首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
近地卫星运动的坐标系附加摄动在拟平均根数法中的处理   总被引:1,自引:0,他引:1  
在常用的历元地心天球坐标系中研究和处理近地卫星的轨道问题,就必须考虑由于地球赤道面摆动所引起的坐标系附加摄动,正因为如此,给实际工作带来一些麻烦.关于这一问题,曾提出了一种针对瞬根数和平根数之间的转换(仅与坐标系附加摄动的短周期项有关)的解决途径,但并未涉及采用分析法进行轨道外推的有关问题(这与坐标系附加摄动的长期和长周期项有关),这对处理近地卫星的轨道问题而言显然是不完整的.这里结合拟平均根数法进一步改进原提出的方法,较完善地解决这一坐标系附加摄动的计算问题.在此前提下,对于卫星定轨和预报及其相关工作,无论是采用数值法还是分析法,均可采用同一坐标系,即历元(目前是J2000.0)地心天球坐标系.  相似文献   

2.
The non-spherical gravitational potential of the planet Mars is sig- nificantly different from that of the Earth. The magnitudes of Mars’ tesseral harmonic coefficients are basically ten times larger than the corresponding val- ues of the Earth. Especially, the magnitude of its second degree and order tesseral harmonic coefficient J2,2 is nearly 40 times that of the Earth, and approaches to the one tenth of its second zonal harmonic coefficient J2. For a low-orbit Mars probe, if the required accuracy of orbit prediction of 1-day arc length is within 500 m (equivalent to the order of magnitude of 104 standard unit), then the coupled terms of J2 with the tesseral harmonics, and even those of the tesseral harmonics themselves, which are negligible for the Earth satellites, should be considered when the analytical perturbation solution of its orbit is built. In this paper, the analytical solutions of the coupled terms are presented. The anal- ysis and numerical verification indicate that the effect of the above-mentioned coupled perturbation on the orbit may exceed 10−4 in the along-track direc- tion. The conclusion is that the solutions of Earth satellites cannot be simply used without any modification when dealing with the analytical perturbation solutions of Mars-orbiting satellites, and that the effect of the coupled terms of Mars's non-spherical gravitational potential discussed in this paper should be taken into consideration.  相似文献   

3.
火星非球形引力位田谐项联合摄动分析解   总被引:2,自引:0,他引:2  
周垂红  喻圣贤  刘林 《天文学报》2012,53(3):205-212
火星非球形引力场模型与地球有明显差别,其非球形引力位中的田谐项系数基本都要比地球的相应值大一个量级,尤其是J2,2项(赤道椭率项)的大小接近它的动力学扁率项J2.对于低轨探测器,若要使轨道外推1 d弧段的精度达到500 m(相当于标准单位10-4量级),在构造环火探测器的轨道分析解时,田谐项与J2项以及田谐项与田谐项之间的联合摄动不容忽视.根据摄动量级分析和构造的摄动分析解证实,上述联合摄动对轨道沿迹方向的影响可超过10-4,并给出了数值验证.结果表明,与地球低轨卫星不同,在类似的问题中,构造环火卫星摄动分析解时,必须考虑这些联合摄动项的影响.  相似文献   

4.
Recent Viking results indicate the Martian satellites are composed of carbonaceous chondritic material, suggesting that Phobos and Deimos were once asteroids captured by Mars. On the other hand, the low eccentricities and inclinations of their orbits on the equator of Mars argue against that hypothesis. This paper presents detailed calculations of the tidal evolution of Phobos and Deimos, considering dissipation in both Mars and its satellites simultaneously and using a new method applicable for any value of the eccentricity. In particular, including precession of the satellites' orbits indicates that they have always remained close to their Laplacian plane, so that the orbital planes of Phobos and Deimos switched from near the Martian orbital plane to the Martian equator once the perturbations due to the planetary oblateness dominated the solar perturbations, as they do presently. The results show that Deimos has been little affected by tides, but several billion (109) years ago, Phobos was in a highly eccentric orbit lying near the common plane of the solar system. This outcome is obtained for very reasonable values of dissipation inside Mars and inside Phobos. Implications for the origin of the Martian satellites are discussed.  相似文献   

