首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our aim is to explain the possible bimodality of the compositions of the magmatic rocks of the same province. In order to do so, we present a model for the crystallization of a magmatic chamber, coupling the three phenomena: solidification, sedimentation, chemical reactions between the solid and the liquid. These three phenomena make two independent dimensionless parameters appear: the ratios of the solidification rate to the transport velocity, and of the chemical kinetics to the transport velocity. The model is written for one independent chemical component. It is shown that, for certain values of the dimensionless parameters, the chemical composition of the chamber can present a bimodal distribution, starting from uniform initial conditions. This model shows that the coupling between three elementary phenomena is enough to explain the bimodality, or more generally the appearance of discontinuities of chemical compositions, without making any additional assumption.  相似文献   

2.
Reactions in Amphibolite, Greenschist and Blueschist   总被引:2,自引:0,他引:2  
Mineral assemblages in which chlorite [CHL], epidote [EPI],clinoamphibole [AMP], plagioclase [PLG] and quartz [QTZ] aremajor phases are characteristic of many low-grade mafic schists.The possible heterogeneous reactions in such an assemblage maybe separated into two types, exchange reactions and net-transferreactions. Only the latter alter significantly the modal proportionsof the minerals. A set of linearly independent reactions defines a reaction spaceof as many dimensions as there are independent reactions. Thespace defined by the net-transfer reactions alone is a sub-spacethat can be portrayed in three dimensions for the above assemblage.A procedure is presented herein that gives a set of independentreactions that may be taken as basis reactions for definingsuch a reaction space. All other reactions that can be writtenfor this assemblage, as well as observed whole-rock reactions,can be portrayed as vectors in these reaction spaces. Thesevectors connect the region (mineral facies) accessible to theabove assemblage. The whole-rock reactions of Laird (1980) relatinggreenschist, blueschist and various low-grade amphibolites fromVermont, provide informative examples, as do the whole-rockexperiments of Liou et al. (1974). Although reaction spaces apply to both equilibrium and disequilibriumassemblages the reactions selected as basis vectors correspondone-for-one to the chemical conditions for equilibrium thatmust obtain in any fully equilibrated assemblage. The set selectedis one that provides maximum sensitivity for geothermometric,geobarometric and geohygrometric purposes.  相似文献   

3.
Reaction of zoning of garnet   总被引:1,自引:0,他引:1  
Compositional zoning of garnet in metamorphic or igneous rocks preserves evidence of the equilibration history of the sample and can be interpreted in terms of a growth-fractionation, diffusion-exchange, or diffusion-reaction model. Diffusion zoning is usually assumed to result from exchange reactions between garnet and other phases as the partitioning coefficient varies in response to changing environmental conditions, primarily temperature. However, in many natural environments where garnet grew originally in divariant equilibrium with other phases, changing conditions can promote continuous or “divariant” reactions and consequent compositional shifts of phases that can be much greater in some systems showing these reactions than those related to the small changes of partitioning. Diffusional zoning related to overstepping of these continuous reactions must be related to incongruent reaction and necessitates formulation of a kinetic diffusion-reaction model involving moving phase boundaries as well as solid-state diffusion. Three samples containing zoned garnets from the metamorphic aureole around the Ronda ultramafic intrusion in southern Spain are used to illustrate two possible models of diffusion-reaction processes. The examples are particularly informative because the reactions are demonstrably irreversible and evidence of the reaction system is preserved. Partitioning data indicates that compositions of product phases are not in equilibrium with the original garnet and do not vary with extent of reaction; therefore, exchange reactions with garnet were not possible and garnet changed composition only by incongruent reaction. After a small amount of reaction, Mg/Fe of the rim composition approaches a value apparently in equilibrium with product phases, but the garnets are zoned inward to the original garnet composition preserved in the interior. Grossularite content is approximately constant and spessartite content variable but small, thus, the rim composition of pyrope or almandine is assumed to be fixed by the external reaction process and is taken as a boundary condition in the following models. The zoning profile of pyrope or almandine component between the fixed rim and core compositions (assumed to extend to ∞) is described in semiinfinite, half-space models appropriate for large garnets with narrow rims. The first model corresponds to a reaction system in which all garnet compositions are metastable (case 1) and zoning depends on the independent variables of the diffusion constant, velocity of the interface between garnet and matrix, and time. The second model, corresponding to systems in which the initial garnet composition is metastable but an equilibrium composition is stable (case 2), depends on the independent variables diffusion constant, time, and a function of reaction compositions. In case 1 the consumption velocity is assumed constant and a steady state zoning profile is reached at large time, whereas, in case 2, the velocity decreases with the concentration gradient and steady state is not possible. The models were tested using a reaction time estimated from cooling models of the aureole, mass of garnet consumed, determined petrographically, and phase compositions. The two cases are somewhat independent in that different parameters are independent variables. The estimate of the diffusion constant of 10?18±2 cm2/sec (assumed to be a mutual or binary coefficient for almandine and pyrope) is considered reasonable for the temperature range of reaction (probably 600–900° C), and the two models are consistent considering the probable error and possible real temperature differences. It is obvious that details of the metamorphic reaction system must be known to successfully apply diffusion models. Kinetic models, involving consumption or growth of the phase as well as diffusion are probably necessary when dealing with natural rocks. Several possible and interesting complications, such as cross coupling between components, can be investigated if more data were available. Experimental determination of diffusion constants allow natural reaction rates to be estimated by this method. Diffusion zoning is an important consideration that could increase the efficiency of experimentation with chemically recalcitrant phases.  相似文献   

