首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the results of our IR photometric observations of the classical symbiotic star BF Cyg acquired in 1978–2003. The variability range in the J and K bands was ~0.2m. A periodic component in the cool star’s brightness variations is clearly visible, its period being half the orbital one and its J amplitude being ~0.15m. This component is associated with the ellipsoidal shape of the red giant, which model calculations show fills its Roche lobe. This is required in order to reproduce ellipsoidal brightness variability with such a large amplitude: the calculated amplitude for a red giant filling 90% of its Roche lobe is half the observed value. At the same time, it was not possible to confidently chose the optimum component-mass ratio, q = M giant /Mhot, and orbital inclination, i, from possible values in the ranges q = 2–4, i = 70°–90°. Including the contribution from the hot radiation sources (the hot component and ionized envelope), which vary with a period equal to the orbital period, has a considerable influence on the estimated parameters associated with the red giant’s ellipsoidal brightness variations, and this contribution cannot be neglected. The deviations of the observed from the calculated light curve are irregular, with the rms deviation being σ(O-C) ≈ 0.04m.  相似文献   

2.
We used a photoelectric photometer designed by V.M. Lyutyi and the Zeiss-600 telescope of the Sternberg Astronomical Institute’s Crimean Observatory to acquire precise UBV brightness measurements (σ obs V ~ 0.007m) for the eclipsing binary system HS Her in 1984–1991. These measurements continue the homogeneous series of observations of this star commenced in 1969 by D.Ya. Martynov using the same equipment. Our detailed analysis of this homogeneous 22-year series of photoelectric observations has yielded a self-consistent set of physical and geometric parameters of the binary, and enabled us to establish the evolutionary stages of its components. The systems’s primary, M 1 = 5 M , is at the beginning of its main-sequence evolution, whereas its secondary, M 2 = 1.6 M , has not yet reached the main sequence. The binary’s age is estimated to be t = (17 ± 3) × 106 years.  相似文献   

3.
We present the results of long-term (1978–1998) infrared and optical observations of the unique symbiotic system CH Cygni. The system’s IR brightness and color variations are generally consistent with a model in which the source is surrounded by a dust envelope with variable optical depth. There was evidence for a hot source in the CH Cyg system during the entire period from 1978 to 1998, with the exception of several hundred days in 1987–1989. Over the observation period, there was tendency for the system to gradually redden at 0.36–5 µm, accompanied by a brightness decrease at 0.36–2.2µm and a brightness increase at 3.5 and 5 µm. The “activation” of the cool sources in 1986–1989 nearly coincided with the disappearance of radiation from the hot source. The dust envelope of CH Cyg is not spherically symmetrical, and its optical depth along the line of sight is substantially lower than its emission coefficient, the mean values being τex(L)~0.06 and τem(L)~0.16. We confirm the presence of a 1800-to 2000-day period in both the optical and IR, both accounting for, and not accounting for, a linear trend. The spectral type of the cool star varied between M5III and M7III. The spectral type was M5III during the phase of maximum activity of the system’s hot source, while the spectral type was M7III when the star’s optical radiation was almost completely absent. The luminosity of the cool giant varied from (6300–9100)L ; its radius varied by approximately 30%. The ratio of the luminosities of the dust envelope and the cool giant varied from 0.08 to 0.5; i.e., up to 50% of the cool star’s radiation could be absorbed in the envelope. The temperature of dust particles in the emitting envelope varied from 550 to 750 K; the radius of the envelope varied by more than a factor of 2. The expansion of the emitting dust envelope observed in 1979–1988 accelerated: its initial velocity (in 1979) was ~8 km/s, while the maximum velocity (in 1987–1989) was ~180 km/s. Beginning in 1988, the radiation radius of the dust envelope began to decrease, first at ~45 km/s and then (in 1996–1998) at ~3 km/s. From 1979 until 1996, the mass of the emitting dust envelope increased by approximately a factor of 27 (the masses in 1979 and 1988 were ~1.4×10?7 M and ~3.8×10?6 M , respectively), after which (by 1999) it decreased by nearly a factor of 7. The mass-loss rate of the cool star increased in 1979–1989, reaching ~3.5×10?6 ~3.5×10?6 M /yr in 1988. Subsequently (up to the summer of 1999), the envelope itself began to lose mass at a rate exceeding that of the cool star. The largest input of matter to the envelope occurred after the phase of optical activity in 1978–1985. If the envelope’s gas-to-dust ratio is ~100, the mass of matter ejected in 1988 was ~4×10?4 M .  相似文献   