5.
6.
月球物理天平动对环月轨道器运动的影响   总被引:3,自引:0,他引:3  
张巍  刘林 《天文学报》2005,46(2):196-206
月球物理天平动是月球赤道在空间真实的摆动,会导致月球引力场在空间坐标系中的变化,从而引起环月轨道器(以下称为月球卫星)的轨道变化,这与地球的岁差章动现象对地球卫星轨道的影响类似.采用类似对地球岁差章动的处理方法,讨论月球物理天平动对月球卫星轨道的影响,给出相应的引力位的变化及卫星轨道的摄动解,清楚地表明了月球卫星轨道的变化规律,并和数值解进行了比对,从定性和定量方面作一讨论.  相似文献   

7.
One may construct complete planetary and lunar ephemerides, referred to the equator and dynamical equinox of some epoch, strictly from ranging data alone. Such an ephemeris would be completely independent from any optical data and therefore independent of any stellar catalogue. By using such an ephemeris to then analyse optical observations, one could theoretically derive many of the pertinent features of the catalogue system to which the optical observations are referred. Such features include the equinox offset, equinox motion and systematic proper motion errors. In practice, the optical observations are used in the fitting process, but essentially the same determinations may be made.This paper presents estimates of the equinox offset and equinox motion of the FK4 as determined by the ephemeris fitting process and compares them with corresponding determinations by Fricke. No significant differences are found. Further, it is indicated how one may also estimate a value for precession and the value of the obliquity from the ephemerides. These' values are also compared with the presently adopted ones.  相似文献   

8.
Lunar physical libration, which is true oscillation of lunar equator in the space, alters the lunar gravitational field in the space coordinate system and affects the orbiting motion of lunar orbiters (hereafter called as lunar satellites) correspondingly. The effect is very similar to that of the precession and nutation on the earth satellites, and a similar treatment can be used. The variations in the gravitational force and in the orbit perturbation solution are clearly given in this paper together with numerical illustrations.  相似文献   

9.
It is known that the dynamical orbit determination is the most common way to get the precise orbits of spacecraft. However, it is hard to build up the precise dynamical model of spacecraft sometimes. In order to solve this problem, the technique of the orbit determination with the B-spline approximation method based on the theory of function approximation is presented in this article. In order to verify the effectiveness of this method, simulative orbit determinations in the cases of LEO (Low Earth Orbit), MEO (Medium Earth Orbit), and HEO (Highly Eccentric Orbit) satellites are performed, and it is shown that this method has a reliable accuracy and stable solution. The approach can be performed in both the conventional celestial coordinate system and the conventional terrestrial coordinate system. The spacecraft's position and velocity can be calculated directly with the B-spline approximation method, it needs not to integrate the dynamical equations, nor to calculate the state transfer matrix, thus the burden of calculations in the orbit determination is reduced substantially relative to the dynamical orbit determination method. The technique not only has a certain theoretical significance, but also can serve as a conventional algorithm in the spacecraft orbit determination.  相似文献   

10.
基于VLBI资料的ERP高频变化求解方法的研究   总被引:1,自引:0,他引:1  
在天测与测地VLBI资料分析软件CALC/SOLVE中,对地球自转参数(ERP)高频变化的解算采用了附加约束的连续分段线性拟合方法,即要求在两个历元节点之间ERP变化率小于某事先约定值,并要求ERP在历元节点上连续.实测资料分析表明,当资料点密度较低时,引入约束条件和要求连续均有助于提高解的稳定性,但也人为降低了解的客观性,使各历元节点ERP解算结果之间相关.为此,基于CALC/SOLVE的用户偏导功能,实现了ERP高频变化的直接求解模块,不附加约束,也不要求连续.实测资料分析表明对ERP高频变化的直接求解模式更为可取.对于长时段VLBI资料的ERP高频变化求解,需要考虑岁差和章动模型偏差(天极偏移)的影响,编写相应的求解模块,并成功实现了1979至2003年长时段ERP高频变化求解.比较表明,在考虑了岁差章动模型偏差的影响时能够显著提高解的精度.为此,在基于VLBI资料解算ERP高频变化时,建议采用直接求解模式,并考虑岁差章动模型偏差的影响.  相似文献   