4.
Rock Maker is a simple software tool that computes bulk rock compositions resulting from mixing or unmixing of rocks or minerals. The calculations describe the chemical expression of processes such as magma mixing, fractional crystallization, assimilation, residual melt extraction, or formation of solid solutions. Rock Maker can also be used for the elimination of thermodynamically inactive or unwanted chemical components from the whole rock composition, such as cores of porphyroblasts that are considered not to be in equilibrium with the matrix. The calculation of the resulting rock composition is essentially based on modal proportions and compositions of different components in rocks, which may include specific portions of the rock or individual mineral phases. Compositional data, obtained using XRF, ICPMS, EDS, or EPMA, may include major and trace element concentrations. Depending upon the nature of the problem to be solved, the concentrations of oxidic and elemental components can be added to, or subtracted from, each other, producing the calculated normalized whole rock composition after completion of the investigated process (mixing, unmixing, depletion, enrichment, etc.). Furthermore, the software allows the calculation of whole rock compositions from ideal mineral compositions, for which modal proportions can be chosen from pre-defined mineral compositions. The data set includes the most common rock forming minerals and allows the addition of further phases. This section can be used to calculate the approximate whole rock compositions from petrographic modal analysis. This part of Rock Maker is specifically suitable as a teaching tool that illustrates the interrelationship between mineral compositions, modes, and the corresponding whole rock compositions.  相似文献   

5.
The chemical and isotopic compositions of groundwaters in the crystalline rocks of the Canadian Shield reflect different degrees of rock-water interactions. The chemistry of the shallow, geochemically immature groundwaters and especially of the major cations is controlled by local rock compositions, whereby dissolution reactions dominate. Conservative constituents, such as chloride and bromide, however, are not entirely a result of such reactions but appear to be readily added from leachable salts during the initial stages of the geochemical evolution of these waters. Their concentration changes little as major cations increase, until concentrations of Total Dissolved Solids (TDS) reach 3000 to 5000 mg 1?1. The isotopic composition of these shallow waters reflects local, present day precipitations.In contrast to the shallow groundwaters, the isotopic and chemical compositions of the deep, saline waters and brines are determined by extensive, low-temperature rock-water interactions. This is documented in major ion chemistries, 18O contents and strontium isotopic compositions. These data indicate that the deep brines have been contained in hydrologically isolated “pockets”. The almost total loss of primary compositions make discussions on the origin of these brines very speculative. However, all brines from across the Canadian Shield have a very similar chemical composition, which probably reflects a common geochemical history. The concentrations of some major and most minor elements in these fluids appear to be governed by reactions with secondary mineral assemblages.  相似文献   