4.
The results of long-term photometric observations of R CrB in the UBV JHKLM bands are presented. The temporal and color characteristics of the emission of the star itself and of its extended dust envelope are analyzed in detail. No stable harmonic has been found in the semiregular variations of the optical brightness of R CrB. Two harmonics with periods P≈3.3 and 11.3 yrs have been detected in the brightness variations of the dust envelope; the minima of these variations coincided in 1999, resulting in a record decrease in the LM brightness of the envelope. This by chance coincided in time with a deep minimum of the visual brightness of the star, resulting in a unique decrease in the total brightness of the star and dust envelope. This enabled estimation of the bolometric flux of the hot dust clouds, which made up only a few per cent of the bolometric flux of the dust envelope. The brightness variations of the dust envelope are not accompanied by appreciable color changes and are associated with variations of its optical depth τ(V) in the range 0.2–0.4. The dust envelope forms at a large and fairly constant distance from the star $(r_{in} \approx 110R_* ,T_{gr} \approx 860 K)$ , from material in its stellar wind, whose intensity $(\dot M_{gas} \approx 2.1 \times 10^{ - 7} M_ \odot /year)$ obeys a Reimers law. No variations synchronous with those of the optical depth of the dust envelope, in particular, with the period P≈3.3 yrs, have been found in the optical emission of R CrB, suggesting that the stellar wind is not spherically symmetric. The dust envelope consists of small grains (a gr≤0.01 µm), while the clouds screening the star from the observer are made up of large grains (a gr≈0.1 µm). The activity of R CrB, whose nature is unclear, is reflected in variations of the stellar-wind intensity and the appearance of dust clouds in the line of sight: these variations are repeated by corresponding changes in the optical depth of the dust envelope with a delay of ~4 years (the time for a particle moving at V env≈45 km/s to move from the star to the boundary of the dust envelope).  相似文献   

5.
The structure of the ejector region in the active star-forming region Orion KL has been studied over a broad dynamic range with a high angular resolution of 0.1 milliarcsec, or 0.05 AU. The line profile of the H2O supermaser emission has broad wings and can be represented as a superposition of two Gaussians with frequency widths Δf1=31 kHz and Δf2=163 kHz. The line intensities are I1≈3×105 Jy/beam and I2≈400 Jy/beam, and the brightness temperatures, Tb1≈5×1016 K and Tb2≈6×1014 K. The broadband ejector emission is determined by a rotating bipolar outflow with a rotational period of 5 months. The ejector emission in the 31-kHz component at a velocity of 7.64 km/s is amplified by more than two orders of magnitude by the surrounding envelope. The maser amplification regime is partially saturated.  相似文献   

6.
New results of UBV JHKLM photometry of the symbiotic Mira V407 Cyg performed in 1998–2002 are reported. In 2002, these observations were supplemented with RI observations and a search for rapid variability in the V band. The hot component of V407 Cyg experienced a strong flare in 1998, which was the second in the history of photometric observations of this star; this flare is still continuing. During the flare, the spectral energy distribution of the hot component can be approximated by blackbody radiation with a temperature of ~7200 K. At the maximum brightness, the bolometric flux from the hot component did not exceed 3% of the Mira's mean bolometric flux, while its bolometric luminosity was ~400L. Appreciable variations of the star's BV brightness \((\tilde0\mathop m\limits_. 7)\) on a timescale of several days have been observed. These variations are not correlated with variations of B-V. Flickering on a timescale of several minutes with an amplitude of \(\tilde0\mathop m\limits_. 2\) has been detected in the V band. The observations suggest that the hot component can be in three qualitatively different states. In a model with a rapidly rotating white dwarf, these states can be associated with (i) the quiescent state of the white dwarf (with a very low accretion rate), (ii) an ejection state, and (iii) an accretion state. The Mira pulsation period P is \( \approx 762\mathop d\limits_. 9\), with its infrared maximum occurring ~0.15P after the visual maximum. A “step” is observed on the ascending branch of the Mira infrared light curves. In 1998, the gradual increase of the mean K brightness of the Mira that had been observed since 1984 was interrupted by an unusually deep minimum, after which the mean level of the K brightness considerably decreased.  相似文献   

