首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Imaging the PP- and PS-wave for the elastic vector wave reverse-time migration requires separating the P- and S-waves during the wave field extrapolation. The amplitude and phase of the P- and S-waves are distorted when divergence and curl operators are used to separate the P- and S-waves. We present a P- and S-wave amplitude-preserving separation algorithm for the elastic wavefield extrapolation. First, we add the P-wave pressure and P-wave vibration velocity equation to the conventional elastic wave equation to decompose the P- and S-wave vectors. Then, we synthesize the scalar P- and S-wave from the vector Pand S-wave to obtain the scalar P- and S-wave. The amplitude-preserved separated P- and S-waves are imaged based on the vector wave reverse-time migration (RTM). This method ensures that the amplitude and phase of the separated P- and S-wave remain unchanged compared with the divergence and curl operators. In addition, after decomposition, the P-wave pressure and vibration velocity can be used to suppress the interlayer reflection noise and to correct the S-wave polarity. This improves the image quality of P- and S-wave in multicomponent seismic data and the true-amplitude elastic reverse time migration used in prestack inversion.  相似文献   

2.
In this paper we develop a recursive algorithm to obtain the layer parameters of an elastic medium (density, P-wave velocity, S-wave velocity) from reflection coefficient matrices in terms of energy flux ratios for a non-normal incidence case. We define a layer impedance matrix, analogous to the impedance of an acoustic medium. Next we derive a matrix relationship between the layer impedance matrix of the n+ 1st layer and the reflection coefficient and parameter matrices of the nth layer. This relationship leads to recursively computing the parameters of the subsurface. We show that the elastic case—unlike the acoustic case—allows one to recover the layer parameters from the impedance matrix for non-normal incidence. The results of this work play a key role in the solution of the inverse problem with non-normal-incidence plane-wave seismic data when using a downward continuation technique.  相似文献   

3.
Parameters in a stack of homogeneous anelastic layers are estimated from seismic data, using the amplitude versus offset (AVO) variations and the travel-times. The unknown parameters in each layer are the layer thickness, the P-wave velocity, the S-wave velocity, the density and the quality factor. Dynamic ray tracing is used to solve the forward problem. Multiple reflections are included, but wave-mode conversions are not considered. The S-wave velocities are estimated from the PP reflection and transmission coefficients. The inverse problem is solved using a stabilized least-squares procedure. The Gauss-Newton approximation to the Hessian matrix is used, and the derivatives of the dynamic ray-tracing equation are calculated analytically for each iteration. A conventional velocity analysis, the common mid-point (CMP) stack and a set of CMP gathers are used to identify the number of layers and to establish initial estimates for the P-wave velocities and the layer thicknesses. The inversion is carried out globally for all parameters simultaneously or by a stepwise approach where a smaller number of parameters is considered in each step. We discuss several practical problems related to inversion of real data. The performance of the algorithm is tested on one synthetic and two real data sets. For the real data inversion, we explained up to 90% of the energy in the data. However, the reliability of the parameter estimates must at this stage be considered as uncertain.  相似文献   

4.
In the context of wide-angle seismic profiling, the determination of the physical properties of the Earth crust, such as the elastic layer depth and seismic velocity, is often performed by inversion of P- and/or S-phases propagation data supplying the geometry of the medium (reflector depths) or any other structural parameter (P- or S-wave velocity, density...). Moreover, the inversion for velocity structure and interfaces is commonly performed using only seismic reflection travel times and/or crustal phase amplitudes in isotropic media. But it is very important to utilize more available information to constrain the non-uniqueness of the solution. In this paper, we present a simultaneous inversion method of seismic reflection travel times and polarizations data of transient elastic waves in stratified media to reconstruct not only layer depth and vertical P-wave velocity but also the anisotropy feature of the crust based on the estimation of the Thomsen’s parameters. We carry out a checking with synthetic data, comparing the inversion results obtained by anisotropic travel-time inversion to the results derived by joint inversion of seismic reflection travel times and polarizations data. The comparison proves that the first procedure leads to biased anisotropic models, while the second one fits nearly the real model. This makes the joint inversion method feasible. Finally, we investigate the geometry, P-wave velocity structure and anisotropy of the crust beneath Southeastern China by applying the proposed inversion method to previously acquired wide-angle seismic data. In this case, the anisotropy signature provides clear evidence that the Jiangshan-Shaoxing fault is the natural boundary between the Yangtze and Cathaysia blocks.  相似文献   