6.
初论金刚石原生矿床成矿系列   总被引:1,自引:0,他引:1       下载免费PDF全文
银剑钊 《地球科学》2000,25(4):380-383
目前所知产金刚石的岩石类型包括金伯利岩、钾镁煌斑岩、榴辉岩、蛇绿岩套、碱性超基性杂岩、碱性超基性煌斑岩和橄榄岩类(方辉橄榄岩、纯橄榄岩等) 等偏碱性超镁铁质岩石, 而有经济价值的金刚石原生矿床仅见于金伯利岩和钾镁煌斑岩中, 除此之外的其他岩石类型中仅见有少量微粒金刚石.金伯利岩和钾镁煌斑岩都起源于地幔深部, 就此意义上讲, 二者是同源的, 但其岩石化学成分、主要矿物组成、产出大地构造背景以及同位素资料等, 却存在着比较明显的差异.由此构成了金刚石原生矿床的两个成矿系列: 金伯利岩成矿系列和钾镁煌斑岩成矿系列.金伯利岩成矿系列又可以根据其化学成分划分为3个亚系列, 即: 高Cr, Ti, Mg成矿亚系列, 低Cr, Ti, Mg成矿亚系列和介于二者之间的一种具有复杂化学成分的成矿亚系列.钾镁煌斑岩成矿系列则可以根据其主要矿物组成, 划分出橄榄石钾镁煌斑岩成矿亚系列、白榴石钾镁煌斑岩成矿亚系列以及介于两者之间的白榴石-橄榄石钾镁煌斑岩成矿亚系列共3种次级成矿系列.与此同时, 无论是金伯利岩成矿系列, 还是钾镁煌斑岩成矿系列, 又都可以根据其野外地质产状, 划分为以下3个成矿亚系列(形成时间从早到晚) : (1) 火山沉积凝灰岩成矿亚系列; (2) 火山凝灰角砾岩成矿亚系列; (3) 火山-次火山侵入相成矿亚系列.   相似文献   

7.
Subducted sediments play an important role in crust-mantle interaction and deep mantle processes, especially for subduction zone magmatism and mantle geochemistry. The current rate of Global Subducting Sediments (GLOSS) is 0.5~0.7 km3/a. The GLOSS are composed of terrigenous material(76 wt.%), calcium carbonate(7 wt.%), opal(10 wt.%) and mineral-bound H2O+(7 wt.%). The chemical compositions of GLOSS are similar to those of upper continental crust which is mainly controlled by the terrigenous materials, and yet the materials formed by marine processes will dilute the terrigenous materials. The components of subducted sediments are different among trenches. In the accretionary margin, the components of subducted sediments are similar to those of the upper crust, while in the non-accretionary margin the components are terrigenous materials plus those produced by marine processes. During subduction, subducted sediments will released fluids, melt or supercritical fluid to affect island arc/back-arc basin magmatism by means of aqueous fluid or sediment melt. In addition, a part of subducted sediments, together with underlying altered oceanic crust/lithosphere, recycle into the mantle and contribute to the mantle heterogeneity. Geochemical tracers indicate that subducted sediments play variable contributions to the magmatic processes in different tectonic setting. Thus, subducted sediments play an important role in two relatively independent dynamics systems (plate tectonics and mantle plume), as well as related mantle evolution models. As a result, by accurately calculating the compositions of subduction sediments and using various geochemical indicators, we can further limit the input and output fluxes of various elements or isotopes, and then obtain more accurately residual subducted components, which can provide us some important clues for geodynamic process.  相似文献   