7.
We present the results of a joint analysis of JHK interferometric and UBVJHKLM photometric observations of RCrB acquired in June 2001. The baseline for the IOTA interferometer was 21.18 m. During the observations, the star was in its bright state in the V band and near its maximum brightness in the L band. Our analysis reveals an IR source that is considerably smaller than the extended dust envelope discovered earlier. We identify this compact IR source with the emission from a group of dust clouds. The linear scale (diameter) of the IR source was d in,c ≈ 13.5D* (its angular diameter is θin,c≈6.4 mas). About 7% of the star’s radiation was obscured by this group of clouds, which contributed ~14% of the total IR excess of R CrB and ~22% of the K-band flux. The color temperature of the compact source was only ~300 K higher than the color temperature of the extended dust envelope. The inner boundary of the extended dust envelope had a diameter of d in,e ≈ 90D*in,e≈43 mas).  相似文献   

8.
The narrow-band λ4244 Å continuum light curve of the eclipsing binary V444 Cyg, which has a Wolf-Rayet component, is interpreted assuming that the brightness distribution and absorption in the WN5 star's disk are monotonic, non-increasing, convexo-concave, non-negative functions. The convex and concave parts of these functions correspond to the core of the WN5 star and its extended photosphere and atmosphere, respectively. The radius and brightness temperature of the opaque core of the WN5 star are r WN5 core ? 4R and T br core >52000 K, respectively. The stellar wind is characterized by an accelerated radial outflow. Acceleration of the wind persists at large distances from the center of the star. A crude Lamers-law fit to the reconstructed velocity field in the wind yields an acceleration parameter β=1.58–1.82.  相似文献   

9.
We have performed speckle interferometry with the 6-m telescope of the Special Astrophysical Observatory and spectroscopy (at 3700–9200 Å) with the 2-m telescope at Peak Terskol of the spectroscopic and interferometric binary 9 Cyg, which is a composite-spectrum star with an orbital period of 4.3 yrs. The atmosphere of the system’s primary component is analyzed in detail. The luminosities of both components estimated to be L 1 = 103.8 L , L 2 = 55.2 L , where L is the solar luminosity, and their effective temperatures to be T e (1) = 5300 K and T e (2) = 9400 K. The abundances of C, N, O, Fe, and other elements in the primary’s atmosphere have been derived. The chemical composition shows signatures of mixing of material from its atmosphere and the region of nuclear reactions. The evolutionary status of 9 Cyg has been determined. The binary’s age is about 400 million years; the brighter star is already in the transition to becoming a red giant, while the secondary is still in the hydrogen-burning stage near the zero-age main sequence. We suggest an evolutionary model for the binary’s orbit that explains the high eccentricity, e = 0.79.  相似文献   

10.
Using the four-channel automatic photoelectric photometer of the Sternberg Astronomical Institute’s Tien Shan Mountain Observatory, we have acquired accurate (σobs≈0.004m) W BV R brightness measurements for the eclipsing binary AR Cas during selected phases before eclipse ingress and after egress, as well as at the center of minima. A joint analysis of these measurements with other published data has enabled us to derive for the first time a self-consistent set of physical and geometrical parameters for the star and the evolutionary age of its components, t=(60±3)×106 years. We have found the period of the apsidal motion (Uobs=1100±160 years, \(\dot \omega _{obs} = 0^\circ .327 \pm 0^\circ .049\) years?1) and the apsidal parameter of the primary, logk 2,1 obs =?2.41±0.08, with the apsidal parameter being in good agreement with current models of stellar evolution. There is an ultraviolet excess in the primary’s radiation, Δ(U?B)=?0.12m and Δ(B?V)=?0.06m, possibly due to a metal deficiency in the star’s atmosphere.  相似文献   