11.
On the basis of the results by Huang et al. (1990), this paper further discusses and analyses the four post-Newtonian effects in a near-Earth satellite orbit: the Schwarzschild solution, the post-Newtonian effects of the geodesic precession, the Lense-Thirring precession and the oblateness of the Earth. A full analytical solution to the effects including their direct perturbations and mixed perturbations due to the Newtonian oblateness (J 2) perturbation and the Schwarzschild solution is obtained using the quasi-mean orbital element method analogous to the Kozai's mean orbital element one. Some perturbation properties of the post-Newtonian effects are revealed. The results obtained not only can provide a sound scientific basis for the precise determination of a man-made satellite orbit but also is suitable for similar mechanics systems, such as the motions of planets, asteroids and natural satellites.  相似文献   

12.
Further reduction of Doppler tracking data from Mariner 9 confirms our earlier conclusion that the gravity field of Mars is considerably rougher than the fields of either the Earth or the Moon. The largest positive gravity anomaly uncovered is in the Tharsis region which is also topographically high and geologically unusual. The best determined coefficients of the harmonic expansion of the gravitational potential are: J2 = (1.96 ± 10.01) × 10?3 ; C22 = ?(5.1 ± 0.2) × 10?5; and S22 = (3.4 ± 0.2) × 10?5. The other coefficients have not been well determined on an individual basis, but the ensemble yields a useful model for the gravity field for all longitudes in the vicinity of 23° South latitude which corresponds to the periapse position for the orbiter.The value obtained for the inverse mass of Mars (3 098 720 ± 70 M?1) is in good agreement with prior determinations from Mariner flyby trajectories. The direction found for the rotational pole of Mars, referred to the mean equinox and equator of 1950.0, is characterized by α = 317°.3 ± 0°.2, δ = 52°.7 ± 0°.2. This result is in excellent agreement with Sinclair's recent value, determined from earth-based observations of Mars' satellites, but differs by about 0°.5 from the previously accepted value. Other important physical constants that have either been refined or confirmed by the Mariner 9 data include: (i) the dynamical flattening, f = (5.24 ± 0.02) × 10?3; (ii) the maximum principal moment of inertia, C = (0.375 ± 0.006) MR2; and (iii) the period of precession of Mars' pole, P ? (1.73 ± 0.03) × 105 yr, corresponding to a rate of 7.4 sec of arc per yr.  相似文献   

13.
In the present study an investigation of the collision orbits of natural satellites of the Moon (considered to be of finite dimensions) is developed, and the tendency of natural satellites of the Moon to collide on the visible or the far side of the Moon is studied. The collision course of the satellite is studied up to its impact on the lunar surface for perturbations of its initial orbit arbitrarily induced, for example, by the explosion of a meteorite. Several initial conditions regarding the position of the satellite to collide with the Moon on its near (visible) or far (invisible) side is examined in connection to the initial conditions and the direction of the motion of the satellite. The distribution of the lunar craters-originating impact of lunar satellites or celestial bodies which followed a course around the Moon and lost their stability - is examined. First, we consider the planar motion of the natural satellite and its collision on the Moon's surface without the presence of the Earth and Sun. The initial velocities of the satellite are determined in such a way so its impact on the lunar surface takes place on the visible side of the Moon. Then, we continue imparting these velocities to the satellite, but now in the presence of the Earth and Sun; and study the forementioned impacts of the satellites but now in the Earth-Moon-Satellite system influenced also by the Sun. The initial distances of the satellite are taken as the distances which have been used to compute periodic orbits in the planar restricted three-body problem (cf. Gousidou-Koutita, 1980) and its direction takes different angles with the x-axis (Earth-Moon axis). Finally, we summarise the tendency of the satellite's impact on the visible or invisible side of the Moon.  相似文献   