5.
基于贝叶斯原理的PP波和PS波AVO联合反演方法研究(英文)   总被引:2,自引:1,他引:1  
基于Aki-Richards公式和贝叶斯原理,本文发展了利用叠前PP波和PS波资料联合反演P波速度比、S波速度比和密度比的方法。该方法假设参数之间满足正态分布,引入参数协方差矩阵来描述反演参数之间的相关性以提高反演过程的稳定性,并同时使反演的参数序列服从Cauchy分布,引入矩阵Q来描述参数序列的稀疏性以提高反演结果的分辨率。采用本文提出的方法对模型数据和实际多波资料进行反演,结果表明:本文方法正确有效;与传统的单一PP波反演相比,PP波和PS波AVO联合反演具有稳定性更好和反演精度更高等优点。  相似文献   

6.
The shear-wave velocity is a very important parameter in oil and gas seismic exploration, and vital in prestack elastic-parameters inversion and seismic attribute analysis. However, shearing-velocity logging is seldom carried out because it is expensive. This paper presents a simple method for predicting S-wave velocity which covers the basic factors that influence seismic wave propagation velocity in rocks. The elastic modulus of a rock is expressed here as a weighted arithmetic average between Voigt and Reuss bounds, where the weighting factor, w, is a measurement of the geometric details of the pore space and mineral grains. The S-wave velocity can be estimated from w, which is derived from the P-wave modulus. The method is applied to process well-logging data for a carbonate reservoir in Sichuan Basin, and shows the predicted S-wave velocities agree well with the measured S-wave velocities.  相似文献   

7.
基于地震波反射系数近似公式的叠前反演是油气勘探的重要工具.本文在已有研究的基础上,推导了一个改进的射线参数域地震纵波反射系数近似方程.该方程建立了地震纵波反射系数与纵波阻抗和横波阻抗的非线性关系,在中、小角度的范围内较现有的反射系数线性近似公式精度更高.另外,由于该方程仅包含纵波和横波阻抗反射系数项,因此基于新方程的反演能够有效地降低同步反演纵波速度、横波速度、密度三个参数的不适定性.在此基础上,结合广义线性反演法(GLI)理论和贝叶斯理论,相应地发展了一种叠前地震同步反演方法.模型测试和实际资料的应用表明,基于新方程的反演方法能够利用有限角度(偏移距)的数据稳定地反演纵波和横波阻抗,由于在反演过程中,不需要假设纵横波速度为常数,因此该方法还能有效地提高反演结果的精度.  相似文献   

8.
The elastic reverse time migration approach based on the vector-wavefield decomposition generally uses the scalar product imaging condition to image the multicomponent seismic data. However, the resulting images contain the crosstalk artefacts and the polarity reversal problems, which are caused by the nonphysical wave modes and the angle-dependent reduction of image amplitudes, respectively. To overcome these two problems, we develop an amplitude-preserving elastic reverse time migration approach based on the vector-decomposed P- and S-wave seismic records. This approach includes two key points. The first is that we employ the vector-decomposed P- and S-wave multicomponent records to independently reconstruct the PP and PS reflection images to mitigate the crosstalk artefacts. The second is that we propose two schemes in addressing the issue of polarity reversal problem in the conventional PP image. One solution is to adopt the angle-dependent equation. Another one is to reconstruct an amplitude-preserving PP image with a separated scalar P-wave particle velocity, which has a clear physical meaning. Numerical examples using two-dimensional and three-dimensional models demonstrate that the proposed elastic reverse time migration approach can provide the images with better amplitude-preserving performance and fewer crosstalk artefacts, compared with the conventional elastic reverse time migration approach based on the scalar product imaging condition.  相似文献   

