the wave amplitude. It is suggested that the frequency shift of beam space-charge waves may be a saturation mechanism for astrophysical free-electron lasers.  相似文献   

18.
The resonant interaction between the whistler mode waves and the energetic electrons near the plasmapause boundary has been studied in the presence of field aligned currents which seem to exist during substorm activity. It is shown that the electrons which carry the current along the direction of the magnetic field enhance the whistler mode growth considerably if the streaming velocity is small compared to the phase velocity of the wave. It is likely that this is one of the mechanisms explaining the intense VLF emissions observed near the plasmapause during substorm activity.  相似文献   

19.
A complete dispersion relation for a whistler mode wave propagation in an anisotropic warm ion-electron magnetoplasma in the presence of parallel electric field using the dispersion relation for a circularly polarized wave has been derived. The dispersion relation includes the effect of anisotropy for the ion and electron velocity distribution functions. The growth rate of electron-ion cyclotron waves for different plasma parameters observed atL = 6.6R E has been computed and the results have been discussed in detail in the light of the observed features of VLF emissions and whistlers. The role of the combination of ion-cyclotron and whistler mode electromagnetic wave propagation along the magnetic field in an anisotropic Maxwellian weakly-ionized magnetoplasma has been studied.  相似文献   

20.
Non-linear wave-particle interaction in the whistler mode in a non-uniform magnetic field is considered. The effect of the second order resonant particles arising due to nonuniformity of the ambient magnetic field is found to be dominant near the equatorial plane of the Earth. The equations describing the time development of the amplitude and phase of the wave packet have been solved numerically by computing the resonant particle current in a self-consistent manner. The growth of the waves because of trapped particles is found to be substantial for triggering an emission and the changes in phase lead to the frequency-time structure. It is capable of reproducing all kinds of frequency time structure as observed in the case of a morse pulse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号