11.
We have calculated a grid of hydrodynamical models for W Vir pulsating variable stars with mass M = 0.6M and bolometric luminosity 200 ≤ L bol/L ≤ 1.2 × 103. The positions of the blue edge of the instability strip and the boundary separating the domains of periodic and semi-regular pulsation in the H-R diagram were determined. These two boundaries converge for L bol ≈ 103 L . Two different groups of models can be distinguished in the region of periodic solutions, characterized by oscillations with alternating amplitude and duration of the pulsation cycle. For the first group of models, the alternation of the pulsations occurs over a time interval of two periods of the fundamental mode; this is due to the 2П0=3П1 resonance between the fundamental mode and first overtone. The models of the second group have larger luminosities and are located near the boundary separating the domains of periodic and semiregular pulsations. A discrete Fourier transformation analysis shows that, as we approach the region of semiregular pulsations, additional peaks appear in the spectra of the oscillatory moment of inertia and kinetic energy. These peaks correspond to period doubling bifurcations (a Feigenbaum sequence) of order n≤4. Approximate formulas are presented for the pulsation constant Q as a function of the mass-to-radius ratio (M/M )/(R/R ) and the luminosity of the star L bol.  相似文献   

12.
We present observations of the UX Ori star RR Tau in the optical (UBVRI)and near infrared (JHKLM)acquired between November 2000 and April 2001. We recorded a uniquely long (about half a year) Algol-like minimum with an amplitude of ΔV≈2.9. The dimming of RR Tau was accompanied by an increase of the linear polarization, typical of UX Ori stars and testifying to the eclipsing nature of the minimum. The J and H infrared fluxes varied synchronously with the optical variations. However, the K and L brightness changes were in the opposite sense: the flux in these two bands increased for the entire duration of the optical minimum. Our analysis suggests that the source of the K and L radiation is the dust cloud itself, moving at a distance of about 1 AU from the star. The flux increase in these bands was not due to an increase in the dust temperature, but instead to an increase in the number of emitting grains in the cloud. This could be associated either with an actual increase in the number of fine grains due to sublimation and the disruption of larger grains or with the distortion and disruption of the cloud due to tidal perturbation, permitting the star’s light to penetrate and heat the densest regions of the cloud. Based on the observed L fluxes, we estimate the mass of the emitting dust in the cloud to be ≈1023 g. Taking into account the presence of cool dust and a gaseous component in the cloud in addition to the dust heated by the star’s radiation, and adopting a ratio for the masses of the dust and gas components similar to that in the interstellar medium (1:100), we estimate the cloud’s total mass to be ≥1025 g. Judging from this value and the duration of the minimum, we observed an extremely rare episode associated with a giant gas and dust cloud with a total mass on the order of 0.1 lunar mass or higher, which passed very near the young star (and may be falling onto it).  相似文献   

13.
The spectral energy distribution in the far infrared and the shape of a broad emission band in the spectrum of R Cas at 9–13 µm can be reproduced in a model with a dust envelope consisting of approximately half amorphous olivine (Mg0.8Fe1.2SiO4) and half amorphous aluminum-oxide grains (Al2O3), with a small admixture of spinel grains (MgAl2O4). The dust envelope’s optical depth τ(50 µm) is ≈5×10?3 [τ(1.25 µm)≈0.07 for a gr≈0.05 µm], and its mass within r≤0.025 pc M dust is ≈8×10?6 M . The index α in the power-law radial dust distribution, n d ∝(R +/r)α, is ≈1.8. Over the last several thousand years, the mass-loss rate of R Cas has been decreasing as $\dot M(t) \propto t^{0.2} $ (where time is measured backward from the present). This probably implies that R Cas experienced a thermal helium flare several thousand years ago. If M gas/M dust≈200 (where M gas is the gas mass), the mean mass-loss rate of the star is $\dot M \approx 6 \times 10^{ - 7} M_ \odot /yr$ .  相似文献   