9.
In this paper, we derive an approximation of the SS-wave reflection coefficient and the expression of S-wave ray elastic impedance (SREI) in terms of the ray parameter. The SREI can be expressed by the S-wave incidence angle or P-wave reflection angle, referred to as SREIS and SREIP, respectively. Our study using elastic models derived from real log measurements shows that SREIP has better capability for lithology and fluid discrimination than SREIS and conventional S-wave elastic impedance (SEI). We evaluate the SREIP feasibility using 25 groups of samples from Castagna and Smith (1994). Each sample group is constructed by using shale, brine-sand, and gas-sand. Theoretical evaluation also indicates that SREIP at large incident angles is more sensitive to fluid than conventional fluid indicators. Real seismic data application also shows that SREIP at large angles calculated using P-wave and S-wave impedance can efficiently characterize tight gas-sand.  相似文献   

10.
Seismic amplitude variations with offset contain information about the elastic parameters. Prestack amplitude analysis seeks to extract this information by using the variations of the reflection coefficients as functions of angle of incidence. Normally, an approximate formula is used for the reflection coefficients, and variations with offset of the geometrical spreading and the anelastic attenuation are often ignored. Using angle of incidence as the dependent variable is also computationally inefficient since the data are recorded as a function of offset. Improved approximations have been derived for the elastic reflection and transmission coefficients, the geometrical spreading and the complex travel-time (including anelastic attenuation). For a 1 D medium, these approximations are combined to produce seismic reflection amplitudes (P-wave, S-wave or converted wave) as a Taylor series in the offset coordinate. The coefficients of the Taylor series are computed directly from the parameters of the medium, without using the ray parameter. For primary reflected P-waves, dynamic ray tracing has been used to compute the offset variations of the transmission coefficients, the reflection coefficient, the geometrical spreading and the anelastic attenuation. The offset variation of the transmission factor is small, while the variations in the geometrical spreading, absorption and reflection coefficient are all significant. The new approximations have been used for seismic modelling without ray tracing. The amplitude was approximated by a fourth-order polynomial in offset, the traveltime by the normal square-root approximation and the absorption factor by a similar expression. This approximate modelling was compared to dynamic ray tracing, and the results are the same for zero offset and very close for offsets less than the reflector depth.  相似文献   

11.
深反射地震剖面法为了获取深部结构特征常常采取大的偏移距采集数据.目前公开发表的相关资料中,鲜有利用深反射地震炮集数据获取近地表的结构特征.为此,本文通过正演测试了相关数据处理流程,即利用有限差分正演了起伏地表模型的大偏移距地震单炮弹性波场特征,通过共检波点域面波信号F-K频谱叠加构建新方法,从深反射地震数据集中提取了高品质的多阶面波频散曲线,再利用多阶面波联合反演获得了近地表的结构特征.在前述正演流程基础上,利用跨越班公湖—怒江缝合带的SinoProbe深反射地震剖面中的实际炮集数据,求取了基阶和一阶瑞利波频散曲线,联合反演后得到近地表横波速度结构.该结果与初至波走时反演获取的纵波速度结构具有较好的一致性,且在近地表的浅层分辨率较纵波速度结构特征更高,而更与已有地质认识相吻合.本文提供的相关数据处理流程表明利用深反射地震炮集数据,也能够获取近地表浅层的横波速度结构.  相似文献   

12.
The calibration of the elastic characteristics of deformed coals is essential for seismic inversion of such units, because the prediction of coal deformation is essential for both mining safety and methane production. Therefore, many samples of broken and mylonitic deformed coal were tested with ultrasonic waves in the laboratory. These samples came from four mining areas: the Huainan, Pingdingshan, Hebi and Jiaozuo coal mines, which present five different metamorphic ranks shown as cylinders striking across circular limits of steel. Under normal pressures and temperatures, ultrasonic P- and S-wave tests show that the velocities, quality factors, and elastic moduli of the deformed coals were greatly reduced compared with undeformed coals. Also, some correlation was found between the P- and S-wave velocities in the deformed coals. However, there is no evidence of linear correlations between velocity and density, velocity and quality factor, or the quality factors of P- and S-waves. Compared with the elastic characteristics of undeformed coals, such as P- and S-wave velocity ratios or Poisson’s ratio, those of deformed coals generally decrease and the P-wave quality factors are less than those of S-waves. Moreover, the analysis of the relationship between pore structure and elastic modulus shows a better correlation between the P- and S-wave velocities and effective porosity, pore volume and specific surface area. Also, there are similar relationships between the pore structure and the Young’s and shear moduli. However, there are no such correlations with other moduli. Correlations between these elastic moduli, pore structure, coal rank and density were not found for the various samples of deformed coals, which is consistent with only structural destruction occurring in the deformed coals with other physical properties remaining unchanged. The experimental results show that it is possible to predict the deformation of coals with multi-component seismic elastic inversion.  相似文献   