8.
9.
The application of R-mode principal components analysis to a set of closed chemical data is described using previously published chemical analyses of rocks from Gough Island. Different measures of similarity have been used and the results compared by calculating the correlation coefficients between each of the elements of the extracted eigenvectors and each of the original variables. These correlations provide a convenient measure of the contribution of each variable to each of the principal components. The choice of similarity measure (variance-covariance or correlation coefficient)should reflect the nature of the data and the view of the investigator as to which is the proper weighting of the variables—according to their sample variance or equally. If the data are appropriate for principal components analysis, then the Chayes and Kruskal concept of the hypothetical open and closed arrays and the expected closure correlations would seem to be useful in defining the structure to be expected in the absence of significant departures from randomness. If the data are not multivariate normally distributed, then it is possible that the principal components will not be independent. This may result in significant nonzero covariances between various pairs of principal components.  相似文献   

10.
天然冲击球粒陨石的化学组成及冲击效应   总被引:1,自引:0,他引:1  
陈永亨  方虹 《地球化学》1994,23(1):25-32
本文运用电子探针、INAA方法研究了两块强烈冲击的中国普通球粒陨石的矿物组成、化学组成、冲击熔融相,非溶融相和磁性金属相微量元素丰度,结合稀有气体含量和母体冲击特征,讨论了它们的冲击效应和母体热历史,证明了母体热变质作用叠加了冲击效应,冲击效应增加了陨石矿物组成平衡程度,提高了母体的岩石类型,但冲击热效应对陨石中非气体挥发性元素含量及化学组成没有明显的影响,说明冲击热效应对陨石中非气体挥发性元素含  相似文献   

11.
We report bulk chemical compositions and physical properties for a suite of 94 objects, mostly chondrules, separated from the Mokoia CV3ox carbonaceous chondrite. We also describe mineralogical and petrologic information for a selected subset of the same suite of chondrules. The data are used to examine the range of chondrule bulk compositions, and to investigate the relationships between chondrule mineralogy, texture and bulk compositions, as well as oxygen isotopic properties that we reported previously. Most of the chondrules show minimal metamorphism, corresponding to petrologic subtype <3.2. In general, elemental fractionations observed in chondrule bulk compositions are reflected in the compositions of constituent minerals. For chondrules, mean bulk compositions and compositional ranges are very similar for large (>2 mg) and small (<2 mg) size fractions. Two of the objects studied are described as matrix-rich clasts. These have similar bulk compositions to the chondrule mean, and are potential chondrule precursors. One of these clasts has a similar bulk oxygen isotopic composition to Mokoia chondrules, but the other has an anomalously high value of Δ17O (+3.60‰).Chondrules are diverse in bulk chemical composition, with factor of 10 variations in most major element abundances that cannot be attributed to secondary processes. The chondrules examined show evidence for extensive secondary oxidation, and possible sulfidization, as expected for an oxidized CV chondrite, but minimal aqueous alteration. Some of the bulk chondrule compositional variation might be the result of chemical (e.g. volatilization or condensation) or physical (e.g. metal loss) processes during chondrule formation. However, we suggest that it is mainly the result of significant variations in the assembly of particles that constituted chondrule precursors. Precursor material likely included a refractory component, possibly inherited from disaggregated CAIs, an FeO-poor ferromagnesian component such as olivine or pyroxene, an oxidized ferromagnesian component, and a metal component. Bulk oxygen isotope ratios of chondrules can be explained if refractory and ferromagnesian precursor materials initially shared similar oxygen isotopic compositions of δ17O, δ18O around −50‰, and then significant exchange occurred between the chondrule and surrounding 16O-poor gas during melting.  相似文献   

12.
为了查明新疆、青海、俄罗斯三地所产糖白玉的结构、成分和成因差异,在观察原料外观特征的基础上,采用常规宝石学方法、偏光显微镜、X射线粉末衍射仪和电子探针研究新疆、青海、俄罗斯糖白玉样品,从结构类型、矿物组成、化学成分和成因特征等方面进行对比分析。结果表明,以上三地糖白玉的主要矿物组成均为透闪石,次要矿物组成则各有不同。新疆、俄罗斯糖白玉以毛毡状变晶结构为主,青海糖白玉以纤维状变晶结构和纤维-隐晶质变晶结构为主;初步认定以上三地糖白玉的糖色为次生色,主要由褐铁矿导致。结合相关地质背景和风化作用特征,推测以上三地糖白玉不同的外观特征主要受玉体成矿后期和成矿期结束后周围环境变化的影响。  相似文献   