14.
Absorption bands are determined in polarized optical spectra of vivianite Fe3(PO4)2·8H2O, recorded at room and low temperatures. These bands are caused by spin-allowed d-d transitions in structurally nonequivalent Fe A 2+ (~11000 cm-1 (γ-polarization) (and) ~12000 cm-1 (β-polarization)) (and) Fe B 2+ (~8400 cm-1 (γ, α-polarization) and ~11200 cm-1 (α-polarization)) ions. A charge transfer band (CTB) Fe B 2+ +Fe B 3+ →Fe B 2+ +Fe B 2+ (~15000 cm-1) also determined, has polarizing features giving evidence of a change in the Fe B 2+ -Fe B 3+ bond direction, when compared with Fe B 2+ -Fe B 2+ . Bands of exchange-coupled Fe3+-Fe3+ pairs (~19400, ~20400, ~21300 and ~21700 cm-1) which appear on oxidation of Fe2+ in paired Fe B octahedra are also characterized.  相似文献   

15.
Our analysis of a 22-year uniform series of photoelectric U BV measurements of HS Her, started in 1969–1983 by D.Ya. Martynov and completed by us in 1984–1991, enabled us to determine new times of minima and revise some times of minima published earlier. Combined with other published data, this information can be used to improve the system’s apsidal elements: U obs = (89.7 ± 5.1) years and log-k 2 obs = ?2.33(4), testifying to a somewhat stronger concentration of matter towards the center than is predicted by current models for main-sequence stars (log -k 2 th = ?2.21). This provides additional evidence that the system’s secondary is at the pre-main-sequence stage of evolution, as we suggested earlier based on our analysis of the system’s photometric elements. We confirm the presence of a third body in the system in a long-period eccentric orbit, as was first suggested in 2002 by Wolf et al. However, in contrast to the results of that paper, we demonstrate that the currently available observational data are insufficient to reliably determine this orbit’s parameters. We estimate the mass of the third body to be M 3 = (1.0?2.0)M for M 1 = 5M and M 2 = 1.6 M .  相似文献   

16.
The partitioning of a number of trace elements (Ba, Nb, Zr, Y, REE, etc.) between orthopyroxene, garnet, and carbonate-silicate melt was experimentally studied using a belt apparatus at pressures of 3.5–4.2 GPa and temperatures of 1300–1500°C. The experimental products were investigated by electron microprobe analysis and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The experimental melts varied from carbonatitic (~5 wt % SiO2) at low temperatures (1300–1350°C) to kimberlitic compositions (30 wt % SiO2) at high temperatures (1500°C). The partition coefficients of most elements between orthopyroxene and melt (D i Opx/L ) and garnet and melt (D i Grt/L ) were almost independent of melt composition (temperature). The D i Opx/L values ranged from <0.01 for the most incompatible Ba and light REE to 0.02–0.08 for moderately incompatible Zr, Y, and heavy REE. The D i Grt/L values were approximately an order of magnitude higher, ~0.07 for light REE, 0.7 for Y, and 1.5 for Yb. The character of D i Grt/L variations in the systems studied is in general similar to that established for silicate melts without volatile components. However, the differences in the behavior of moderately incompatible and compatible elements (e.g., light and heavy REE) in the experimental systems are less pronounced compared with CO2-free systems. Considering carbonate-silicate and silicate melts as possible agents of mantle metasomatism, it can be concluded that the former can efficiently transport heavy REE, and the latter have a greater affinity for Nb, Ba, and light REE. A characteristic feature of mantle rocks enriched by carbonate-silicate melts is high Ba/La ratio coupled with relatively weakly fractionated REE distribution patterns. It was shown that the high degrees of enrichment observed in natural kimberlites can be explained by a two-stage scenario, including a preliminary invasion of carbonate-silicate melt into depleted harzburgites in the lower parts of the lithosphere and subsequent very low degree melting.  相似文献   