13.
Cauchy priori distribution-based Bayesian AVO reflectivity inversion may lead to sparse estimates that are sensitive to large reflectivities. For the inversion, the computation of the covariance matrix and regularized terms requires prior estimation of model parameters, which makes the iterative inversion weakly nonlinear. At the same time, the relations among the model parameters are assumed linear. Furthermore, the reflectivities, the results of the inversion, or the elastic parameters with cumulative error recovered by integrating reflectivities are not well suited for detecting hydrocarbons and fuids. In contrast, in Bayesian linear AVO inversion, the elastic parameters can be directly extracted from prestack seismic data without linear assumptions for the model parameters. Considering the advantages of the abovementioned methods, the Bayesian AVO reflectivity inversion process is modified and Cauchy distribution is explored as a prior probability distribution and the time-variant covariance is also considered. Finally, we propose a new method for the weakly nonlinear AVO waveform inversion. Furthermore, the linear assumptions are abandoned and elastic parameters, such as P-wave velocity, S-wave velocity, and density, can be directly recovered from seismic data especially for interfaces with large reflectivities. Numerical analysis demonstrates that all the elastic parameters can be estimated from prestack seismic data even when the signal-to-noise ratio of the seismic data is low.  相似文献   

14.
基于变形P-L模型的矩阵方程迭代精细横波预测   总被引:2,自引:1,他引:1       下载免费PDF全文
横波速度预测问题的关键有两个,一是如何建立合理的岩石物理模型,二是针对建立的横波预测目标函数,如何准确高效地求解.针对第一个问题,对Pride模型和Lee模型(P-L模型)进行变形,提出拟固结指数的概念,将干岩石模量和岩石基质模量相联系,变形后的P-L模型在没有降低P-L模型准确度的情况下简化了问题的复杂度,建立起了饱和流体岩石弹性模量与干岩石模量、岩石基质模量、混合流体模量之间的关系,进而计算理论上的纵波速度,并通过比较实测纵波速度与计算的理论纵波速度大小,最终建立了横波预测的目标函数.针对第二个问题,借鉴了地震反演的思路,将该目标函数的最优化问题转化为线性矩阵方程组迭代求解问题,通过几步迭代就可以求解出合适的拟固结指数,进而得到预测横波速度.实际验证和应用表明,该横波预测方法具有很好的稳定性和准确性,并且岩石物理模型的构建和目标函数的求解思路可用于其他储集类型地层的横波预测.  相似文献   

15.
横波速度预测方法   总被引:7,自引:3,他引:4       下载免费PDF全文
准确的横波测井速度是叠前地震反演和叠前地震属性分析的必要参数,然而实际生产中往往缺乏横波速度信息.采用经验公式往往精度有限,本文采用Biot-Gassmann低频速度模型,以及Pride公式建立起基质弹性模量与骨架弹性模量关系,证明了纵波速度大小随固结系数的增大而减小,因而可以通过迭代方式计算出合适的固结系数,进而得到横波速度大小.通过两个实例说明该方法能得到很高的预测精度.  相似文献   