13.
A time-space continuum model for transport of hydrothermal fluids in porous media is presented which provides for simultaneous, reversible and irreversible chemical reactions involving liquids, gases and minerals. Homogeneous and heterogeneous reactions are incorporated in the model in a similar fashion through source/sink terms added to the continuity equation. The model provides for moving reaction fronts through surfaces of discontinuity across which occur jump discontinuities in the various field variables satisfying generalized Rankine-Hugoniot relations. Reversible reactions including aqueous complexing, oxidation-reduction reactions, mineral precipitation and dissolution reactions and adsorption are explicitly accounted for by imposing chemical equilibrium constraints in the form of mass action equations on the transport equations. This is facilitated by partitioning the reacting species into primary and secondary species corresponding to a particular representation of the stoichiometric reaction matrix referred to as the canonical representation. The transport equations for the primary species combined with homogeneous and heterogeneous equilibria result in a system of coupled, nonlinear algebraic/partial differential equations which completely describe the evolution of the system in time. Spatially separated phase assemblages are accommodated in the model by altering the set of independent variables across surfaces of discontinuity. Constitutive relations for the fluid flux corresponding to primary species are obtained describing transport of both neutral and charged species by advection, dispersion and diffusion. Numerical implementation of the transport equations is considered and both explicit and implicit finite difference algorithms are discussed. Analytical expressions for the change in porosity and permeability with time are obtained for an assemblage of minerals reacting reversibly with a hydrothermal fluid under quasi-steady state conditions. Fluid flow is described by Darcy's law employing a phenomenological expression relating permeability and porosity. Finally an expression for the local retardation factor of solute species is derived for the case of advective transport in a single spatial dimension which accounts for the effects of homogeneous and heterogeneous equilibria including adsorption on the rate of advance of a reaction front. The condition for the formation of shock waves is given.  相似文献   

14.
现代植物植硅体化学组成研究有利于揭示植硅体的化学组成与细胞形态、植物种类及植物生长环境之间的关系,认识植硅体形成机制、植物分类及生态意义。植硅体化学组成测试方法多种多样,主要涉及植硅体化学元素组成及Si、O和C元素同位素组成测定,研究表明植硅体主要含二氧化硅和水,封闭有少量的有机成分及多种矿质元素。在植硅体封闭有机成分存在形式,部分元素的形成、迁移等循环机理,稳定碳同位素组成、分布及其生态指示意义以及^14C测年研究等方面取得一定认识。植物种类、组织部位、细胞微环境以及植物生长的环境因子能够影响植硅体的化学组成。植硅体化学组成研究对植硅体形成机制及碳、硅等元素循环具有重要意义,植硅体部分化学元素、植硅体稳定同位素组成及^14C测年具有较好的古环境及考古研究潜力。现代植物植硅体化学组成及其与环境因子的关系,以及植硅体电子探针微区研究有待于进一步深入开展。  相似文献   

15.
关于火山熔岩分类命名的建议   总被引:2,自引:0,他引:2       下载免费PDF全文
岩浆岩的分类、命名是研究岩浆岩岩石学的基础,愈来愈为岩石学者所重视。在24届国际地质会议上确定了深成岩的分类、命名方案,并已得到广泛应用。但由于火山岩的复杂性,在分类、命名方面,至今尚无统一的口径。因此,火山岩分类方案多如雨后春笋,岩石名称杂乱,对岩石学的发展颇为不利,故迫切需要建立一个国际统一的分类、命名方案。  相似文献   