17.
Low-frequency pulsations of 22 and 37 GHz microwave radiation detected during solar flares are analyzed. Several microwave bursts observed at the Metsähovi Radio Observatory are studied with time resolutions of 100 and 50 ms. A fast Fourier transformation with a sliding window and the Wigner-Ville method are used to obtain frequency-time diagrams for the low-frequency pulsations, which are interpreted as natural oscillations of coronal magnetic loops; the dynamical spectra of the pulsations are synthesized for the first time. Three types of low-frequency fluctuations modulating the flare microwave radiation can be distinguished in the observations. First, there are fast and slow magneto-acoustic oscillations with periods of 0.5–0.8 s and 200–280 s, respectively. The fast magneto-acoustic oscillations appear as trains of narrow-band signals with durations of 100–200 s, a positive frequency drift dν/dt=0.25 MHz/min, and frequency splitting δν=0.01–0.05 Hz. Second, there are natural oscillations of the coronal magnetic loops as equivalent electrical circuits. These oscillations have periods of 0.5–10 s and positive or negative frequency drift rates dν/dt=8×10?3 Hz/min or dν/dt=?1.3×10?2 Hz/min, depending on the phase of the radio outburst. Third, there are modulations of the microwave radiation by short periodic pulses with a period of 20 s. The dynamical spectra of the low-frequency pulsations supply important information about the parameters of the magnetic loops: the ratio of the loop radius to its length r/L≈0.1, the plasma parameter β≈10?3, the ratio of the plasma densities outside and inside the loop ρei≈10?2, and the electrical current flowing along the loop I≈1012 A.  相似文献   

18.
The results of ~15 years of photometric observations of the UX Ori star SV Cep in the near-infrared (JHKL) are presented. They demonstrate the presence of a cyclic component with a period of ~7 years in the variations of the IR fluxes. This is clearly seen in all four IR bands, but is absent in the optical. The variation amplitude is highest in the K band: ΔK ≈ 0.68 m . The shape of the variations differs slightly in the transition from J to L. However, it is reproduced with good accuracy during two cycles, suggesting a periodic process is observed. If the periodic perturbations in the circumstellar disk of SV Cep are due to a companion’s orbitalmotion, the orbital semi-major axis should be ~5AU, foramass of SVCep of 2.6M . The absence of a seven-year period in the optical light curve of SV Cep means that the observed period cannot be due to variations in the circumstellar extinction. The IR brightness variations could be due to the companion’s motion along an eccentric orbit, resulting in a periodic modulation of the rate of accretion onto the star.  相似文献   

19.
Weak, compact radio sources (~100 mJy peak flux, L~1–10 pc) with their spectral peaks at about a gigahertz are studied, based on the complete sample of 46 radio sources of Snellen, drawn from high-sensitivity surveys, including the low-frequency Westerbork catalog. The physical parameters have been estimated for 14 sources: the magnetic field (H ), the number density of relativistic particles (n e), the energy of the magnetic field $(E_{H_ \bot } )$ , and the energy of relativistic particles (E e). Ten sources have $E_{H_ \bot } \ll E_e $ , three have approximate equipartition of the energies $(E_{H_ \bot } \sim E_e )$ , and only one has $E_{H_ \bot } \gg E_e $ . The mean magnetic fields in quasars (10?3 G) and galaxies (10?2 G) have been estimated. The magnetic field appears to be related to the sizes of compact features as $H \sim 1/\sqrt L $ .  相似文献   

20.
The Gladstone-Dale law (specific refraction) and the Drude law (molecular refraction) for silica polymorphs, at “sodium light” (λ D =0.5893 μm), are derived from simple atomic properties of SiO2 complex (atomic weight, first ionization potential). The considerations are based on the Lorentz electron theory of solids. The characteristic frequency (or eigenfrequency) v 0 of elementary electron oscillators (in energy units, hv) is identified with the band gap E G of a solid; on the other hand, this E G -gap is identified with the single ionization potential \(\tilde U\) of non-free atoms. For \(\tilde U\) =E G =10.2 eV (energy gap of quartz, see Nitsan and Shankland 1976b) the Gladstone-Dale law, or specific refraction, is (n?1)/ρ=0.208 cm3/g, where n and ρ are the refractive index and the density of medium, respectively. According to empirical data, the average value of the specific refraction of pure SiO2 polymorphs (except stishovite-high density phase of silica) is (〈n〉?1)/ρ=0.207±0.001 (〈n〉 denotes the mean refractive index of crystal). For stishovite the Drude law (n 2?1)/ρ=0.542 cm3/g is valid under an assumption that the first ionization potential \(\tilde U\) =E G ≈9 eV; this result is good agreement with the empirical value (〈n2?1)/ρ=0.536 cm3/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号