16.
Characterizing the expressions of seismic waves in elastic anisotropic media depends on multiparameters. To reduce the complexity, decomposing the P-mode wave from elastic seismic data is an effective way to describe the considerably accurate kinematics with fewer parameters. The acoustic approximation for transversely isotropic media is widely used to obtain P-mode wave by setting the axial S-wave phase velocity to zero. However, the separated pure P-wave of this approach is coupled with undesired S-wave in anisotropic media called S-wave artefacts. To eliminate the S-wave artefacts in acoustic waves for anisotropic media, we set the vertical S-wave phase velocity as a function related to propagation directions. Then, we derive a pure P-wave equation in transversely isotropic media with a horizontal symmetry axis by introducing the expression of vertical S-wave phase velocity. The differential form of new expression for pure P-wave is reduced to second-order by inserting the expression of S-wave phase velocity as an auxiliary operator. The results of numerical simulation examples by finite difference illustrate the stability and accuracy of the derived pure P-wave equation.  相似文献   

17.
The analytical study of the reflection and transmission coefficient of the seafloor interface is essential for the characterization of the ocean bottom in marine seismic exploration. Based on the boundary conditions of the seafloor interface, the analytical expression of the reflection and transmission coefficient at the submarine interface is derived in this study by using the steady-state wave solution of the elastic wave in a homogeneous, isotropic medium. With this analytical expression, the characteristics of the reflection and transmission coefficient at the submarine interface are analysed and discussed using critical angles. The results show that the change in the reflection and transmission coefficient with the incidence angle presents a “segmented” characteristic, in which the critical angle is the dividing point. The amplitude value and phase angle of the coefficient at the submarine interface change dramatically at the critical angle, which is related to the P- and S-wave velocities in the seabed layer. Compared with the stiff seabed, the soft seabed has a larger P-wave critical angle and an absence of the converted S-wave critical angle, owing to the low P- and S-wave velocities in the solid seabed layer. By analysing and discussing the special changes that occur in the coefficient values at the critical angle, the reflection and transmission characteristics of the different incident angles are obtained. Synthetic models of both stiff and soft seafloors are provided in this study to verify the analytical results. Finally, we compared our synthetic results with real data from the Gulf of Mexico, which enabled the validation of our conclusions.  相似文献   

18.
王赟  许小凯  张玉贵 《地球物理学报》2012,55(11):3754-3761
对采自不同地区和煤矿的六种不同变质程度煤样进行常温常压条件下的超声测量.测量发现:煤的纵波与横波速度均与密度存在良好的线性正相关关系,且沿煤层走向、倾向和垂直煤层层理方向的纵横波速度逐渐降低;走向、倾向和垂向上的纵波速度与同一方向的横波速度也存在良好的线性正相关性;六种煤样三个方向间的速度各向异性一般都大于10%.通过与经典经验公式—Gardner与Castagna公式理论换算值的对比发现:由于煤层的软岩特征,理论换算煤的纵波速度、横波速度与实验室实测值之间存在较大误差.因此,在煤田地震勘探中应使用根据煤的岩石物理测试而形成的关系式.  相似文献   

19.
Amplitude versus offset concepts can be used to generate weighted stacking schemes (here called geo-stack) which can be used in an otherwise standard seismic data processing sequence to display information about rock properties. The Zoeppritz equations can be simplified and several different approximations appear in the literature. They describe the variation of P-wave reflection coefficients with the angle of incidence of a P-wave as a function of the P-wave velocities, the S-wave velocities and the densities above and below an interface. Using a smooth, representative interval velocity model (from boreholes or velocity analyses) and assuming no dip, the angle of incidence can be found as a function of time and offset by iterative ray tracing. In particular, the angle of incidence can be computed for each sample in a normal moveout corrected CMP gather. The approximated Zoeppritz equation can then be fitted to the amplitudes of all the traces at each time sample of the gather, and certain rock properties can be estimated. The estimation of the rock properties is achieved by the application of time- and offset-variant weights to the data samples before stacking. The properties which can be displayed by geo-stack are: P-wave reflectivity (or true zero-offset reflectivity), S-wave reflectivity, and the reflectivity of P-wave velocity divided by S-wave velocity (or ‘pseudo-Poisson's ratio reflectivity’). If assumptions are made about the relation between P-wave velocity and S-wave velocity for water-bearing clastic silicate rocks, then it is possible to create a display which highlights the presence of gas.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号