16.
Six national-scale, or near national-scale, geochemical data sets for soils or stream sediments exist for the United States. The earliest of these, here termed the ‘Shacklette’ data set, was generated by a U.S. Geological Survey (USGS) project conducted from 1961 to 1975. This project used soil collected from a depth of about 20 cm as the sampling medium at 1323 sites throughout the conterminous U.S. The National Uranium Resource Evaluation Hydrogeochemical and Stream Sediment Reconnaissance (NURE-HSSR) Program of the U.S. Department of Energy was conducted from 1975 to 1984 and collected either stream sediments, lake sediments, or soils at more than 378,000 sites in both the conterminous U.S. and Alaska. The sampled area represented about 65% of the nation. The Natural Resources Conservation Service (NRCS), from 1978 to 1982, collected samples from multiple soil horizons at sites within the major crop-growing regions of the conterminous U.S. This data set contains analyses of more than 3000 samples. The National Geochemical Survey, a USGS project conducted from 1997 to 2009, used a subset of the NURE-HSSR archival samples as its starting point and then collected primarily stream sediments, with occasional soils, in the parts of the U.S. not covered by the NURE-HSSR Program. This data set contains chemical analyses for more than 70,000 samples. The USGS, in collaboration with the Mexican Geological Survey and the Geological Survey of Canada, initiated soil sampling for the North American Soil Geochemical Landscapes Project in 2007. Sampling of three horizons or depths at more than 4800 sites in the U.S. was completed in 2010, and chemical analyses are currently ongoing. The NRCS initiated a project in the 1990s to analyze the various soil horizons from selected pedons throughout the U.S. This data set currently contains data from more than 1400 sites. This paper (1) discusses each data set in terms of its purpose, sample collection protocols, and analytical methods; and (2) evaluates each data set in terms of its appropriateness as a national-scale geochemical database and its usefulness for national-scale geochemical mapping.  相似文献   

17.
Fisher (1989) advocated using the Singular Value Decomposition (SVD) of the composition matrix of a set of minerals for the determination of reactions between the minerals, and therefore of the compatibility relationships between mineral assemblages. The advantage of using the SVD for this is that an independent set of reactions, the left nullspace of the composition matrix, can be determined for a rank-deficient composition matrix which is close to, or within error of, the observed matrix. The zero singular values in the SVD can be identified by propagating the measurement uncertainties through to the singular values, and saying that singular values are zero if they are within error of zero. Having obtained an independent set of reactions, the reactions in the independent set can be combined linearly to find the full set of reactions. Propagating the measurement uncertainties through to the left nullspace of the composition matrix, the uncertainties in the coefficients of the reactions in the independent set can be determined. From these uncertainties, the uncertainties in all of the reactions can be determined, allowing the identification of reactions which are degenerate within error. This is important because it allows the identification of ambiguities in the compatibility relationships between mineral assemblages.  相似文献   

18.
Garnet-sillimanite gneisses, locally known as khondalites, occur abundantly in the Chilka Lake granulite terrane belonging to the Eastern Ghats Proterozoic belt of India. Though their chemistry has been modified by partial melting, it is evident that the majority of these rocks are metapelitic, with some tending to be metapsammitic. Five petrographically distinct groups are present within the khondalites of which the most abundant group is characteristically low in Mg:Fe ratios — the main chemical discriminant separating the five groups. The variations in Mg:Fe ratios of the garnets, biotites, cordierites, orthopyroxenes and spinels from the metapelites are compatible with those in the bulk rocks. A suite of granitoids containing garnet, K-feldspar, plagioclase and quartz, commonly referred to as leptynites in Indian granulite terranes, are interlayered with khondalites on the scale of exposures; in a few spots, the intercalated layers are thin. The peraluminous character of the leptynites and presence of sillimanite trails within garnets in some of them suggest derivation of leptynites by partial melting of khondalites. Here we examine this connection in the light of results derived from dehydration melting experiments of micas in pelitic and psammitic rocks. The plots of leptynites of different chemical compositions in a (MgO + FeO)-Na2O-K2O projection match the composition of liquids derived by biotite and muscovite dehydration melting, when corrected for co-products of melting reactions constrained by mass balance and modal considerations. The melt components of the leptynites describe four clusters in the M-N-K diagram. One of them matches melts produced dominantly by muscovite dehydration melting, while three clusters correspond to melting of biotite. The relative disposition of the clusters suggests two trends, which can be correlated with different paths that pelitic and psammitic protoliths are expected to generate during dehydration melting. Thus the leptynites evidently represent granitoids which were produced by dehydration melting in metapelites of different compositions. The contents of Ti, Y, Nb, Zr and Th in several leptynites indicate departures from equilibrium melt compositions, and entrainment of restites is considered to be the main causative factor. Disequilibrium in terms of major elements is illustrated by leucosomes within migmatites developed in a group of metapelites. But the discrete leptynites that have been compared with experimental melts approach equilibrium melt compositions closely.  相似文献   