14.
Observations of the Sun were made with the Cape reversible transit circle from 1907 to 1959. We have made least squares solutions for six unknowns viz., equator and equinox corrections and corrections to earth orbital parameters including the ephemeris mean longitude of the Sun, the mean obliquity of the ecliptic, the mean longitude of perihelion, and the mean eccentricity of the earth's orbit based on Newcomb's, DE102, and DE200 Ephemerides for each of six catalogs of observations made during that period. The six unknowns are also determined simultaneously for the six catalogs taken together. The six catalogs are absolute, in that methods of observation and reduction were adopted in such a way as to produce a system of results not closely dependent on the adopted system of assumed clock and azimuth star positions.The observed equator and equinox corrections from a comparison of DE200 with the Cape Sun observations referred to an improved FK4 system are –0.07±0.01 arcsec and –0.20±0.04 arcsec, respectively, at the mean epoch of observation, 1933.02. The time rate of change of the equator correction was not significant. The time rate of change of the observed equinox is –1.02±0.30 arcsec per century.The observed equinox correction of the DE102 at 1933.02 is –0.41±0.04 arcsec, which is 0.5 arcsec less than the NEWCOMB (Herget) equinox correction. This confirms the result based on Washington Sun observations.  相似文献   

15.
The Moon’s physical libration in latitude generated by gravitational forces caused by the Earth’s oblateness has been examined by a vector analytical method. Libration oscillations are described by a close set of five linear inhomogeneous differential equations, the dispersion equation has five roots, one of which is zero. A complete solution is obtained. It is revealed that the Earth’s oblateness: a) has little effect on the instantaneous axis of Moon’s rotation, but causes an oscillatory rotation of the body of the Moon with an amplitude of 0.072″ and pulsation period of 16.88 Julian years; b) causes small nutations of poles of the orbit and of the ecliptic along tight spirals, which occupy a disk with a cut in a center and with radius of 0.072″. Perturbations caused by the spherical Earth generate: a) physical librations in latitude with an amplitude of 34.275″; b) nutational motion for centers of small spiral nutations of orbit (ecliptic) pole over ellipses with semi-major axes of 113.850″ (85.158″) and the first pole rotates round the second one along a circle with radius of 28.691″; c) nutation of the Moon’s celestial pole over an ellipse with a semi-major axis of 45.04″ and with an axes ratio of about 0.004 with a period of T = 27.212 days. The principal ellipse’s axis is directed tangentially with respect to the precession circumference, along which the celestial pole moves nonuniformly nearly in one dimension. In contrast to the accepted concept, the latitude does not change while the Moon’s poles of rotation move. The dynamical reason for the inclination of the Moon’s mean equator with respect to the ecliptic is oblateness of the body of the Moon.  相似文献   

16.
冯磊 《天文学报》2021,62(3):28
提出了关于地球生命起源的新模型---星云中继假说, 它是宇宙胚种论的修改版本. 在这个模型中, 作为宇宙``种子''的原始生命起源于太阳系的前身恒星系统中的生物化学过程, 并且在前身恒星死亡后充满整个原太阳星云. 地球生命的起源可以分为3个阶段: 太阳前身恒星的原始生命起源, 原太阳星云时期和太阳系形成与地球生命时期. 这个模型最主要的推论是原始生命(或其后裔)以及它们的化石存在于太阳系内各种天体之中.  相似文献   

17.
We have used and extended Roosbeek’s tidal potential for Mars to calculate tidal displacements, gravity variations, and external gravitational potential variations. The tides on Mars are caused by the Sun, and to a lesser degree by the natural satellites Phobos (8%, relative to the Sun) and Deimos (0.08%, relative to the Sun). To determine the reaction of Mars to the tidal forcing, the Love numbers h, l, and k and the gravimetric factor δ were calculated for interior models of Mars with different state, density, and radius of the core and for models which include mantle anelasticity. The latitude dependence and frequency dependence of the Love numbers have been taken explicitly into account. The Love numbers are about three times smaller than those for the Earth and are very sensitive to core changes; e.g., a difference of about 30% is found between a model with a liquid core and an otherwise similar model with a solid core. Tidal displacements on Mars are much smaller than on Earth due to the smaller tidal potential, but also due to the smaller reaction of Mars (smaller Love numbers). For both the tidal diplacement and the tidal external potential perturbations, the tidal signal is at the limit of detection and is too small to permit properties of Mars’s interior to be inferred. On the other hand, the Phobos tidally induced gravity changes, which are subdiurnal with typical periods shorter than 12 h, can be measured very precisely by the very broad band seismometer with thermal control of the seismological experiment SEIS of the upcoming NetLander mission. It is shown that the Phobos-induced gravity tides could be used to study the Martian core.  相似文献   