19.
Rare earth element (REE) concentrations have been measured using instrumental neutron activation analysis on clean separates of primary minerals from 11 eclogite samples from the Bobbejaan and Roberts Victor kimberlites, South Africa. Samples were selected to reflect minimal secondary alteration and represent a broad range of eclogite compositions from coesiteand corundum-grospydites through magnesian bimineralic eclogites. Correlations between REE concentrations and major-element compositions suggest that garnet and clinopyroxene crystal chemistry are the dominant control on REE distribution and that these approach solidstate equilibrium distributions. Reconstructed wholerock REE concentration variation with whole-rock major-element compositions are consistent with an origin by high-pressure igneous fractionation followed by reequilibration to lower temperatures at pressures in excess of three GPa.  相似文献   

20.
Exhumation of the Himalayan-Tibetan orogen is implicated in the marked rise in seawater 87Sr/86Sr ratios since 40 Ma. However both silicate and carbonate rocks in the Himalaya have elevated 87Sr/86Sr ratios and there is disagreement as to how much of the 87Sr flux is derived from silicate weathering. Most previous studies have used element ratios from bedrock to constrain the proportions of silicate- and carbonate-derived Sr in river waters. Here we use arrays of water compositions sampled from the head waters of the Ganges in the Indian and Nepalese Himalaya to constrain the end-member element ratios. The compositions of tributaries draining catchments restricted to a limited range of geological units can be described by two-component mixing of silicate and carbonate-derived components and lie on a plane in multicomponent composition space. Key elemental ratios of the carbonate and silicate components are determined by the intersection of the tributary mixing plane with the planes Na = 0 for carbonate and constant Ca/Na for silicate. The fractions of Sr derived from silicate and carbonate sources are then calculated by mass-balance in Sr-Ca-Mg-Na composition space. Comparison of end-member compositions with bedrock implies that secondary calcite deposition may be important in some catchments and that dissolution of low-Mg trace calcite in silicate rocks may explain discrepancies in Sr-Ca-Na-Mg covariation. Alternatively, composition-dependent precipitation or incongruent dissolution reactions may rotate mixing trends on cation-ratio diagrams. However the calculations are not sensitive to transformations of the compositions by incongruent dissolution or precipitation processes provided that the transformed silicate and carbonate component vectors are constrained. Silicates are calculated to provide ∼50% of the dissolved Sr flux from the head waters of the Ganges assuming that discrepancies between Ca-Mg-Na covariation and the silicate rock compositions arise from addition of trace calcite. If the Ca-Mg-Na mixing plane is rotated by composition-dependent secondary calcite deposition, this estimate would be increased. Moreover, when 87Sr/86Sr ratios of the Sr inputs are considered, silicate Sr is responsible for 70 ± 16% (1σ) of the 87Sr flux forcing changes in seawater Sr-isotopic composition. Since earlier studies predict that silicate weathering generates as little as 20% of the total Sr flux in Himalayan river systems, this study demonstrates that the significance of silicate weathering can be greatly underestimated if the processes that decouple the water cation ratios from those of the source rocks are not properly evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号