18.
Every three years the IAU Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the poles of rotation and the prime meridians of the planets, satellites, minor planets, and comets. This report takes into account the IAU Working Group for Planetary System Nomenclature (WGPSN) and the IAU Committee on Small Body Nomenclature (CSBN) definition of dwarf planets, introduces improved values for the pole and rotation rate of Mercury, returns the rotation rate of Jupiter to a previous value, introduces improved values for the rotation of five satellites of Saturn, and adds the equatorial radius of the Sun for comparison. It also adds or updates size and shape information for the Earth, Mars?? satellites Deimos and Phobos, the four Galilean satellites of Jupiter, and 22 satellites of Saturn. Pole, rotation, and size information has been added for the asteroids (21) Lutetia, (511) Davida, and (2867) ?teins. Pole and rotation information has been added for (2) Pallas and (21) Lutetia. Pole and rotation and mean radius information has been added for (1) Ceres. Pole information has been updated for (4) Vesta. The high precision realization for the pole and rotation rate of the Moon is updated. Alternative orientation models for Mars, Jupiter, and Saturn are noted. The Working Group also reaffirms that once an observable feature at a defined longitude is chosen, a longitude definition origin should not change except under unusual circumstances. It is also noted that alternative coordinate systems may exist for various (e.g. dynamical) purposes, but specific cartographic coordinate system information continues to be recommended for each body. The Working Group elaborates on its purpose, and also announces its plans to occasionally provide limited updates to its recommendations via its website, in order to address community needs for some updates more often than every 3 years. Brief recommendations are also made to the general planetary community regarding the need for controlled products, and improved or consensus rotation models for Mars, Jupiter, and Saturn.  相似文献   

19.
Two Struve-Ertel instruments were used for the daytime observations of the Sun, Mercury, Venus and Mars at Pulkovo from 1956 to 1976. The FK4 equinox and equator corrections were derived. Both the instruments were installed in 1983–1986 at the Kislovodsk Station of the Pulkovo Observatory. The atmospheric dispersion and lateral refraction have been estimated at the Station.  相似文献   

20.
This paper analyses three types of artificial orbits around Mars pushed by continuous low-thrust control: artificial frozen orbits, artificial Sun-Synchronous orbits and artificial Sun-Synchronous frozen orbits. These artificial orbits have similar characteristics to natural frozen orbits and Sun-Synchronous orbits, and their orbital parameters can be selected arbitrarily by using continuous low-thrust control. One control strategy to achieve the artificial frozen orbit is using both the transverse and radial continuous low-thrust control, and another to achieve the artificial Sun-Synchronous orbit is using the normal continuous low-thrust control. These continuous low-thrust control strategies consider J 2, J 3, and J 4 perturbations of Mars. It is proved that both control strategies can minimize characteristic velocity. Relevant formulas are derived, and numerical results are presented. Given the same initial orbital parameters, the control acceleration and characteristic velocity taking into account J 2, J 3, and J 4 perturbations are similar to those taking into account J 2 perturbations for both Mars and the Earth. The control thrust of the orbit around Mars is smaller than that around the Earth. The magnitude of the control acceleration of ASFOM-4 (named as Artificial Sun-Synchronous Frozen Orbit Method 4) is the lowest among these strategies and the characteristic velocity within one orbital period is only 0.5219 m/s for the artificial Sun-Synchronous frozen orbit around Mars. It is evident that the relationship among the control thrusts and the primary orbital parameters of Martian artificial orbits is always similar to that of the Earth. Simulation shows that the control scheme extends the orbital parameters’ selection range of three types of orbits around Mars, compared with the natural frozen orbit and Sun-Synchronous orbit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号